
USE OF THE PARTICLE LEVEL SET METHOD

FOR ENHANCED RESOLUTION OF

FREE SURFACE FLOWS

a dissertation

submitted to the program in

scientific computing and computational mathematics

and the committee on graduate studies

of stanford university

in partial fulfillment of the requirements

for the degree of

doctor of philosophy

Douglas Patrick Enright

August 2002

c© Copyright by Douglas Patrick Enright 2002

All Rights Reserved

ii

I certify that I have read this dissertation and that, in

my opinion, it is fully adequate in scope and quality as a

dissertation for the degree of Doctor of Philosophy.

Ronald P. Fedkiw
(Computer Science)
(Principal Advisor)

I certify that I have read this dissertation and that, in

my opinion, it is fully adequate in scope and quality as a

dissertation for the degree of Doctor of Philosophy.

Joel H. Ferziger
(Mechanical Engineering)

I certify that I have read this dissertation and that, in

my opinion, it is fully adequate in scope and quality as a

dissertation for the degree of Doctor of Philosophy.

Juan J. Alonso
(Aeronautics and Astronautics)

Approved for the University Committee on Graduate

Studies:

iii

Abstract

A new numerical method for improving the mass conservation properties of the level

set method when the interface is passively advected in a flow field is proposed. The

method, a hybrid “Particle Level Set Method”, uses Lagrangian marker particles to

rebuild a level set representation of the interface in regions which are under-resolved.

This is often the case for flows undergoing stretching and tearing. A level set only

approach towards maintaining small-scale interface features is subject to excessive

amounts of numerical regularization. This numerical regularization artificially al-

ters or destroy these features. By combining a simple Lagrangian method, massless

marker particles, with the level set method, the ability to smoothly represent both

large and small scale geometrical features is obtained while maintaining the imple-

mentation simplicity characteristic of the level set method. A variety of interface

tracking tests, including a newly proposed three dimensional deformation flow test

case, are performed to demonstrate that the method compares favorably with vol-

ume of fluid methods in the conservation of mass and purely Lagrangian schemes for

interface resolution.

The robustness of the method in representing complex, three dimensional free

surface fluid flows is illustrated through its use in producing physically based ani-

mations of the pouring of a glass of water; the splash generated by the impact of a

ball thrown into a tank of water; and the breaking of a wave on a submerged beach.

The behavior of the water is calculated by a three dimensional Navier-Stokes free sur-

face fluid simulation. A novel application of a level set based velocity extrapolation

technique is used to provide a smooth, physically based velocity field away from the

liquid at the interface. This velocity field satisfies the physical boundary conditions

iv

at the interface and provides a plausible velocity field for use by Lagrangian particles

outside the liquid as required by the “Particle Level Set Method”. Selected frames

from each of the animations are provided.

v

Acknowledgments

The material in this dissertation is drawn from two articles, “A Hybrid Particle

Level Set Method for Improved Interface Capturing” to appear in the Journal of

Computational Physics and “Animation and Rendering of Complex Water Surfaces”

published in the Proceedings of SIGGRAPH 2002.

Research supported in part by an ONR YIP and PECASE award N00014-01-1-

0620, the DOE ASCI Academic Strategic Alliances Program (LLNL contract B341491),

NSF DMS-0106694, and a Howard Hughes Doctoral Fellowship from the Hughes Air-

craft and Raytheon Systems Companies.

vi

Contents

Abstract iv

Acknowledgments vi

1 Introduction 1

1.1 Background . 1

1.2 Curvature and Numerical Regularization 3

1.3 Scope and Presentation . 7

2 Numerical Method 11

2.1 Level Set Method . 11

2.2 Massless Marker Particles . 16

2.3 Particle Level Set Method . 18

2.3.1 Initialization of Particles . 18

2.3.2 Time Integration . 20

2.3.3 Error Correction of the Level Set Function 20

2.3.4 Reinitialization . 23

2.3.5 Particle Reseeding . 24

3 Examples 31

3.1 Rigid Body Rotation of Zalesak’s Disk 31

3.2 Single Vortex . 33

3.3 Deformation Field . 35

3.4 Rigid Body Rotation of Zalesak’s Sphere 36

vii

3.5 Three Dimensional Deformation Field 38

4 Free Surface Calculations 54

4.1 Liquid Free Surface Flows . 54

4.2 CFD and Computer Animation . 55

4.3 Liquid Model . 58

4.3.1 Navier-Stokes Equations . 58

4.3.2 Free Surface Boundary Conditions 59

4.4 Computational Method . 60

4.4.1 Finite Difference Discretization 60

4.4.2 Velocity Extrapolation Near Free Surface 62

4.4.3 Particle Level Set Interface Treatment 64

4.4.4 Boundaries . 65

4.4.5 Time Step Calculation . 66

4.4.6 Overall Computational Cycle 66

4.5 Examples . 67

4.5.1 Rendering . 67

4.5.2 Pouring A Glass of Water . 68

4.5.3 Splash Generated From Ball Impact 69

4.5.4 Breaking Wave . 70

5 Conclusions and Future Directions 86

Bibliography 89

viii

List of Tables

3.1 Zalesak’s disk. Level set method. 33

3.2 Zalesak’s disk. Particle level set method. 33

3.3 One period of vortex flow. Level set method. 35

3.4 One period of vortex flow. Particle level set method. 35

3.5 One period of deformation flow. Level set method. 36

3.6 One period of deformation flow. Particle level set method. 36

ix

List of Figures

1.1 Shrinking square. Initial interface location and velocity field. 9

1.2 Shrinking square. Final interface location of the (correct) level set

solution. 9

1.3 Shrinking square. Passively advected particles are initially seeded in-

side the interface. 10

1.4 Shrinking square. Final (incorrect) location of the passively advected

marker particles. 10

2.1 Interface resolution with particles . 17

2.2 Particle Level Set computational cycle. 25

2.3 Expanding square. Initial interface location and velocity field. 28

2.4 Expanding square. Final interface location of the level set solution. . 28

2.5 Expanding square. Passively advected particles are initially seeded

inside the interface. 29

2.6 Expanding square. Final location the passively advected marker par-

ticles. 29

2.7 Expanding square. Location of interior particles after one application

of the reseeding algorithm. 30

3.1 Zalesak’s Disk. Initial placement of particles. 40

3.2 Zalesak’s Disk. Particle positions after the initial attraction step. . . 40

3.3 Zalesak’s Disk. Particle level set solution after one revolution. 41

3.4 Zalesak’s Disk. Comparison of level set, particle level set and theory

after one revolution. 42

x

3.5 Zalesak’s Disk. Comparison of level set, particle level set and theory

after two revolutions. 42

3.6 Zalesak’s Disk. Illustration of escaped particles after one revolution. . 43

3.7 Vortex Flow. Initial data and velocity field. 44

3.8 Vortex Flow. Comparison of the particle level set and front tracked

solutions at t = 1. 45

3.9 Vortex Flow. Illustration of escaped particles at t = 1. 45

3.10 Vortex Flow. Comparison of the particle level set, level set, and front

tracked solutions at t = 3. 46

3.11 Vortex Flow. Comparison of the particle level set, level set, and front

tracked solutions at t = 5. 46

3.12 Vortex Flow. Error analysis of the time reversed flow level set solution

for grid sizes 642, 1282, and 2562. 47

3.13 Vortex Flow. Error analysis of the time reversed flow particle level set

solution for grid sizes 642, 1282, and 2562. 47

3.14 Deformation Flow. Comparison of level set, particle level set, and front

tracked solutions at t = 1. 48

3.15 Deformation Flow. Error analysis of the time reversed flow level set

solution for grid sizes 642, 1282, and 2562. 49

3.16 Deformation Flow. Error analysis of the time reversed flow particle

level set solution for grid sizes 642, 1282, and 2562. 49

3.17 Zalesak’s sphere. Level set solution. 50

3.18 Zalesak’s sphere. Particle level set solution. 51

3.19 Deformation test case. Level set solution. 52

3.20 Deformation test case. Particle level set solution. 53

4.1 Comparison of Hybrid Volume Model and the Particle Level Set method

for one rotation of Zalesak’s Disk . 73

4.2 Velocity-Pressure (MAC) staggered grid arrangement 74

4.3 Free Surface Overall Computational Cycle 75

4.4 Free Surface Interface Evolution . 76

xi

4.5 Water being poured into a clear, cylindrical glass. 77

4.6 Closeup of figure 4.5. 78

4.7 Ball thrown into a tank of water. Hybrid Volume Model result. . . . 79

4.8 Ball thrown into a tank of water. Particle Level Set result. 80

4.9 Ball thrown into a tank of water. Formation of intial and secondary

splash sheets. 81

4.10 Ball thrown into a tank of water. Secondary splash sheet and resulting

surface. 82

4.11 Two Dimensional Breaking Wave . 83

4.12 Submerged Shelf . 83

4.13 Breaking Wave. Formation of initial plunging jet. 84

4.14 Breaking Wave. Secondary splash up and bore creation phase. 85

xii

Chapter 1

Introduction

“It’s the pouring of milk into a glass.”

Jeffrey Katzenberg [33]

1.1 Background

The above response to a question concerning what was the single hardest shot in the

feature film “Shrek”, exemplifies the difficulty of the task that has faced the com-

putational fluid dynamics community over the past 50 years - to accurately simulate

complex, three dimensional liquid behavior. In order to obtain the degree of realism

required of engineering and computer graphics applications, the nonlinear phenom-

ena present in liquids needs to be modeled and simulated. This requires the use of

a three dimensional model of the behavior of liquids, the Navier-Stokes equations,

along with a moving boundary technique to handle the merging and pinching off of

liquid elements. Simulating these models on a computer also requires that appropri-

ate numerical methods are used to ensure that the results generated are faithful to

nature while at the same time incorporate a variety of practical engineering needs

including robustness, speed, and stability.

The need to capture complex topological features which can develop in three di-

mensional free surface flows is a serious constraint when considering what type of

moving boundary method to use to model the free surface. Purely Lagrangian flow

1

CHAPTER 1. INTRODUCTION 2

models, e.g. boundary integral and vortex methods [7, 37, 36, 48, 29, 19] suffer from

an inability to model changes in topology (pinching and merging) of the interface.

Utilizing a fixed grid representation for the flow variables (pressure, densities, veloci-

ties, etc.) can alleviate some of the difficulties mentioned above, but we are then faced

with the question of how to model the interface. A Lagrangian representation in the

spirit of Tryggvason et al. [92, 91] via particles placed on the interface and advected

by the flow can deal with arbitrary topologies, but at the cost of implementing and

verifying the correctness of complex algorithms required to rearrange the connectiv-

ity of particles in order to effect changes in topology. Marker particle based methods

[31, 15, 64, 16, 90] have a long history in modeling the motion of interfaces. These

methods avoid the geometrical complexities of connected front tracking algorithms,

but at the price of lacking a smooth, well defined interface. The interface can form

gaps and holes due to a lack of marker particle in cells which should be connected.

Also as noted in [15], careful consideration of the velocity boundary conditions to ap-

ply at the surface of the liquid is required in order to avoid introducing asymmetries

and other computational artifacts. Finally, both methods can require the use of arti-

ficial smoothing near the interface in order to obtain smooth geometrical quantities

[97].

A grid based Eulerian representation of the free surface avoids the many issues

inherent to Lagrangian schemes. Both Volume of Fluid (VOF) [34, 63] and the level

set method [60, 85] can easily support complex topologies. However, the use in VOF

of a single variable to represent the amount of liquid in a computational cell intro-

duces its own set of difficulties. In the attempt to maintain local mass conservation,

“blobby” flotsam and jetsam can spuriously appear [45], especially in under-resolved

regions of the flow due to excessive numerical surface tension being added to the sim-

ulation. Also, the reconstructed interface is not smooth or even continuous, lowering

the accuracy of the geometrical information (normals and curvature) at the interface

which can compromise the solution. Several researchers have worked to improve the

accuracy of the VOF geometrical information using convolution, see e.g. [94] and

[93].

On the other hand, the level set method use a function φ(~x, t) whose isocontour

CHAPTER 1. INTRODUCTION 3

φ = 0 is used to represent the interface. This function is advected by a flow field

given by ~u(~x, t). Mathematically, the evolution of the level set is given by

φt + ~u · ∇φ = 0. (1.1)

While level set methods have seen much success on a wide variety of problems

including fluid mechanics, combustion, computer vision, and materials science as

discussed in the recent review articles and books by Osher and Fedkiw [58, 59] and

Sethian [75, 74], their application to free surface flows has been problematic. As noted

in [85], the signed distance property of the initial level set function quickly ceases to

exist after a couple of time steps of equation 1.1, especially on coarse computational

grids. Since the interface is defined by a single isocontour of φ, the signed distance

property away from the interface is not required. However, accurate evolution of the

level set function which represents a contact discontinuity is severely impaired if the

gradient of φ is not smooth. How the level set method deal with this issue and how to

create a numerical method which corrects for this built in characteristic of the level

set method, is a key issue that will be addressed in this work.

1.2 Curvature and Numerical Regularization

The great success of level set methods (and other Eulerian methods) can be attributed

to the role of curvature in numerical regularization which allows the proper vanishing

viscosity solution to be obtained. This regularization of the level set function allows

the method to handle changes in topology in a natural manner. The connection

between curvature and the notion of entropy conditions and shocks for hyperbolic

conservation laws was explored by Sethian [70, 71]. No Lagrangian scheme, including

discretization of the interface by marker particles, can achieve a similar result since

there is no a priori way to build regularization into the method. Lagrangian particles

faithfully follow the characteristics of the flow, but must be deleted (usually “by

hand”) if the characteristics merge.

The ability to identify and delete merging characteristics is clearly seen in a purely

CHAPTER 1. INTRODUCTION 4

geometrically driven flow in which a curve is advected normal to itself at constant

speed. Figure 1.1 shows an initially square interface taken as the φ = 0 isocontour

of a level set function along with the associated velocity field defined by ∇φ/|∇φ|.
This flow field has merging characteristics on the diagonals of the square. Figure

1.2 shows that a numerical solution computed using the level set method correctly

shrinks the box as time increases. On the other hand, a Lagrangian front tracking

model of the interface will not calculate the correct motion. We demonstrate this

by seeding passively advected particles interior to the zero isocontour of the level set

function as shown in figure 1.3. As the particle positions evolve in time, they follow

the characteristic velocities of the flow field as shown in figure 1.4. The particles

incorrectly form long, slender filaments on the diagonals of the square where charac-

teristics merge that should be deleted (as is correctly done by the level set method).

Helmsen [32] and others have used “de-looping” procedures in an attempt to remove

these incorrect particle tails. While these procedures are sometimes manageable in

two spatial dimensions, they become intractable in three spatial dimensions.

Despite a lack of explicit enforcement of conservation, Lagrangian schemes are

quite successful in conserving mass since they preserve material advected along char-

acteristics for all time as opposed to regularizing mass out of existence as Eulerian

front capturing methods may do. For under-resolved flows, Eulerian capturing meth-

ods can not accurately tell if characteristics merge, separate, or are parallel. This

indeterminacy can cause level set methods to calculate weak solutions and delete

characteristics when they appear to be merging. Osher and Sethian [60] constructed

the level set method to deal with the case in which characteristics do merge as seen in

figure 1.2, i.e. to recognize the presence of shocks and delete merging characteristic

information. We are faced with the difficult question of the appropriateness of using

level set schemes that merge characteristics automatically when we lack knowledge

about the characteristic structure in under-resolved regions of the flow. Moreover,

in the case of incompressible fluid flows, we know a priori that there are no shocks

present in the velocity field, and thus characteristic information should never be

deleted.

An Eulerian analysis can yield some insight into a possible solution to this problem.

CHAPTER 1. INTRODUCTION 5

If we use an upwind spatial discretization of equation 1.1 along with a first order

temporal discretization, we obtain (in one spatial dimension)

φn+1
i − φn

i

∆t
+ un

i (D±φ)n
i = 0, (1.2)

where D±φ is a forward/backward difference of φ,

(D+φ)n
i =

φn
i+1 − φn

i

∆x
,

(D−φ)n
i =

φn
i − φn

i−1

∆x
.

Which difference to take is determined by the sign of un
i according to the method of

characteristics. For un
i > 0, we choose D−φ since information is flowing from left to

right and D+φ for un
i < 0. What is of more interest is the numerical error associated

with the spatial discretization of equation 1.2. To lowest order in ∆x, the error term

is

±∆x

2

(
∂2φ

∂x2

)n

i

+ O(∆x2). (1.3)

In higher dimensions on an equally spaced grid, this error term is ε4φ, with ε ∼ ∆x.

Since this term is an inherent part of our calculation, if we substitute the exact

solution of equation 1.1, Φ, into our finite difference approximation, we obtain

Φn+1
i − Φn

i

∆t
+ un

i (D±Φ)n
i = ±∆x

2

(
∂2Φ

∂x2

)n

i

, (1.4)

which is accurate to O(∆x). As ∆x → 0, the finite difference solution φn
i → Φ(~x, t)

in the sense that φn
i is a vanishing viscosity solution to equation 1.1. The smoothing

viscosity-like term on the right hand side of equation 1.4 provides a way to regularize

the solution obtained by the level set method in order to deal with shocks which form

due to changes in the topology of the interface. However, if ∆x is not sufficiently

small and/or we are trying to resolve features on the order of O(∆x), then the right

hand side of equation 1.4 does not approach zero. In this case (which is unfortunately

a common occurrence in many interesting interfacial flow problems) we are left with

CHAPTER 1. INTRODUCTION 6

a solution to equation 1.4, a convection-diffusion equation, rather than the solution

our original advection equation. If φ is a signed distance function, then the diffusion

present in equation 1.4 is proportional to the curvature of the interface. Regions of

high curvature relative to the grid size will experience the most diffusion.

The difficulties of using the level set method to capture contact discontinuities has

been brought to light by a series of test problems proposed by Rider and Kothe [67,

68]. These problems either contain large vortical flow components, inducing the

formation of under-resolved regions of the interface, or the interface possesses regions

of extremely high curvature, e.g. corners, which should be preserved during a rigid

body movement of the interface. By comparing various Lagrangian and Eulerian

methods for these flows, Rider and Kothe found that Lagrangian tracking schemes

maintain filamentary interface structures better than their Eulerian counterparts.

In the same study, it was noted that when fluid filaments become too thin to be

adequately resolved on the grid, level set methods lose (or gain) mass while VOF

methods form “blobby” filaments that locally enforce mass conservation but in the

process artificially move the interface. Both types of errors decrease the accuracy

of the interface location. The loss (or gain) of mass by level set methods can be

attributed to the diffusion present in equation 1.4 in an Eulerian sense or the incorrect

merging (or creation) of characteristics in a Lagrangian sense.

Attempts to improve mass conservation in level set methods have led to a variety

of Eulerian based methods. As noted earlier, Sussman et al. [85] recognized this

problem and proposed to reinitialize φ in order to maintain a smooth level set function.

While this method did improve the spatial discretization properties of φ, it did not

directly address the issue of under-resolved regions/regions of high curvature. Further

improvements to this reinitialization method by Sussman and Fatemi [83, 84] include

the introduction of a Lagrange multiplier constraint which attempts to preserve mass

on a cell-by-cell basis. Higher order ENO/WENO [39] approximations for the spatial

derivatives in the convection and reintialization steps have been proposed. Although

the use of higher order spatial approximations does indeed help conserve mass, as

shown in chapter 3, in regions where the level set senses that shocks are occurring

and applies numerical regularization to the interface, the accuracy of the interface

CHAPTER 1. INTRODUCTION 7

decreases to first order. We are then left with situation discussed earlier. Cheng et

al. [13], addressed the curvature-based diffusion present in level set methods through

the use of an anti-diffusive reinitialization scheme. The method attempts to move the

level set in a manner to recover the amount of area/volume lost during a time step.

An alternative approach to reinitialization has been proposed by Adalsteinsson and

Sethian [2]. In this scheme one smoothly extrapolates the velocity of the interface

away from the interface and moves φ according to this “extension velocity”. In many

level set applications this is a required procedure, since no velocity exists off the

interface. In the case of fluid flows however, the fluid velocity is a valid “extension

velocity”. However, in under-resolved regions this scheme requires the use of suspect

geometrical information contained in the level set function. Finally, Sussman and

Puckett [80] combined VOF and level set methods in order to alleviate some of the

problems of the VOF method. The resulting scheme is completely Eulerian in nature

and does not incorporate any of the front-tracked characteristic information needed

in under-resolved regions. Instead, the VOF local mass constraint is still blindly

applied. The level set method is only used as a smoother in order to obtain better

approximations of the curvature of the interface than is possible with VOF methods.

None of these methods take advantage of the underlying characteristic flow field

information that Lagrangian interface methods successfully utilize.

1.3 Scope and Presentation

In this dissertation, we propose a new method which combines the best properties of

an Eulerian level set method and a marker particle Lagrangian scheme. Our method

randomly places a set of marker particles near the interface (defined by the zero level

set) and allows them to passively advect with the flow. In fluid flows, particles do

not cross the interface except when the interface capturing scheme fails to accurately

identify the interface location. If marker particles initially seeded on one side of the

interface are detected on the opposite side, this indicates an error in the level set

representation of the interface. We fix these errors by locally rebuilding the level

set function using the characteristic information present in these escaped marker

CHAPTER 1. INTRODUCTION 8

particles. This allows the level set method to obtain sub-grid scale accuracy near

the interface and works to counteract the mass loss of the level set method in under-

resolved regions. The particles play no other role in the calculation and the smooth

geometry of the interface is determined by the level set function alone. Also, since

the marker particles are treated separately, the ease and simplicity of coding level set

methods is maintained by this “particle level set” method. Chapter 2 discusses the

use and implementation of the “particle level set” method in more detail. Numerical

results based upon two and three dimensional interface stretch tests proposed and

inspired by Rider and Kothe [67, 68] are presented in chapter 3 to demonstrate that

the new “particle level set” technique compares favorably with VOF methods with

regard to mass conservation and with purely Lagrangian schemes with regard to

interface resolution. We then utilize the “particle level set” method coupled with a

novel application of the velocity extrapolation technique of Adalsteinsson and Sethian

in order to obtain smooth interface behavior for a variety of three dimensional free

surface calculations for computer graphics applications. The application of these

techniques to animate the pouring of a glass of water, the behavior of a splash sheet

formed by a ball thrown into a tank of water, and the breaking of a wave upon a

beach are shown in chapter 4. Conclusions about the use of the “particle level set”

method for modeling free surface flows and avenues of future research are discussed

in chapter 5.

CHAPTER 1. INTRODUCTION 9

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x

y

Figure 1.1: Shrinking square. Initial interface location and velocity field.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x

y

Figure 1.2: Shrinking square. Final interface location of the (correct) level set solu-
tion.

CHAPTER 1. INTRODUCTION 10

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x

y

Figure 1.3: Shrinking square. Passively advected particles are initially seeded inside
the interface.

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

x

y

Figure 1.4: Shrinking square. Final (incorrect) location of the passively advected
marker particles.

Chapter 2

Numerical Method

“I think it [interface tracking] is a subject worthy of a
great deal of effort on its own; although it appears
almost trivial, it really isn’t, and it really ought to
be done well, once and for all, if that is possible.”

R. DeBar [21]

2.1 Level Set Method

The underlying idea behind level set methods is to embed an interface Γ in R3 which

bounds an open region Ω ⊂ R3 as the zero level set of a higher dimensional function

φ(~x, t). The level set function has the following properties,

φ(~x, t) > 0 for ~x ∈ Ω

φ(~x, t) ≤ 0 for ~x 6∈ Ω,

where we include φ = 0 with the negative φ values so that it is not a special case. The

interface lies between φ > 0 and φ = 0, but can of course be identified as φ = 0. Note

that φ is a scalar function in R3 which greatly reduces the complexity of describing

the interface, especially when undergoing topological changes such as pinching and

merging.

The motion of the interface is determined by a velocity field, ~u, which can depend

11

CHAPTER 2. NUMERICAL METHOD 12

on a variety of things including position, time, geometry of the interface, or be given

externally, for instance as the material velocity in a fluid flow simulation. In most of

the examples below, the velocity field is externally given, and the evolution equation

for the level set function is given by

φt + ~u · ∇φ = 0. (2.1)

This equation only needs to be solved locally near the interface, e.g. see [1, 62].

Both φ and ~u = (u, v, w) are represented on a fixed Cartesian grid with a constant

grid spacing of ∆x = ∆y = ∆z. We use a dimension by dimension approach in

discretizing ~u · ∇φ = uφx + vφy + wφz term in equation 2.1. For the sake of brevity,

we proceed by discussing only the discretization of uφx. At a specific grid point,

xi, we choose either a left-sided or right-sided discretization of φx according to the

local velocity at xi. This corresponds to discretizing equation 2.1 according to the

method of characteristics. For ui < 0, we take φx = φ+
x and for ui > 0, we take

φx = φ−x . Since level set methods appear to be sensitive to the accuracy used in

discretizing the spatial derivatives, we used a fifth order accurate Hamilton-Jacobi

WENO scheme [39] to calculate right and left biased derivatives, φ+
x and φ−x , needed

by the method of characteristics.

To find φ−x , set

v1 =
φi−2 − φi−3

∆x
, v2 =

φi−1 − φi−2

∆x

v3 =
φi − φi−1

∆x
, v4 =

φi+1 − φi

∆x

v5 =
φi+2 − φi+1

∆x

and to find φ+
x , set

v1 =
φi+3 − φi+2

∆x
, v2 =

φi+2 − φi+1

∆x

v3 =
φi+1 − φi

∆x
, v4 =

φi − φi−1

∆x

CHAPTER 2. NUMERICAL METHOD 13

v5 =
φi−1 − φi−2

∆x
.

We utilize these first order divided differences to obtain three different polynomial

approximations of φ±x ,

φ1
x =

v1

3
− 7v2

6
+

11v3

6
(2.2)

φ2
x =

−v2

6
+

5v3

6
+

v4

3
(2.3)

φ3
x =

v3

3
+

5v4

6
− v5

6
. (2.4)

Essentially Non-Oscillatory (ENO) methods choose one of the above three approx-

imations. The choice of which approximation to use is made according to which

approximation generates the smoothest possible polynomial interpolation of φ. This

choice will hopefully approximate φ±x with the least error. For Weighted ENO meth-

ods, a weighted convex combination of equations 2.2- 2.4 is used. The weights

w1, w2, and w3, are calculated using an estimate of the smoothness of each stencil.

These smoothness estimates are given by

S1 =
13

12
(v1 − 2v2 + v3)

2 +
1

4
(v1 − 4v2 + 3v3)

2

S2 =
13

12
(v2 − 2v3 + v4)

2 +
1

4
(v2 − v4)

2

S3 =
13

12
(v3 − 2v4 + v5)

2 +
1

4
(3v3 − 4v4 + v5)

2

and the weights by

a1 =
1

10

1

(ε + S1)2
, w1 =

a1

a1 + a2 + a3

a2 =
6

10

1

(ε + S2)2
, w2 =

a2

a1 + a2 + a3

a3 =
3

10

1

(ε + S3)2
, w3 =

a3

a1 + a2 + a3

CHAPTER 2. NUMERICAL METHOD 14

in order to obtain

(φ±x)i = w1(
v1

3
− 7v2

6
+

11v3

6
) + w2(

−v2

6
+

5v3

6
+

v4

3
) + w3(

v3

3
+

5v4

6
− v5

6
). (2.5)

Note that ε = 10−6.

To integrate equation 2.1 forward in time via the method of lines, it is desirable

to use a time integration scheme which does not produce any spurious oscillations,

i.e. one that possesses the property of being Total Variation Diminishing (TVD).

A basic first order TVD scheme is the forward Euler method. To obtain a higher-

order accurate explicit Runge-Kutta TVD scheme, a convex combination of forward

Euler steps may be formed with positive weights. Unfortunately, HJ WENO spatial

discretization combined with upwind differencing is not TVD, but is most likely Total

Variation Bounded (TVB). We choose to use a third-order TVD Runge-Kutta method

as discussed in [76]. Let E(φ) represent a forward Euler update such that φn+1 =

E(φn) = φn + ∆t(~un · ∇φn), then a third-order Runge-Kutta method is

φn+1 =
1

3
φn +

2

3
E(

3

4
φn +

1

4
E(E(φn))). (2.6)

For the numerical test cases presented in chapter 3, only φ is integrated in time since

we assume ~u(~x, t) is given at grid points.

In a level set method, it is convenient to make φ equal to the signed distance to

the interface so that |∇φ| = 1. This ensures that the level set is a smoothly varying

function well suited for high order accurate numerical methods. Unfortunately, as

noted in [85], the level set function can quickly cease to be a signed distance function

especially for flows undergoing extreme topological changes. Reinitialization algo-

rithms maintain the signed distance property by solving to steady state (as fictitious

time τ →∞) the equation

φτ + sgn(φ0)(|∇φ| − 1) = 0 (2.7)

CHAPTER 2. NUMERICAL METHOD 15

where sgn(φ0) is a one-dimensional smeared sign function that is approximated nu-

merically in [85] as

sgn(φ0) =
φ0√

φ2
0 + (∆x)2

.

Efficient ways to solve equation 2.7 to steady state via fast marching methods are

discussed in [72]. However, while it is possible to construct second order accurate

marching methods as discussed in [73], these methods become increasingly problem-

atic due to the need to use higher order accurate interpolants to initialize the function

on the band of grid points surrounding the φ = 0 isocontour. For the current state of

the art concerning fast marching method solutions to equation 2.7 we refer the reader

to [17].

For the purposes of calculating a second order accurate distance function near the

interface while avoiding the computational difficulties discussed above, we perform

10 iterations of equation 2.7 in a narrow band (10 grid cells) about φ = 0. At

the same time we perform a first order fast marching method over the entire grid.

Outside the narrow band, we use the value of φ calculated by the fast marching

method while inside the narrow band we use the value calculated via equation 2.7

unless it differs from the fast marching solution by more than max(∆x, ∆y, ∆z).

In this case, we choose the value obtained by the fast marching method. We also

prevent φ from changing sign during the reinitialization process and use a fifth order

accurate Hamilton-Jacobi WENO scheme as described above to calculate the spatial

derivatives in equation 2.7.

Geometrical quantities can be calculated from the level set function, including the

unit normal to the interface,

~N =
∇φ

|∇φ| , (2.8)

and the curvature,

κ = ∇ ·
(∇φ

|∇φ|
)

. (2.9)

The spatial derivatives in equations 2.8 and 2.9 can be calculated using standard

second order accurate central differencing when the denominators are non-zero. When

|∇φ| = 0 one-sided differencing is used.

CHAPTER 2. NUMERICAL METHOD 16

2.2 Massless Marker Particles

Two sets of massless but finite size marker particles are placed near the interface

with one set, the positive particles, in the φ > 0 region and the other set, the nega-

tive particles, in the φ ≤ 0 region. It is unnecessary to place particles far from the

interface since the sign of the level set function easily identifies these regions. This

greatly reduces the number of particles needed in a simulation. Traditional marker

particle schemes [31, 66] place particles throughout the domain, although Amsden [5]

proposed a method that only requires particles near the surface. More recently, Chen

et al. [16] introduced a marker particle method which uses only particles placed on

the surface. The lack of connectivity information between the particles differenti-

ates these methods from the connected front-tracking approaches by Tryggvason and

collaborators [92, 91].

The particles are advected using the evolution equation,

d~xp

dt
= ~u(~xp), (2.10)

where ~xp is the position of the particle and ~u(~xp) is its velocity. The particle velocities

are trilinearly interpolated from the velocities on the nearest grid points. This trilinear

interpolation limits the particle evolution to second order accuracy. While it is not

difficult to implement higher order accurate interpolation schemes (with appropriate

limiters), we have found trilinear interpolation to be sufficient and prefer it for its

efficiency. We use the grid velocity at time n, although the velocity at time n+1 could

be used as well. A third order accurate TVD Runge-Kutta method (equation 2.6) is

used to evolve the particle positions forward in time.

The particles are used to both track characteristic information and to reconstruct

the interface in regions where the level set method fails to accurately preserve mass.

For the purpose of interface reconstruction, we allow the particles to overlap as il-

lustrated in the bottom of figure 2.1. This allows us to reconstruct the interface

exactly as the number of particles approaches infinity. Non-overlapping spheres will

not accomplish this. For example, the top of figure 2.1 shows how three equally sized

CHAPTER 2. NUMERICAL METHOD 17

Three Non-Overlapping Circles

Six Overlapping Circles

Figure 2.1: The top picture shows how three equally sized non-overlapping circles
leave large spaces when attempting to represent a straight line interface, while the
bottom picture shows how six equally sized overlapping circles more readily resolve
the line.

non-overlapping circles leave large spaces when used to represent a straight inter-

face, while the bottom of the figure shows that six equally sized overlapping circles

more readily resolve the line. Since the particles are not physical, allowing them to

overlap does not create any inconsistency in the method. The particles are used to

track characteristic information, and allowing overlap merely means that some of the

characteristic information is duplicated. Since the particles are allowed to overlap at

the end of the time step as well, carrying around duplicate characteristic information

does not hinder the scheme in any way.

For the purpose of interface reconstruction, a sphere of radius rp is centered at

each particle location, ~xp. The radius of each particle is bounded by minimum and

maximum values based upon the grid spacing. Maximum and minimum radii which

appear to work well are

rmin = .1 min(∆x, ∆y, ∆z) (2.11)

rmax = .5 min(∆x, ∆y, ∆z). (2.12)

CHAPTER 2. NUMERICAL METHOD 18

This allows multiscale sampling of the interface by the particles. This particular choice

of bounds on the particle radii (from 10% to 50% of a grid cell) was the first one we

tried; further experimentation might give improved results. However, as shown in the

examples section, these bounds give surprisingly good results. The reconstruction of

the interface utilizing both particle and level set information is given in section 2.3.3.

We use an array based implementation to store the particle information, since

connectivity information is not required. This simplifies the integration of the parti-

cle evolution equation 2.10. Certain performance optimizations of the particle array

storage can be made, depending on the frequency of particle insertions and deletions.

For example, one can use an oversized particle array which supports additional inser-

tions without resizing as well as a list of the indices of valid particles so that constant

repacking of the array can be avoided.

2.3 Particle Level Set Method

2.3.1 Initialization of Particles

Initially particles of both sign are randomly placed in cells that have at least one corner

within 3 max(∆x, ∆y, ∆z) of the interface, i.e. for a given cell, we check whether

|φ| < 3 max(∆x, ∆y, ∆z) at any of the eight corners. The number of particles of each

type (positive or negative) per cell is set to a default of 64 particles (16 in 2D, or 4

in 1D, i.e. 4 particles per spatial dimension), although this number is user definable.

An example of this initial particle seeding is shown in figure 3.1.

After the initial seeding, the particles are attracted to the correct side of the

interface (i.e. positive particles to the φ > 0 side and negative particles to the φ ≤ 0

side) into a band between a distance of bmin = rmin (the minimum particle radius)

and bmax = 3 max(∆x, ∆y, ∆z) of the interface. The thickness of the particle bands

on each side of the interface, 3 max(∆x, ∆y, ∆z) was the first we tried. One may use

thinner particle bands in order to obtain better computational performance, with the

caveat that this method will revert to a level set only method in regions which do not

possess an adequate particle resolution of the interface. The original seeding of the

CHAPTER 2. NUMERICAL METHOD 19

particles generates a random distribution of particles in the direction tangent to the

interface. In order to obtain a random distribution of the particles in the direction

normal to the interface, we chose an isocontour φgoal ∈ (±bmin,±bmax) using a uniform

random distribution. Then we carry out an attraction step with the aim of placing

the particle on the φ = φgoal level set contour.

The particles are attracted to the appropriate isocontours taking advantage of

geometrical information contained within the level set function φ. Near the interface,

the normal vectors give the direction to the nearest point on the interface. To attract

a particle at ~xp with a current interpolated level set value of φ(~xp) to the φ = φgoal

level set contour along the shortest possible path, one calculates

~xnew = ~xp + λ(φgoal − φ(~xp)) ~N(~xp), (2.13)

with λ = 1. For under-resolved regions or regions where the quality of the geometric

information contained within the level set function has been degraded, equation 2.13

may not put the particle on the desired contour or even in the appropriate band.

To overcome these difficulties, several iterations of this scheme may be needed. If

equation 2.13 places a particle outside the computational domain, λ is halved. Then,

if equation 2.13 (with this new λ) puts the particle in the appropriate band, i.e.

(±bmin,±bmax), we accept the new particle position even though it may not be on

the φ = φgoal contour. Otherwise, we halve λ once more, determine the new particle

position and repeat the process with λ again initially set to 1 and ~xp set to this newly

calculated position. If, after a preset maximum number of iterations (e.g. we use

15), the particle is still not within the desired band, it is deleted. Figure 3.2 shows

Zalesak’s disk after the particle attraction step has been completed. While there are

a number of particle placement strategies that could be used to accurately sample the

cell including just placing the particles on their respective sides of the interface, e.g.

see [27] for a discussion of ”jitter”, the technique discussed above worked surprisingly

well as can be seen in the examples section. However, the use of more sophisticated

techniques might improve the numerical results.

CHAPTER 2. NUMERICAL METHOD 20

Finally, each particle radius is set according to

rp =

rmax if spφ(~xp) > rmax

spφ(~xp) if rmin ≤ spφ(~xp) ≤ rmax

rmin if spφ(~xp) < rmin,

(2.14)

where sp is the sign of the particle (+1 for positive particles and -1 for negative

particles). This equation adjusts the particle size such that the boundary of the

particle is tangent to the interface whenever possible, while adhering to the restriction

that the particle radius is bounded by rmin and rmax.

2.3.2 Time Integration

The marker particles and the level set function are separately integrated forward in

time utilizing the third order accurate TVD Runge-Kutta method previously dis-

cussed. Separate temporal integration allows for the possibility of using a different

ordinary differential equation solver for the particle evolution, even though we have

not done so here.

2.3.3 Error Correction of the Level Set Function

The error correction of the level set function by the two sets of particles is comprised

of several steps: the identification by the particles of where errors in the interface rep-

resentation by the level set are occurring; calculation by each particle of the amount

of error present; the combining of all of the individual particle contributions to form a

reduced error representation of φ. Each of these steps will be discussed in more detail

below. Also, we note that we apply the error correction step after each modification

of the level set as shown in figure 4.3.

Identification of Error: After each complete Runge-Kutta cycle, the particles are

used to locate possible errors in the level set function due to the non-physical deletion

of (incorrectly perceived) merging characteristics. Particles that are on the wrong side

of the interface by more than their radius, as determined by the local interpolated

CHAPTER 2. NUMERICAL METHOD 21

φ(~xp), are considered to have escaped. Escaped particles indicate that characteristics

have probably been incorrectly merged through regularization i.e. the level set method

has computed a weak solution. While not done for the examples shown in chapter 3,

since these weak solutions are locally only first order accurate one could experiment

with using a relatively low order accurate method for both the particle evolution and

the particle correction algorithms (less accurate than the fifth order accurate WENO

method used for the evolution of the level set function), due to the information

provided by the lagrangian particles. This information may improves the quality of

the computed results, since the particles provide characteristic information that was

discarded by the level set function. Moreover, lower order accurate methods are more

efficient to implement, decreasing the computational overhead.

In smooth, well resolved, regions of the flow where the level set method is highly

accurate, the particles do not drift far across the interface, allowing us to retain the

high order accurate level set solution. A particle is not defined as escaped when

some portion of it crosses the interface. Otherwise, escaped particles would appear

all the time due to numerical errors (including roundoff error). If we allowed small

errors to force particle reconstruction of the level set function, we would need high

order accuracy for the particle evolution and correction methods. Instead, we define

a particle as escaped only when all of it crosses the interface. Since the particle radius

is O(∆x), error identification occurs only when the particle solution and the level set

solution differ to first order accuracy. With at least second order accurate evolution

methods for the particles and the level set function, one would not expect error

identification in well resolved regions of the flow. However, in under-resolved regions

where the level set method generates a first order accurate weak solution, second

order accurate particle evolution will identify errors in the level set representation of

the interface that need to be repaired. While one can change the escape condition for

the particles, we have found that the current choice produces good numerical results.

Quantification of Error: The spheres associated with each particle can be thought

of as locally defined level set functions. We represent the sphere centered at each

CHAPTER 2. NUMERICAL METHOD 22

particle using a level set function

φp(~x) = sp(rp − |~x− ~xp|) (2.15)

where sp is the sign of the particle, i.e ±1. The zero level set of φp corresponds to the

boundary of the particle sphere. The particle defined level set function is computed

locally on the eight corners of the cell containing the particle. The local values of φp

are the particle predictions of the values of the overall level set function, φ, on the

corners of the cell. Any variation of φ from φp indicates possible errors in the level

set solution.

Reduction of Error: We use the escaped positive particles to rebuild the φ > 0

region and the escaped negative particles to rebuild the φ ≤ 0 region. For example,

consider the φ > 0 region and an escaped positive particle. The values of φp at the

eight corners of the cell containing the particle are calculated using equation 2.15.

Each φp is compared to the local value of φ and the maximum of the two values is

taken as φ+. This is done for all escaped positive particles creating a reduced error

representation of the φ > 0 region. That is, given a level set φ and a set of escaped

positive particles E+, we initialize φ+ with φ and then calculate

φ+ = max
∀p∈E+

(φp, φ
+). (2.16)

Similarly, to calculate a reduced error representation of the φ ≤ 0 region, we initialize

φ− with φ and then calculate

φ− = min
∀p∈E−

(φp, φ
−). (2.17)

φ+ and φ− will not agree due to the errors in both the particle and level set methods

as well as interpolation errors, etc. We merge φ+ and φ− back into a single level set

CHAPTER 2. NUMERICAL METHOD 23

by setting φ equal to φ+ or φ−, whichever is less in magnitude at each grid point,

φ =

{
φ+ if |φ+| ≤ |φ−|
φ− if |φ+| > |φ−|.

(2.18)

The minimum magnitude is used to reconstruct the interface (instead of, for example,

taking an average), since it gives priority to values that are closer to the interface.

Note that if the particle locations (from the particle evolution equation) are cal-

culated to second order accuracy and the O(∆x) escape condition is used, the error

reduction step is needed only in regions where the level set method has computed a

weak solution and deleted characteristics. Therefore, the accuracy requirements of

the error reduction step can be rather low while producing markedly improved numer-

ical results as the examples will show. While higher order accurate error reduction

methods might produce better results, there is a trade off against efficiency, especially

when the number of particles is large.

2.3.4 Reinitialization

Since the particle level set method relies on φ being an approximate signed distance

function, we reinitialize the level set function using equation 2.7 after each combined

Runge-Kutta cycle and error correction step. Unfortunately, reinitialization may

cause the zero level set to move, which is not desirable, so we use the particle level

set method to correct these errors as well.

During the reinitialization step information flows away from the φ = 0 isocontour.

This can be clearly seen by rewriting equation 2.7 as

φτ + ~v · ∇φ = sgn(φ0), (2.19)

where

~v = sgn(φ0)
∇φ

|∇φ| .

Since the normal to the interface is given by ∇φ/|∇φ|, we see that equation 2.19 is

a nonlinear hyperbolic equation with characteristics determined by ~v, which point

CHAPTER 2. NUMERICAL METHOD 24

outwards from the interface. During the reinitialization step, we do not want the

particles to follow the characteristics associated with equation 2.19, rather we keep

the particles stationary. We then use the particles to identify and correct any errors

produced by the reinitialization scheme.

After reinitialization of the level set function, including the identification and

reduction of errors using particles, we adjust the radii of the particles according to

the current value of φ(~xp) according to equation 2.14. This radius adjustment feeds

information from the level set back to the particles, in an effort to ensure that a

consistent representation of the interface by the particles and the level set function

is maintained. In under-resolved regions, particles may jump (possibly relatively

far) across the interface in a single time step as the level set method computes a

weak solution, thereby deleting a large region of characteristic information. Through

the error correction steps outline above, these first order errors can be detected and

corrected for. By not deleting particle which remain escaped after each time step

or allowing their radii to become zero during the radii adjustment step, information

concerning any regions of deleted characteristic information is still maintained and

can be incorporated by the level set function on succeeding time steps.

In summary, the order of operations is: evolve both the particles and the level

set function forward in time, correct errors in the level set function using particles,

apply reinitialization, again correct errors in the level set function using particles, and

finally adjust the particle radii as illustrated in figure 2.2.

2.3.5 Particle Reseeding

In flows with interface stretching and tearing, regions which lack a sufficient number

of particles will form. This problem has also been observed in particle-only methods

which seed particles everywhere in the computational domain [30]. In order to accu-

rately resolve the interface for all time, we need to periodically readapt the particle

distribution to the deformed interface. The idea of adding and deleting particles has

been proposed by many authors, see for example [46]. We not only add and delete

particles in cells near the interface, but also delete particles that have drifted too

CHAPTER 2. NUMERICAL METHOD 25

3rd Order R-K evolution of particles and
 level set

Particle Correction

Reinitialization of φ

Particle Correction

Radii Adjustment

Repeat as Required

Figure 2.2: Particle Level Set computational cycle.

far from the interface to provide any useful information, e.g. positive particles with

φ(~xp) > bmax and negative particles with φ(~xp) < −bmax. The reseeding algorithm

should not alter the position of the particles near the interface as they are accurately

tracking the evolution of the interface and can provide useful information should they

escape in the future. In addition, escaped particles should not be deleted as they in-

dicate that characteristic information too small to be represented on the current grid

has been deleted by the level set method. Even if escaped particles are not currently

contributing to the level set function because there are not enough of them in a given

region, they may agglomerate and contribute in the future. Moreover, recent work

[11] has shown that under-resolved information can be adapted into a two phase mix-

ture model until it reaches a critical mass where it can be reabsorbed and properly

represented by the interface tracking scheme.

Reseeding is carried out by first identifying all the non-escaped particles in each

CHAPTER 2. NUMERICAL METHOD 26

cell. Then the local value of the level set function is used to decide if a given cell is

near the interface, e.g. within three grid cells. If a cell is not near the interface, all

the non-escaped particles are deleted. On the other hand, if a cell near the interface

has fewer particles than the previously defined maximum number (e.g. 64 in 3D),

particles are added to the cell and attracted to the interface.

If there are too many non-escaped particles in a given cell, we create a heap data

structure which holds the desired number of particles. Each non-escaped particle

in the cell is inserted into the heap based upon the difference between the locally

interpolated φ(~xp) value and its radius, i.e. spφ(~xp) − rp, since we want to keep the

particles that are closest to the interface. The heap is a computationally and memory

efficient way to store a priority queue. The particle with the largest spφ(~xp) − rp is

placed on top. Once the heap is full and properly sorted, we consider the remaining

particles one at a time. For each remaining particle, its spφ(~xp)−rp value is compared

with the corresponding value of the particle atop the heap. If the current particle

under consideration has a smaller value than the particle atop the heap, we delete

the particle on top of the heap and replace it with the current particle. A down-heap

sort is then performed placing the next candidate for removal atop the heap. If the

current particle’s spφ(~xp)− rp value is larger than that of the particle atop the heap,

we simply delete it.

The reseeding operation is problem dependent. Viable reseeding strategies include

reseeding at fixed time intervals, based upon a measure of the local curvature of the

interface or according to some measure of interface stretching/compression, e.g. arc

length in 2D or surface area in 3D. When reseeding based upon a change in surface

area, level set methods allow easy estimation of this quantity. The surface area of the

interface is given by ∫
δ(φ)|∇φ|d~x,

where δ(φ) is a numerically smeared out delta function which to first order accuracy

CHAPTER 2. NUMERICAL METHOD 27

can be approximated as

δ(φ) =

0 φ < −ε
1
2ε

+ 1
2ε

cos(πφ
ε

) −ε ≤ φ ≤ ε

0 ε < φ,

where ε = 1.5∆x is the bandwidth of the numerical smearing.

Excessive reseeding is not recommended since the inserted particles have to be

attracted to the interface using the current geometry defined by the level set function.

If the interface geometry is poorly resolved, reseeding may not improve the resolution

at the interface. In fact, it may be damaged.

In order to demonstrate the need and feasibility of the reseeding algorithm, we

consider the converse to the problem addressed in figures 1.1 and 1.2. Here we use

the velocity field ~u = − ~N as opposed to the ~u = + ~N velocity field used earlier.

This velocity field is shown in figure 2.3 along with the level set initial data. In this

example, the level set function experiences a rarefaction at the corners as a single

point expands into the quarter circle as shown in figure 2.4. Figure 2.5 shows an

initial seeding of passively advected interior particles while figure 2.6 shows the final

location of these particles. Note that they have spread out appreciably in the corners.

Figure 2.7 shows the same result after one application of the reseeding algorithm. The

interface is now significantly more accurately resolved by the particles.

CHAPTER 2. NUMERICAL METHOD 28

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x

y

Figure 2.3: Expanding square. Initial interface location and velocity field.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x

y

Figure 2.4: Expanding square. Final interface location of the level set solution.

CHAPTER 2. NUMERICAL METHOD 29

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x

y

Figure 2.5: Expanding square. Passively advected particles are initially seeded inside
the interface.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x

y

Figure 2.6: Expanding square. Final location the passively advected marker particles.

CHAPTER 2. NUMERICAL METHOD 30

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x

y

Figure 2.7: Expanding square. Location of interior particles after one application of
the reseeding algorithm.

Chapter 3

Examples

3.1 Rigid Body Rotation of Zalesak’s Disk

Consider the rigid body rotation of Zalesak’s disk in a solid body velocity field [96].

The initial data is a slotted circle centered at (50,75) with a radius of 15, a width of

5, and a slot length of 25. The velocity field is given by

u = (π/314)(50− y),

v = (π/314)(x− 50),

so that the disk completes one revolution every 628 time units.

Figure 3.1 illustrates the initial seeding of particles on both sides of the interface

while figure 3.2 depicts the particle locations after the attraction step has been applied

to attract them to the appropriate bands on the correct side of the interface. Blue

dots indicate the locations of negative particles and red dots indicate the locations of

positive particles. A 100× 100 grid cell computational mesh is shown in the figures,

showing that the slot is only 5 grid cells across.

Figure 3.3 illustrates the high quality particle level set solution obtained after

one full rotation. Figures 3.4 and 3.5 compare the evolution of a level set only

method (red) and our particle level set method (blue) after one and two revolutions,

respectively. The exact solution (green) is also plotted for the sake of comparison.

31

CHAPTER 3. EXAMPLES 32

As expected, the level set only method applies an excessive amount of regularization

in the sharp corners.

Figure 3.6 illustrates the need for both positive and negative particles. Here, we

plot the level set solution, the particle level set solution and the exact solution along

with both the positive and negative particles. The errors in the level set solution

are emphasized by plotting escaped positive particles in light red and the escaped

negative particles in light blue. This illustrates how the positive particles correct the

errors at the two corners at the top of the slot while the negative particles correct the

errors at the two corners near the bottom of the slot.

Tables 3.1 and 3.2 compare the area loss (or gain) of the level set method and

the particle level set method on three different grids. The area is calculated using a

second order accurate unbiased level set contouring algorithm [10]. In addition, we

calculate the accuracy of the interface location using the first order accurate error

measure introduced in [83],

1

L

∫
|H(φexpected)−H(φcomputed)|dxdy, (3.1)

where L is the length of the expected interface. This integral is numerically calculated

as in [83]:

• partition the domain into many tiny pieces (1000× 1000),

• interpolate φcomputed onto the newly partitioned domain and calculate φexpected

for the domain,

• numerically integrate equation 3.1, where H(φ) is the indicator function for

φ ≤ 0, i.e. H(φ) = 1 if φ ≤ 0 and H(φ) = 0 otherwise.

On the coarsest grid (50 × 50 grid cells), the level set only solution vanishes before

one revolution is completed while the particle level set method still maintains 83.8%

of the area even after two rotations.

CHAPTER 3. EXAMPLES 33

Grid Cells Area % Area Loss L1 Error Order
exact 582.2 - - -

50 0 100% 4.03 N/A
One 100 613.0 -5.3% .61 2.7
Revolution 200 579.1 .54% .08 2.9

50 0 100% 4.03 N/A
Two 100 634.7 -9.0% .89 2.2
Revolutions 200 577.4 .82% .11 3.0

Table 3.1: Zalesak’s disk. Level set method.

Grid Cells Area % Area Loss L1 Error Order
exact 582.2 - - -

50 495.7 14.9% .59 N/A
One 100 580.4 .31% .07 3.1
Revolution 200 581.0 .20% .02 1.5

50 487.6 16.2% .62 N/A
Two 100 578.0 .72% .09 2.8
Revolutions 200 580.0 .38% .03 1.4

Table 3.2: Zalesak’s disk. Particle level set method.

3.2 Single Vortex

While the Zalesak’s disk problem is a good indicator of diffusion errors in an interface

capturing method, it does not test the ability of an Eulerian scheme to accurately

resolve thin filaments which can occur in stretching and tearing flows. A flow which

exhibits interface stretching is the “vortex-in-a-box” problem introduced by Bell,

Colella and Glaz [8]. Figure 3.7 shows the non-constant vorticity velocity field cen-

tered in the box with the largest velocity located half way to the walls of the domain.

The velocity field is defined by the stream function

Ψ =
1

π
sin2(πx) sin2(πy).

A unit computational domain is used with a circle of radius .15 placed at (.5,.75).

The velocity field stretches the circle into a very long, thin fluid element which pro-

gressively wraps itself towards the center of the box.

CHAPTER 3. EXAMPLES 34

Figure 3.8 shows the location of the particles at t = 1 using a 64 × 64 grid. The

positive particles are shown in red while the negative particles are shown in blue.

Even at this relatively early time, there has been a substantial stretching of the

interface, and the particle bands which were initially three grid cells deep have been

stretched and compressed. Both the particle level set solution and a high resolution

front tracked solution are plotted in the figure, although it is difficult to ascertain

which is which as they are almost on top of each other. The role of the particles in

helping to maintain the interface can be seen in figure 3.9 which depicts the level set

solution along with light blue negative particles that have escaped from the level set

solution. Note that escaped particles are found at both the head and tail where the

curvature is large.

The ability of the particle level set method to maintain thin, elongated filaments

is shown in figures 3.10 (at t = 3) and 3.11 (at t = 5). These figures were computed

using 128× 128 grid cells. The interface is depicted in figure 3.10 is at the same time

as in figure 13a in [68] and figures 4a,b,c,d in [67] for the sake of comparison. Both

figures show the level set solution (red), the particle level set solution (blue) and the

high resolution front tracked solution (green). The particle level set method clearly

outperforms the level set method. Only near the head and the tail of the interface

where the level set is about one grid cell wide does the particle level set method fail

to compete with the high resolution front tracked solution. Also note that while the

particle level set method does not conserve area it exhibits less “blobby” structure

than VOF methods, see figure 4d in [67]. In under-resolved regions, the particles are

not close enough together to accurately represent the interface and thin filaments will

break apart. However, the particles still track the interface motion with second order

accuracy so the resulting pieces are in accurate locations. In contrast, the interface

reconstruction procedure used in VOF methods forces mass in neighboring cells to

artificially clump together. As a result, mass in under-resolved regions is moved

inaccurately during the interface reconstruction step, resulting in larger blobs with

first order accurate errors in their location.

For purposes of error analysis, the velocity field is time reversed by allowing the

velocity to have cos(πt/T) time dependence where T is the time at which the flow

CHAPTER 3. EXAMPLES 35

Grid Cells Area % Area Loss L1 Error Order
exact .0707 - - -

64 0 100.0% .075 N/A
128 .0425 39.8% .031 1.3
256 .0634 10.3% .008 2.0

Table 3.3: One period of vortex flow. Level set method.

Grid Cells Area % Area Loss L1 Error Order
exact .0707 - - -

64 .0694 1.81% .003 N/A
128 .0702 .71% .001 1.1
256 .0704 .35% 5.09E-4 1.4

Table 3.4: One period of vortex flow. Particle level set method.

returns to its initial state, see LeVeque [47]. The reversal period used in the error

analysis of the vortex problem is T = 8 producing a maximal stretching of the interface

similar to that shown in figure 3.10. As can be seen from the error tables 3.3 and 3.4

as well as figures 3.12 and 3.13, the ability of the particle level set method to model

interfaces undergoing substantial stretching is quite good. The L1 errors reported

here compare favorably with those reported by Rider and Kothe in [68] using a VOF

PLIC method.

3.3 Deformation Field

An even more difficult test case is the entrainment of a circular body in a deformation

field defined by 16 vortices as introduced by Smolarkiewicz [77]. The periodic velocity

field is given by the stream function

Ψ =
1

4π
sin(4π(x + .5)) cos(4π(y + .5)). (3.2)

Periodicity is enforced so the portion of the interface that crosses the top boundary

of the domain reappears on the bottom as shown in figure 3.14 at t = 1. The velocity

field given by equation 3.2 is made periodic in time by multiplying the velocity

CHAPTER 3. EXAMPLES 36

Grid Points Area % Area Loss L1 Error Order
exact .0707 - - -

64 .0569 19.5% .045 N/A
128 .0585 17.2% .016 1.5
256 .0622 12.0% .009 .8

Table 3.5: One period of deformation flow. Level set method.

Grid Points Area % Area Loss L1 Error Order
exact .0707 - - -

64 .0696 1.59% .002 N/A
128 .0705 .03% .001 1.1
256 .0705 .03% 4.4E-4 1.4

Table 3.6: One period of deformation flow. Particle level set method.

components by cos(πt/T), with T = 2. The figure shows the level set solution (red),

the particle level set solution (blue) and the high resolution front tracked solution

(green) using a 128 × 128 grid. Note that the widths of some of the filamentary

regions are of the order of a grid cell and would be very difficult to resolve without

the information provided by the particles. One can increase the particle resolution of

the interface by several techniques. More particles can be added at the beginning of

the simulation by increasing the particles’ initial bandwidth or the number of particles

per cell. In addition, one could periodically apply reseeding, although caution should

be used when reseeding the interface shown in figure 3.14 as the geometry is poorly

defined in the under-resolved regions.

As can be seen from the error tables 3.5 and 3.6 as well as figures 3.15 and 3.16,

the ability of the particle level set method to model interfaces undergoing substantial

stretching is quite good.

3.4 Rigid Body Rotation of Zalesak’s Sphere

In analogy with the two dimensional Zalesak disk problem, we use a slotted sphere

to examine the diffusion properties of the particle level set method in three spatial

dimensions. The sphere has radius 15 in a 100× 100× 100 domain. The slot is 5 grid

CHAPTER 3. EXAMPLES 37

cells wide and 12.5 grid cells deep on a 100×100×100 grid cell domain. The sphere is

initially placed at (50, 75, 50) and undergoes rigid body rotation in the z = 50 plane

about the point (50, 50, 50). The constant vorticity velocity field is given by

u(x, y, z) = (π/314)(50− y),

v(x, y, z) = (π/314)(x− 50),

w(x, y, z) = 0,

so that the sphere completes one revolution every 628 time units.

The presence of an extra dimension allows for more opportunities to examine an

interface capturing scheme for excessive amounts of regularization. Figures 3.17 and

3.18 show the level set and the particle level set solutions, respectively, at approxi-

mately equally spaced time intervals from t = 0 to t = 628. The final frame at t = 628

should be identical to the initial data at t = 0. The particle level set method is able

to maintain the sharp features of the notch while the level set method is unable to

do so.

In order to illustrate the volume preservation properties of our scheme, we estimate

the volume of the interior region using a first order accurate approximation to the

integral ∫
H(φ)d~x (3.3)

where H is a numerically smeared out Heaviside function given by

H(φ) =

0 φ < −ε
1
2

+ φ
2ε

+ 1
2π

sin
(

πφ
ε

) −ε ≤ φ ≤ ε

1 ε < φ

(3.4)

with ε = 1.54x the bandwidth of the numerical smearing. It is interesting to note

that the level set solution loses only 2.1% of its total volume while the particle level set

solution has lost 2.3%. The level set method has both inward and outward dissipation

errors in convex and concave regions, respectively, leading to a fortuitous cancellation

and a misleading appearance of accuracy with respect to volume preservation alone.

CHAPTER 3. EXAMPLES 38

Similar statements hold for VOF calculations that preserve volume almost exactly,

but locate the volume incorrectly, e.g. the creation of spurious flotsam and jetsam.

3.5 Three Dimensional Deformation Field

LeVeque [47] proposed a three dimensional incompressible flow field which combines

a deformation in the x-y plane with one in the x-z plane. The velocity field is given

by

u(x, y, z) = 2 sin2(πx) sin(2πy) sin(2πz),

v(x, y, z) = − sin(2πx) sin2(πy) sin(2πz),

w(x, y, z) = − sin(2πx) sin(2πy) sin2(πz)

and the flow field is modulated in time with a period of T = 3. A sphere of radius .15

is placed within a unit computational domain at (.35, .35, .35). A 100×100×100 grid

cell domain was used. This allows the sphere to be entrained by two rotating vortices

which initially scoop out opposite sides of the sphere and then compress them causing

the sphere to pancake. The top and bottom edges of the pancake are then caught

up again in the vortices causing the surface to become very stretched. Parts of the

interface thin out to about a grid cell and both methods have difficulty resolving this

thin interface. Of course, we could use a variety of techniques to increase the initial

particle density or to reseed along the way, but the particle level set method recovers

rather nicely and loses very little volume even without increasing the particle count.

On the other hand, the level set method fails severely in this example.

Figures 3.19 and 3.20 show the level set solution and the particle level set solution,

respectively, at t = 0, 104s, 204s, 304s, 404s, 504s, 604s, 704s, 904s, 1104s,

1304s and 1504s where 4s = 628/150. The final frame at t = 1504s should be

identical to the initial data at t = 0. In addition, frame 1304s should be identical to

frame 204s, frame 1104s should be identical to frame 404s, and frame 904s should

be identical to frame 604s. The maximum stretching occurs at t = 754s where the

level set solution has lost 49% of the initial volume and the particle level set solution

CHAPTER 3. EXAMPLES 39

has gained 1.9%. After completing a full cycle, at t = 1504s, the level set solution

has lost 80% of the initial volume while the particle level set solution has only lost

2.6%.

CHAPTER 3. EXAMPLES 40

30 35 40 45 50 55 60 65 70
55

60

65

70

75

80

85

90

95

x

y

Figure 3.1: Initial placement of particles on both sides of the interface.

30 35 40 45 50 55 60 65 70
55

60

65

70

75

80

85

90

95

x

y

Figure 3.2: Particle positions after the initial attraction step.

CHAPTER 3. EXAMPLES 41

30 35 40 45 50 55 60 65 70
55

60

65

70

75

80

85

90

95

x

y

Figure 3.3: Particle level set solution after one revolution.

CHAPTER 3. EXAMPLES 42

35 40 45 50 55 60 65

60

65

70

75

80

85

90

x

y

Figure 3.4: Comparison of the level set solution (red), particle level set solution (blue)
and theory (green) after one revolution.

35 40 45 50 55 60 65

60

65

70

75

80

85

90

x

y

Figure 3.5: Comparison of the level set solution (red), particle level set solution (blue)
and theory (green) after two revolutions.

CHAPTER 3. EXAMPLES 43

30 35 40 45 50 55 60 65 70
55

60

65

70

75

80

85

90

95

x

y

Figure 3.6: Comparison of the level set solution, particle level set solution and theory
after one revolution. The light red particles and light blue particles have escaped
from the level set solution.

CHAPTER 3. EXAMPLES 44

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

Figure 3.7: Initial data and velocity field for the vortex flow.

CHAPTER 3. EXAMPLES 45

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

x

y

Figure 3.8: Comparison of the particle level set solution and a high resolution front
tracked solution for the vortex flow at t = 1.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

x

y

Figure 3.9: Comparison of the level set solution, particle level set solution and a high
resolution front tracked solution for the vortex flow at t = 1. The light blue particles
have escaped from the level set solution.

CHAPTER 3. EXAMPLES 46

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

Figure 3.10: The level set solution (red), particle level set solution (blue) and a high
resolution front tracked solution (green) for the vortex flow at t = 3.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

Figure 3.11: The level set solution (red), particle level set solution (blue) and a high
resolution front tracked solution (green) for the vortex flow at t = 5.

CHAPTER 3. EXAMPLES 47

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

x

y

Figure 3.12: Level set solution. The exact solution (black) in comparison to grids of
size 256× 256 (blue), 128× 128 (red) and 64× 64 (green - disappeared).

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

x

y

Figure 3.13: Particle level set solution. The exact solution (black) in comparison to
grids of size 256× 256 (blue), 128× 128 (red) and 64× 64 (green).

CHAPTER 3. EXAMPLES 48

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

Figure 3.14: Comparison of the level set solution (red), particle level set solution
(blue) and a high resolution front tracked solution (green) for the deformation flow
at t = 1.

CHAPTER 3. EXAMPLES 49

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

Figure 3.15: Level set solution. The exact solution (black) in comparison to grids of
size 64× 64 (green), 128× 128 (red) and 256× 256 (blue).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

Figure 3.16: Particle level set solution. The exact solution (black) in comparison to
grids of size 64× 64 (green), 128× 128 (red) and 256× 256 (blue).

CHAPTER 3. EXAMPLES 50

 ��

Figure 3.17: Zalesak’s sphere. Level set solution.

CHAPTER 3. EXAMPLES 51

 ��

Figure 3.18: Zalesak’s sphere. Particle level set solution.

CHAPTER 3. EXAMPLES 52

 ��

Figure 3.19: Deformation test case. Level set solution.

CHAPTER 3. EXAMPLES 53

 ��

Figure 3.20: Deformation test case. Particle level set solution.

Chapter 4

Free Surface Calculations

“In the time honored tradition of computer graphics,
we can now go ahead and steal anything we can get.”

Fournier and Reeves [26]

4.1 Liquid Free Surface Flows

The ubiquity of water in our everyday lives has motivated scientists and engineers

to attempt to simulate a wide variety of liquid phenomena. The simulation of the

destructive force of tsunamis and waves on beaches [48, 40, 29]; the breakup of thin

sheets of liquid fuel [49, 43] or the formation of ink drops for printing [4]; the filling of

containers for food industry applications [88, 87]; and the adhesion of two circulatory

cells under shear flow [3], has prompted the development of a wide variety of novel

methods to describe the motion of the liquid and the free surface present in each of

these applications. A common theme among all of these applications is the complex,

three-dimensional behavior of the interface. Any method used to describe the behav-

ior of the free surface needs to be capable of capturing these aspects of water surfaces.

Besides the obvious economic and environmental importance of being able to develop

mechanisms to control the liquid through improved numerical modeling, the lively,

complex motion of the free surface is often visually attractive to the casual observer.

This attractiveness has recently motivated the computer graphics community to take

54

CHAPTER 4. FREE SURFACE CALCULATIONS 55

an interest in the realistic animation of complex water surfaces.

4.2 CFD and Computer Animation

The use of computational fluid dynamics to mimic liquid behavior for purposes of

computer animation is a relatively recent phenomenon. While the engineering and

scientific communities wish to achieve the highest fidelity possible in a simulation,

the animation community does not need to achieve this goal. Rather, the goal is to

achieve a “believable” liquid performance. This liberates the animator from being

forced to use a realistic model of a liquid. While the animator has a lot of freedom

as to how to animate a liquid, liquids are governed by certain physical laws so it

makes sense that an animator will utilize simplifying assumptions in order to obtain

the desired performance. This approach to the animation of liquids has been used

extensively by the animation community. Original efforts to obtain two dimensional

wave behavior is seen in the efforts of Masten [51] using Fourier synthesis techniques

and Schachter [69] with a parametric representation of the water surface. Peachey [61]

borrowed features of Airy models and Fournier and Reeves [26] utilized Gerstner wave

theory to generate realistic looking periodic waves which appear to almost break.

To obtain more realistic liquid performances, the animation community then

turned towards two dimensional approximations to the full three dimensional Navier-

Stokes equations. A height field representation of the water surface used by Kass

and Miller [42] was derived from a linearized form of the two dimensional shallow

water equations. Interaction with obstacles using a pressure determined height field

formulation was used by Chen and Lobo [14]. Two dimensional splashing liquids with

spray being modeled by particles was presented in [57]. As an alternative to Navier-

Stokes models, a viscous spring-particle representation of a liquid has been proposed

by Miller and Pearce [53] and a molecular dynamics approach was used in [86].

While the above approaches have been and continue to be used in the animation

community, exciting and dynamic water behavior can only result from the use of fully

three dimensional computational fluid dynamics algorithms. Foster and Metaxas [25]

CHAPTER 4. FREE SURFACE CALCULATIONS 56

built upon the original CFD work of Harlow and Welch [31] in creating a 3D Navier-

Stokes methodology for the realistic animation of liquids. A staggered flow grid

arrangement was used along with a marker particle representation of the liquid. Both

the convective and viscous terms were discretized using central differencing and the

entire system was integrated in time using a forward Euler scheme. In the case of

animating water or other relatively inviscid substances, the combination of spatial

central differencing for the convective terms and a forward Euler time discretization

can pose a severe time step restriction, i.e. ∆t ∼ (∆x)2, for the simulation to remain

stable. Even if upwind differencing is used for the convection terms, a CFL condition

of u∆t/∆x < 1 will need to be obeyed. Stam in 1999 [78] proposed a “Stable Fluid”

approach to the treatment of the convective term in the Navier-Stokes equations for

animation applications. This “Stable Fluid” approach is really a semi-Lagrangian

method first proposed in 1952 by Courant, Issacson, and Rees [20]. Besides its pro-

posed use in the animation community, semi-Lagrangian methods are popular in the

meteorological community for their stability characteristics [52, 79]. Use of a semi-

Lagrangian method allows a liquid animation to remain stable even when using time

steps larger than that given by a traditional CFL condition for Eulerian finite differ-

ence schemes, providing tremendous computational savings by reducing the number

pressure calculations done at the cost of introducing additional amounts of numerical

viscosity.

While the seminal work of Foster and Metaxas introduced the use of fully three

dimensional Navier-Stokes simulations for the purposes of animating liquids, the prac-

tical application of CFD technology for liquid animations was introduced by Foster

and Fedkiw [24]. Some of these contributions include:

• A semi-Lagrangian “Stable Fluid” approach for the convective terms in order

to minimize number of expensive pressure iterations;

• Use of a novel hybrid liquid volume model combining a level set and marker

particle approach to represent the liquid;

• Time step subcycling for the evolution of particles and level set in order to

maintain stability of the interface given CFL violating large liquid time steps;

CHAPTER 4. FREE SURFACE CALCULATIONS 57

• Use of an efficient Preconditioned Conjugate Gradient method to solve for the

pressure during the projection step, unlike the slow SOR method used by Foster

and Metaxas;

• Formulation of plausible velocity boundary conditions for moving objects in the

liquid.

The combination of all of these technologies has begun to meet the engineering re-

quirements for the use of fully three dimensional computational fluid dynamics al-

gorithms in a computer animation environment. Utilization of inherently stable al-

gorithms to avoid having animators not trained in computational methods perform

costly numerical stability studies; use of fast numerical algorithms for quick turn

around time; robust and accurate interface methods used to convey the presence of

the free surface even on the coarse grids commonly used by animators; and interactive

algorithms which allows for the possibility of controlling the behavior of the liquid

and the ability for the liquid to affect the motion of objects and vice versa.

We wish to focus for a moment on the hybrid volume model utilized by Foster and

Fedkiw to model the free surface of the liquid. The use of a level set only representa-

tion for the interface introduces difficulties in maintaining the liquid volume on the

coarse grids commonly used in an animation environment as discussed in Chapter 2.

This difficulty was recognized by Foster and Fedkiw and marker particles were used

to represent the volume of liquid in regions of high curvature near the interface. To

illustrate the behavior of the hybrid volume model, the resulting interface after one

rotation of Zalesak’s disk is shown in figure 4.1(c). The Foster and Fedkiw scheme

does an excellent job of preserving the liquid volume as compared to a level set only

method, but it is at the expense of not preserving the air in the notch. The problem

with the hybrid volume model is that it does not model the opposite side of the in-

terface, the air side of the interface in this case. The particle level set result on the

other hand as seen in figure 4.1(d) does not favor one side of the interface over the

other and is able to maintain the sharpness of the notch.

While CFD algorithms have been slowly working their way into a traditional pro-

duction animation environment [95], the combination of all of the above technologies

CHAPTER 4. FREE SURFACE CALCULATIONS 58

has made it feasible to perform fully three dimensional simulations for animating

liquids.

4.3 Liquid Model

4.3.1 Navier-Stokes Equations

Our simulations utilize the three dimensional Navier-Stokes equations given by

~ut = −~u · ∇~u + ν∇ · (∇~u)− 1

ρ
∇p + ~g, (4.1)

where ~u = (u, v, w) is the velocity, ν is the kinematic viscosity of the liquid, ρ is

the density of the liquid, p is the pressure, and ~g is an externally applied gravity

field. While nothing in our computational scheme precludes the simulation of highly

viscous flows, the viscosity of water is negligible so we do not explicitly model the

second term on the right hand side of equation 4.1. In order to calculate the pressure

we impose the incompressibility constraint on the liquid resulting from the law of

conservation of mass,

∇ · ~u = 0. (4.2)

At a wall, we choose to apply a flow tangency boundary condition. If we define

~N to be the normal to the wall and ~T1 and ~T2 to be two mutually orthogonal tangent

vectors to the wall, we impose

~u · ~N = 0 (4.3)

∇~u · ~T1 = ∇~u · ~T2 = 0. (4.4)

By performing the simulation using a staggered velocity-pressure (MAC grid) ar-

rangement we can avoid specifying a pressure boundary condition at the wall. The

velocity and pressure boundary conditions at the free surface are discussed below.

The boundary conditions we impose in the presence of objects placed in the liquid

are discussed in section 4.5.3.

CHAPTER 4. FREE SURFACE CALCULATIONS 59

Finally, we usually begin the simulation with a specified velocity field and an

initial position for the free surface.

4.3.2 Free Surface Boundary Conditions

We do not solve equations 4.1 and 4.2 over the entire computational domain, but only

in the regions occupied by the liquid. Our calculations do not model the dynamics

of the air on the free surface as in a truly multiphase calculation. In general, two

boundary conditions apply at the free surface:

• The kinematic condition states that there is no transport of mass through the

interface. Mathematically we can represent this condition as

[~u− ~ufs]fs · ~N = 0, (4.5)

where ~ufs is the velocity of the free surface and the jump condition is taken

at the boundary. Practically, this means that the level set should take as its

velocity field that of the fluid and the marker particles should interpolate their

velocity from the fluid velocity.

• The dynamic condition is a statement of momentum conservation at the free

surface, i.e. the fluid forces at the free surface are in equilibrium. In general,

the presence of surface tension causes a jump in the normal stress while the

tangential stresses are continuous across the interface,

[σijnj]fs = τκni (4.6a)

[σijtj]fs = 0 (4.6b)

[σijsj]fs = 0, (4.6c)

where

σij = −pδij + ν(ui,j + uj,i), (4.7)

nj is the normal to the interface, tj and sj are mutually orthogonal tangents

to the interface, τ is the coefficient of surface tension and κ is the curvature.

CHAPTER 4. FREE SURFACE CALCULATIONS 60

A way to explicitly capture discrete jump conditions at the interface using

level set technology is by the “Ghost Fluid” method of Fedkiw and collabo-

rators [23, 41, 55]. In our case since we are not explicitly modeling one side

of the interface, we do not need to use such methods. We neglect the shear

stress conditions, eqns. 4.6b and 4.6c. Also, we neglect surface tension effects,

reducing equation 4.6a to a statement that the pressure across the interface is

continuous, i.e. pliquid = pair. In the examples presented in this dissertation,

pair is set to 0.

4.4 Computational Method

In this work we utilize the methodology described in [24] to solve for the velocity and

pressure at each time step. In addition, the particle level set method is used to model

the interface.

4.4.1 Finite Difference Discretization

A staggered MAC grid arrangement [31] is used to represent the velocity and pressure

on a Cartesian computational grid. The pressure is stored at cell centers, while

the components of the velocity are stored on the appropriate cell face as illustrated

in figure 4.2. On a domain of size (xmin, xmax) × (ymin, ymax) × (zmin, zmax) with

(1,m) × (1, n) × (1, mn) grid points, ∆x is given by (xmax − xmin)/m and ~xi,j,k =

(xmin + (i− .5) ∆x, ymin + (j − .5) ∆y, zmin + (k − .5) ∆z).

An explicit first order in time fractional step method [44] utilizing the velocity

projection method of Chorin [18] is used to advance the velocity and pressure fields

in time. The convective term is discretized using a “Stable Fluid” semi-Lagrangian

approach. An intermediate velocity field, ~u∗ is calculated by

u∗i+1/2,j,k = un(~xi+1/2,j,k − ~un
i+1/2,j,k ∆t) (4.8a)

v∗i,j+1/2,k = vn(~xi,j+1/2,k − ~un
i,j+1/2,k ∆t)− g∆t (4.8b)

w∗
i,j,k+1/2 = wn(~xi,j,k+1/2 − ~un

i,j,k+1/2 ∆t), (4.8c)

CHAPTER 4. FREE SURFACE CALCULATIONS 61

where g is the gravitational constant, 9.8m/s2. Trilinear interpolation is used to

obtain values of the components of ~u which do not lie on grid points.

The new liquid velocity ~un+1 is defined by

un+1
i+1/2,j,k − u∗i+1/2,j,k

∆t
+

p
n+1/2
i+1,j,k − p

n+1/2
i,j,k

ρ
= 0 (4.9a)

vn+1
i,j+1/2,k − v∗i,j+1/2,k

∆t
+

p
n+1/2
i,j+1,k − p

n+1/2
i,j,k

ρ
= 0 (4.9b)

wn+1
i,j,k+1/2 − w∗

i,j,k+1/2

∆t
+

p
n+1/2
i,j,k+1 − p

n+1/2
i,j,k

ρ
= 0. (4.9c)

Imposing the incompressibility constraint of equation 4.2 on ~un+1, results in

∇ · ~u∗
∆t

= ∇ ·
(∇pn+1/2

ρ

)
. (4.10)

Written in component form, we obtain the following equation for pi,j,k at the n + 1/2

time level,

pi+1,j,k + pi,j+1,k + pi,j,k+1 − 6pi,j,k + pi−1,j,k + pi,j−1,k + pi,j,k−1 = ρ
∆x

∆t
Di,j,k (4.11)

assuming ∆x = ∆y = ∆z. Di,j,k is the numerical divergence of the velocity defined

as

Di,j,k = u∗i+1/2,j,k − u∗i−1/2,j,k + v∗i,j+1/2,k − v∗i,j−1/2,k + w∗
i,j,k+1/2 − w∗

i,j,k−1/2. (4.12)

From equation 4.11 we can calculate the pressure, pn+1/2, needed to ensure that

the velocity is divergence-free at the n + 1 time level. Since the system described

by 4.11 is symmetric and positive definite (as long as there is at least one surface cell

in the computational domain which slightly modifies the system as discussed below),

we use an efficient Preconditioned Conjugate Gradient (PCG) as discussed in Golub

and VanLoan [28] to determine p
n+1/2
i,j,k .

CHAPTER 4. FREE SURFACE CALCULATIONS 62

4.4.2 Velocity Extrapolation Near Free Surface

The presence of the free surface introduces some additional computational issues,

especially in the treatment of equations 4.11 and 4.12. Due to our modeling assump-

tions, we apply the results of the above calculations only in cells which contain liquid.

Cells with φi,j,k ≤ 0 at the center are determined to contain liquid. Surface cells are

those which contain the φ = 0 isocontour. In cells which have φi,j,k > 0, we impose a

Dirichlet boundary condition and define the pressure to be 0. This condition modifies

the left-hand side of equation 4.11 by setting to zero any off-diagonal pressure terms

in cells which have φi±1,j±1,k±1 > 0. The diagonal term is set to the number of neigh-

boring liquid cells. The imposition of this boundary condition at cell centers and not

at the exact location of the free surface introduces some error into the simulation,

consequently degrading the calculation to first order accuracy near the interface. The

accumulation of this error over time can degrade the accuracy of a simulation. In

order to apply the pressure condition at the actual location of the free surface, an

irregular finite difference stencil can be used as discussed in [12]. However, use of this

more complicated stencil for the purposes of animation appears to be unnecessary as

the results presented later in this chapter indicate.

A variety of methods have been used to computationally treat the calculation

of the divergence of the velocity field on the interface. Velocities on the faces of

surface cells which are adjacent to non-liquid cells will need to be determined even

though these velocities may not lie within the liquid and are not explicitly modeled.

A commonly used condition [31, 6, 25] is to set the undetermined velocities so that

Di,j,k = 0 is satisfied. Unfortunately, there are 64 distinct velocity configurations

which need to be accounted for in three dimensions, not including the possibilities

resulting from the presence of objects in the liquid or of walls at the boundaries.

A less than rigorous analysis of all the possibilities can lead to the introduction of

non-physical asymmetries into a simulation. For example, a detailed analysis of the

computational velocity boundary conditions resulting from enforcing Di,j,k = 0 at

the free surface [15] showed that the velocity boundary conditions in the popular

SMAC method [6] contained such an asymmetry. On the other hand Chan and

Street [12] did not enforce Di,j,k = 0 at the free surface since the free surface boundary

CHAPTER 4. FREE SURFACE CALCULATIONS 63

conditions discussed in section 4.3.2 do not place any conditions on Di,j,k. Rather,

they extrapolated the velocities from the liquid into the air using a Gregory-Newton

backward interpolation formula in order to obtain a higher order accurate calculation

of the velocity of the free surface. Even in highly viscous flows, faithful adherence of

the simulation to the stress-free boundary conditions, eqns. 4.6a, 4.6b, and 4.6c is

important in order to obtain physically accurate results [35, 56].

We choose to take a new approach to setting the unmodeled, but computationally

required velocities, that takes advantage of the geometrical information contained in

the level set function used to describe the free surface. We smoothly extrapolate

the fluid velocities in the normal direction to the interface from inside the liquid.

While this technique of extrapolating the velocity of the interface smoothly over the

entire domain was first introduced to the level set community by Adalsteinsson and

Sethian [2], its application to a free surface calculation is new. To calculate the

extrapolated velocity, ~uext = (uext, vext, wext), away from the interface we solve to

steady state

∂uext

∂τ
+ ~N · ∇uext = 0 (4.13a)

∂vext

∂τ
+ ~N · ∇vext = 0 (4.13b)

∂wext

∂τ
+ ~N · ∇wext = 0, (4.13c)

where τ is a fictitious time. The above equations are solved in band of 5 grid cells

thick near the interface where φ > 0. Since we have signed distance information to the

free surface for the entire computational domain, ~N is given by ∇φ. At steady state

we note that ∇φ · ∇{uext, vext, wext} = 0. This condition satisfies Di,j,k = 0 at the

free surface in the limit as the grid spacing approaches zero, since the divergence-free

velocities are propagated unchanged in the normal direction across the interface. Also,

since the update of the extrapolated variables occurs in only one direction outward

from the interface, a fast O(n log n) marching technique [1] can be used to update

~uext.

CHAPTER 4. FREE SURFACE CALCULATIONS 64

Use of this velocity extrapolation technique allows us to obtain a physically plau-

sible velocity field in regions where we do not explicitly model the liquid. Besides

providing for a reasonable way to calculate Di,j,k at the free surface, we can utilize the

extrapolated velocity field for other purposes. Since we are using the particle level

set method to model the interface, the existence of particles in the unmodeled “air”

side of the interface requires that we have a reasonable velocity field in this region

in order to move the particles. These particles are typically in a band a couple of

grid cells thick about the interface, so having the capability to smoothly extrapolate

velocities more than one grid cell away from the interface is crucial. Also, when us-

ing a semi-Lagrangian technique to update the velocity field inside the liquid near

the interface, the flow characteristics may look back into the φ > 0 region near the

interface in order to determine which velocities to use in the update.

4.4.3 Particle Level Set Interface Treatment

We utilize the particle level set method as described in chapter 2 to model the inter-

face. A dimension by dimension discretization of

φt + ~u · ∇φ = 0 (4.14)

using a fifth order accurate H-J WENO scheme is used along with a first order accurate

forward Euler update in time. The particles are updated in time with a first order

accurate forward Euler method which uses the velocities at time level n, i.e.

~xn+1
p = ~xn

p + ~un(~xn
p). (4.15)

Trilinear interpolation is used to determine the velocity of each particle.

For the examples shown in section 4.5 we perform a particle reseeding step every

20 frames. This reseeding is performed in order to maintain a reasonable distribution

of particles about the entire fluid interface. This is necessary for the error correction

step of the particle level set method to be effective. 64 particles per cell are used at

all reseeding steps.

CHAPTER 4. FREE SURFACE CALCULATIONS 65

4.4.4 Boundaries

All of our calculations are performed in a computational domain which is open on the

air at the top (j = n). We maintain a 3 grid cell thick band of ghost cells around the

computational domain to assist in the semi-Lagrangian update of the velocity near

the boundaries. For the level set we reflect the value of φ across the front, back, left,

right, and bottom boundaries,

φ1−l,j,k = φl,j,k, φm+l,j,k = φm−(l−1),j,k, (4.16a)

φi,j,1−l = φi,j,l, φi,j,mn+l = φi,j,mn−(l−1), (4.16b)

φi,1−l,k = φi,l,k, (4.16c)

where l = {1, 2, 3}, i ∈ (1,m), j ∈ (1, n), k ∈ (1,mn). We wish to ensure that “air”

or φ > 0 is always above the computational domain at the j = n boundary. For this

boundary we use constant extrapolation if φi,n,k > 0, else we set φi,n+l,k = ∆y, l =

{1, 2, 3} in the case of a liquid source at the top of the domain.

For each component of the velocity we implement the computational equivalents

to the boundary conditions expressed by equations 4.3 and 4.4. For the top of the

computational domain, we impose a constant extrapolation boundary condition. For

example, the boundary conditions for u are

u1−l,j,k = −u1+l,j,k, um+l,j,k = −um−l,j,k, (4.17a)

ui,1−l,k = ui,l,k, ui,n+l,k = ui,n,k, (4.17b)

ui,j,1−l = ui,j,l, ui,j,mn+l = ui,j,mn−(l−1), (4.17c)

where l = {1, 2, 3}, i ∈ (1,m), j ∈ (1, n), k ∈ (1,mn). Similar boundary conditions

apply for the v and w components of ~u.

Particles which happen to cross one of the computational boundaries are placed

back within the computational domain within a user defined ε of the boundary they

crossed. Positive “air” particles which move beyond the top of the computational

domain are deleted.

CHAPTER 4. FREE SURFACE CALCULATIONS 66

4.4.5 Time Step Calculation

Use of a semi-Lagrangian method to calculate the intermediate velocity ~u∗ allows one

to take a larger time step than that allowed according to the CFL time step restriction

for an explicit time discretization of the convective portion of equation 4.1,

∆t

(|u|max

∆x
+
|v|max

∆y
+
|w|max

∆z

)
≤ 1, (4.18)

where |u|max, |v|max, and |w|max are the maximum magnitudes of the velocities. While

the use of as large as possible a time step is useful in an animation environment since

it provides for fast turnaround times, using such a large time step to update the

motion of the interface according to equation 4.14 can cause a visually disturbing loss

(or gain) of mass to occur. Instead, we use the time step subcycling scheme proposed

in [24] to evolve the particles and level set function associated with the particle level

set method in time according to a plausible CFL condition,

∆tlevelset = .5 min

(
∆x

|u|max

,
∆y

|v|max

,
∆z

|w|max

)
. (4.19)

The liquid velocity field, ~u, is updated at a rate given by

∆tliquid = 4.9 ∆tlevelset. (4.20)

Between the liquid velocity updates, the particles and level set function are evolved

forward in time according the most recently computed velocity field.

4.4.6 Overall Computational Cycle

After initializing the level set function and the particles, the computation of the liquid

and the free surface proceeds as follows. Data from the simulation is written out to

a file at time intervals given by a user defined frame rate. Before each liquid update,

the level set and particles are integrated with a time step given by equation 4.19 as

many times as necessary in order to reach ∆tliquid. A fractional-step procedure is

used in which a preliminary velocity field is calculated from equations 4.8a - 4.8c.

CHAPTER 4. FREE SURFACE CALCULATIONS 67

Then, the pressure is calculated according to equation 4.10 with the appropriate

boundary conditions applied. A PCG method as discussed in [28] is used to solve the

system. The method terminates after achieving a relative tolerance of 10−8 or after

20 iterations are performed. We have found this is sufficient to have the simulation

maintain the appearance of a liquid. This pressure is then applied to previously

calculated velocity field in order to satisfy the incompressibility condition of a liquid.

The newly calculated fluid velocities are then smoothly extrapolated outward from

the fluid into the air near the interface. This cycle repeats until the time to write the

current frame to file is reached. A schematic of the computational steps performed

per frame is given by figure 4.3.

4.5 Examples

4.5.1 Rendering

The renderings of the animations of water being poured into a glass and the splash

generated by the impact of a ball in a tank of water were performed by Dr. Stephen

Marschner using a physically based Monte Carlo ray tracer capable of handling all

types of illumination using photon maps and irradiance caching [38]. A geometry

primitive that intersects rays with the implicit surface directly by solving for the root

of the signed distance along the ray was created for use by the rendering system.

Depending on the accuracy required by a particular scene we use either a trilinear

or a tricubic filter [50] to reconstruct φ. The normal is computed using trilinearly

interpolated central differences for the trilinear surface, or simply using the derivative

of the reconstructed tricubic surface.

The properties of φ have two advantages in the rendering context. First, inter-

secting a ray with the surface is much more efficient than it would be for an isosurface

of a general function. The signed distance function provides a lower bound on the

distance to the intersection along the ray, allowing us to take large steps when the

current point is far from the surface. Second, it is easy to provide for motion blur

in the standard distribution ray tracing framework. To compute the surface at an

CHAPTER 4. FREE SURFACE CALCULATIONS 68

intermediate time between two frames we simply interpolate between the two signed

distance volumes and use the same intersection algorithm unchanged. For the small

motions that occur between frames the special properties of φ are not significantly

compromised.

The breaking wave results are rendered by Neil Herzinger and Willi Geiger of

Industrial Light + Magic using a proprietary renderer.

All frames and movies generated from the following calculations can be found on

the CD-ROM included with this dissertation.

4.5.2 Pouring A Glass of Water

Figures 4.5 and 4.6 show the high degree of complexity in the water surface. Note the

liveliness of the surface of the water when it is initially being poured. The ability to

maintain the visually pleasing thin sheets of water during the turbulent mixing phase

is a consequence of our new method. We do not lose any of the fine detail of the

air pockets formed, since we model both sides of the water surface. The calculation

was performed on a Cartesian grid of size 55× 120× 55 and grid spacing of 0.01m in

each direction. The glass was modeled on the grid as a cylinder of radius 25 grid cells

and the major axis located at (0.275, 0.0, 0.275) and running parallel to the y-axis,

with the grid points outside the cylinder treated as an object which does not permit

the fluid to penetrate it. In order to avoid any difficulties in interpolating φ near

the edge of the cylinder, a constant extrapolation of φ away from the cylinder using

the value of φ at a location of (0.0001 ∆x) from the surface inside the cylinder was

used. A full slip velocity boundary along the walls of the cylinder was used. The glass

was modeled as smooth and clear in order to highlight the action of the water being

poured into the glass. The water inlet was modeled as a cylinder of radius 0.075 and

height of .03 placed at (.275, 1.17, .275) with the major axis running parallel to the

y-axis. An injection velocity of (−1.0,−1.5, 0.0)m/s was used. To update the grid

points inside the source, the velocity inside cylinder is fixed, along with the value of φ

being set to ∆x and a Neumann boundary condition being enforced inside the source.

In order to ensure that particles are seeded inside the source a particle reseeding step

CHAPTER 4. FREE SURFACE CALCULATIONS 69

restricted to a region about the source was performed at the end of each particle level

set subcycling step. A frame rate of 72 frames per second was used. The simulation

time was 9 seconds, with the source turned off after 6 seconds. The computational

cost was approximately 8 minutes per frame on a 2GHz Pentium IV processor with

2GB of RAM.

The scene used to render our result contains just a simple cylindrical glass, the

simulated water surface, and a few texture mapped polygons for the background.

Illumination comes from a physically based sky model and two area sources. Because

water only reflects and refracts other objects, the scene including the sky is very im-

portant to the appearance. The glass and the water together create three dielectric

interfaces: glass-air, water-air, and air-water, so the inside surface of the glass has two

sets of material properties depending on whether it is inside or outside the implicitly

defined surface (which is easy to determine by checking the sign of φ). The illumina-

tion in the shadow of the glass is provided by a photon map, and illumination from

the sky on diffuse surfaces in the scene is computed using Monte Carlo integration.

Motion blur was included for these renderings. The rendering time for the glass was

approximately 15 minutes per frame.

4.5.3 Splash Generated From Ball Impact

In this example we simulate the impact and resulting splash from a heavy ball being

thrown into a tank of water. This simulation was performed to illustrate the ability

of our method to interact with animated objects in the scene to provide a point

of comparison with an identically performed calculation by Foster and Fedkiw [24].

The size of the tank is 1.4 × 1.1 × 0.9m. The simulation was performed using a

computational domain of size 140× 110× 90. The tank was initially filled with water

to a depth of .4 m. A procedurally animated ball of size .1m was made to fly into the

pool at a velocity of (−4.5,−4.5, 0.)m/s. Once the ball has reached the bottom of

the tank, it ceases to move. The ball affects the dynamics of the water, but the water

does not affect the motion of the ball in any way. In order to obtain more realistic

behavior, the ball could be treated as a rigid body which dynamically interacts with

CHAPTER 4. FREE SURFACE CALCULATIONS 70

the liquid. We enforce a tangential slip boundary condition around the ball and

a normal velocity boundary condition which prevents water from flowing into the

object. The level set function, φ, is set to +∆x and any particles which enter the

object are deleted.

The results of the simulation are seen in figures 4.9 and 4.10. The ball enters

the water and generates an initial splash sheet. A large amount of air is entrained by

the ball as it enters the water due to the non-physical, animation of the ball motion

in the water, causing a very large secondary splash sheet to be formed. The particle

level set method is able to resolve these thin splash sheets. A frame rate of 72 frames

per second was used. The overall simulation encompassed 5.6 seconds. A comparison

between the use of the hybrid liquid volume model of Foster and Fedkiw and the

particle level set method is seen in figures 4.7 and 4.8. The lack of particles in the

“air”, φ > 0, region is clearly evident in figure 4.7. The interface in the Foster and

Fedkiw result is suffering from an excessive amount of diffusion into the air region

as evidenced due to the formation of a hump backed shaped region in front of the

splash sheet. The hybrid volume model does not use any outside particle to correct

for this effect. The particle level set method on the other hand is able to maintain

the visually pleasing thin splash sheet without an excessive amount of diffusion of the

interface.

4.5.4 Breaking Wave

We have performed a breaking wave calculation in a numerical wave tank as shown

in figures 4.13 and 4.14. To begin to model this phenomenon, we needed to chose

an initial condition for the wave. We used the solution for a solitary wave of finite

amplitude propagating without shape change [65]. The initial velocities u and v in

CHAPTER 4. FREE SURFACE CALCULATIONS 71

the x and y directions respectively and surface height η are given by:

u =
√

gd
H

d
sech2

[√
3H

4d3
x

]
(4.21)

v =
√

3gd

(
H

d

)3/2
y

d
sech2

[√
3H

4d3
x

]
tanh

[√
3H

4d3
x

]
(4.22)

η = d + H sech2

[√
3H

4d3
x

]
, (4.23)

where g is the gravitational constant 9.8m/s2. For our simulations, we set H = 7 and

d = 10. We used the same initial conditions in three spatial dimensions, replicating

the two dimensional initial conditions along the z-axis.

Next, we introduced a model of a sloping beach in order to cause the propagating

pulse to form a breaking wave. We performed a variety of two dimensional tests to

determine the best underwater shelf geometry to generate a visually pleasing breaking

wave. Figure 4.11 is a sequence of frames from one of the two dimensional tests we

ran with the same x-y cross section as in our 3D example. We found this prototyping

technique to be a fast and easy way to explore breaking wave behavior in a fraction

of the time it would take to run a fully three dimensional test case.

After determining the best submerged shelf geometry to generate a breaking wave,

we generated a slight tilt in the geometry in order to induce a curl in the break of the

wave and enhance the three dimensional look. A sketch of the shelf geometry used in

our three dimensional calculations is shown in figure 4.12. An incline of slope 1:7 rises

up from the sea bottom to a depth of 2 m below the surface of the water. Instead of

allowing the incline to go all the way to the surface we chose to have it flatten out at

this depth in order to illustrate the splash up effects after the initial breaking of the

wave.

Next we ran a fully three dimensional simulation, the results of which can be

seen in figures 4.13 and 4.14. The simulation was run on a computational grid of

size 540 × 75 × 120 and of dimensions 180 × 25 × 40m. A frame rate of 72 frames

per second was used. 12 seconds of simulated wave behavior were calculated. The

CHAPTER 4. FREE SURFACE CALCULATIONS 72

wave has the intended curling effect. The formation of a tube of air is clearly seen

after the wave splashes down, with the “air” particles maintaining the tube even after

the wave begins a secondary splash up. We observe some solely three dimensional

effects including the fingering of the breaking wave. The fine detail features seen

on the surface of the ocean surface, including the appearance of capillary waves and

foam were generated through the use of procedural displacement textures and matte

texture maps respectively. In order to simulate these details one would need to use

a finer computational grid along with a different velocity advection scheme than the

diffusive semi-Lagrangian method used here. However, for the purposes of computer

graphics we can use other methods besides physically-based animation techniques in

order to obtain plausible looking fine details to place on the wave. The goal of this

simulation was to show that the hard-to-animate bulk motion of the interface can be

obtained by using relatively simple algorithms from the computational fluid dynamics

community. The computational cost of this simulation was approximately 13 minutes

per frame.

CHAPTER 4. FREE SURFACE CALCULATIONS 73

30 35 40 45 50 55 60 65 70
55

60

65

70

75

80

85

90

95

x

y

(a) Initial Notched Disk

30 35 40 45 50 55 60 65 70
55

60

65

70

75

80

85

90

95

x

y

(b) Level Set Only

30 35 40 45 50 55 60 65 70
55

60

65

70

75

80

85

90

95

x

y

(c) Hybrid Volume Model

30 35 40 45 50 55 60 65 70
55

60

65

70

75

80

85

90

95

x

y

(d) Particle Level Set

Figure 4.1: Comparison of Hybrid Volume Model and the Particle Level Set method
for one rotation of Zalesak’s Disk

CHAPTER 4. FREE SURFACE CALCULATIONS 74

v i, j+1/2, k

u i-1/2, j, k u i+1/2, j, k

v i, j-1/2, k

w i, j, k+1/2

w i, j, k-1/2

p i, j, k

∆x

∆y ∆z

Figure 4.2: Velocity-Pressure (MAC) staggered grid arrangement

CHAPTER 4. FREE SURFACE CALCULATIONS 75

Calculate ∆tlevelset and ∆tliquid

Set Free Surface Pressure
Boundary Conditions

Interface Evolution
(see fig. 4.4)

Set Object and Source
 Velocity and Pressure Boundary Conditions

Calculate u*, v*, and w*

Calculate pn+1/2

Reseed Particles if necessary

Calculate un+1, vn+1, and wn+1

t = t + ∆tliquid , until new frame

Write Data for Frame

Figure 4.3: Free Surface Overall Computational Cycle

CHAPTER 4. FREE SURFACE CALCULATIONS 76

Forward Euler evolution
 of level set

Particle Correction

Update Source

Particle Source Reseed

Remove Deep Particles

Step by ∆tlevelset until
 ∆tliquid is reached

Interface Evolution

Update Source

 Adjust Particles for
Boundaries and Geometry

Forward Euler evolution �
 of particles

Reinitialization of φ

Particle Correction

Radii Adjustment

Update Source

Figure 4.4: Free Surface Interface Evolution

CHAPTER 4. FREE SURFACE CALCULATIONS 77

(a) Frame 35 (b) Frame 60

(c) Frame 100 (d) Frame 300

Figure 4.5: Water being poured into a clear, cylindrical glass.

CHAPTER 4. FREE SURFACE CALCULATIONS 78

(a) Frame 35 (b) Frame 60

(c) Frame 100 (d) Frame 300

Figure 4.6: Closeup of figure 4.5. Our method makes possible the fine detail seen in
the turbulent mixing of the water and air.

CHAPTER 4. FREE SURFACE CALCULATIONS 79

Figure 4.7: Ball thrown into a tank of water. Hybrid Volume Model result.

CHAPTER 4. FREE SURFACE CALCULATIONS 80

Figure 4.8: Ball thrown into a tank of water. Particle Level Set result.

CHAPTER 4. FREE SURFACE CALCULATIONS 81

(a) Frame 19

(b) Frame 36

Figure 4.9: Ball thrown into a tank of water. Formation of intial and secondary splash
sheets.

CHAPTER 4. FREE SURFACE CALCULATIONS 82

(a) Frame 52

(b) Frame 100

Figure 4.10: Ball thrown into a tank of water. Secondary splash sheet and resulting
surface.

CHAPTER 4. FREE SURFACE CALCULATIONS 83

50 100 150 200 250

10

20

30

40

50

50 100 150 200 250

10

20

30

40

50

50 100 150 200 250

10

20

30

40

50

50 100 150 200 250

10

20

30

40

50

Figure 4.11: Two Dimensional Breaking Wave

Figure 4.12: Submerged Shelf

CHAPTER 4. FREE SURFACE CALCULATIONS 84

(a) Frame 80

(b) Frame 130

Figure 4.13: View of wave breaking on a submerged shelf. Note the ability to properly
model the initial breaking phase of the wave.

CHAPTER 4. FREE SURFACE CALCULATIONS 85

(a) Frame 170

(b) Frame 288

Figure 4.14: View of wave breaking on a submerged shelf. Note the ability to properly
model the secondary splash up and bore creation phase.

Chapter 5

Conclusions and Future Directions

We have proposed a new numerical method which combines the best aspects of Eu-

lerian front capturing schemes and Lagrangian front tracking methods for improved

mass conservation. Level set methods are used to capture the smooth part of the

interface, but suffer an excessive amount of mass loss in under-resolved regions. This

prevents the resolution of thin filaments and regions of high curvature. To counter-

act this problem, characteristic information is provided by massless marker particles.

Escaped massless marker particles are used to correct the mass loss in the level set

function. The method otherwise maintains the desirable geometric properties of level

set methods along with the ease and simplicity of implementation. As seen in the

examples contained in chapter 3, the “particle level set method” compares favor-

ably with volume of fluid methods with regards to conservation of mass and purely

Lagrangian schemes for interface resolution.

While we add particles in a band near the interface, other strategies could be

adopted. For example, it is obvious that particles are only needed in regions of

high curvature and restricting particles to these regions would speed up the method

significantly. Concerning speed, it is interesting to compare this method to adaptive

meshing, for example as in [81]. A significant advantage of particle methods is that

they avoid the small time step restriction dictated by the small cells produced by

adaptive meshing. Also, the data structures are simpler than for cell based adaptive

meshing, and the particle method can be applied more locally than patch based

86

CHAPTER 5. CONCLUSIONS AND FUTURE DIRECTIONS 87

adaptive meshing.

We combined the “particle level set method” with a liquid free surface simulation

code in order to gauge the effectiveness of this method in maintaining a topologically

complex liquid interface in a computer animation environment. In order to use this

method, we took advantage of a well known tool in the level set community, velocity

extrapolation, in order to obtain a smooth, divergence free velocity field in the “air”

region near the interface. We performed three different animations, the pouring of

a glass of water, the splash formed due to the impact of a ball thrown into a tank

of water, and of a three dimensional, breaking surface wave. While breaking wave

calculations have been performed for some time in the computational fluid dynamics

community, see [48], this is the first time in an animation context that a breaking

wave calculation has been performed. The “particle level set method” combined with

velocity extrapolation near the interface appears to be a robust interface technique

in order to perform liquid animations on the coarse computational grids commonly

used in a production environment.

Future work includes using the “particle level set method” in order to calculate

enhanced resolution simulations of a variety of free surface flows including capillary jet

break up, the turbulent mixing resulting from plunging water waves, and the motion

of bubbles and drops. Extending the method to simulate the formation and evolution

of interfaces comprised of multiple immiscible fluids (such as those flows consisting of

air, oil, and water) [98, 99] would be challenging and of practical engineering interest.

An economically important application of the method would be the robust simulation

of the turbulent flow along the hull and behind the stern of a ship. There exists

complex physical processes including the breaking water waves, spray formation, and

free-surface turbulence. All of these phenomena contribute to the resistance that a

ship feels while moving through a body of water. Examples of ongoing work in this

area can be found in [22, 82]. By being able to experiment on a computer using

an accurate and robust Cartesian based method like the “particle level set method”,

different hull designs can be tested to see which produce the least drag.

While it has been demonstrated that the “particle level set method” is an effec-

tive method to track contact discontinuities, one of the applications which motivated

CHAPTER 5. CONCLUSIONS AND FUTURE DIRECTIONS 88

the creation of the method is the multidimensional aircraft collision avoidance cal-

culations performed by Mitchell and Tomlin [89, 54]. In this application where the

dimensionality of the PDE used is commonly higher than any flow calculation, a level

set method is used to determine the safe sets for aircraft control systems in order to

avoid collision. Due to the large number of degrees of freedom, the computational

grid used is fairly coarse and, as a result, controlling the amount of numerical diffu-

sion is of great concern. Particle methods have been used to sample a finite number

of states, which provides a very crude approximation of the overall safe set. Since the

governing equation for the evolution of the level set in this application is a discontinu-

ous Hamilton-Jacobi equation instead of an advection equation, this equation admits

not only contact discontinuities but also shocks and rarefactions. As illustrated in

chapter 1, particles are unable to capture the proper viscosity solution in the presence

of shocks in the flow field. One future goal is to modify the particle level set method

in order to make the error correction step a two-way process, in the case of a contact

discontinuity the particles propagate error information to the level set and vice versa

in the case of shocks.

Bibliography

[1] Adalsteinsson, D. and Sethian, J., A Fast Level Set Method for Propagating

Interfaces , J. Comp. Phys. 118, 269–277 (1995).

[2] Adalsteinsson, D. and Sethian, J., The Fast Construction of Extension Velocities

in Level Set Methods , J. Comp. Phys. 148, 2–22 (1999).

[3] Agresar, G., Linderman, J., Tryggvason, G. and Powell, K., An Adaptive, Carte-

sian, Front-Tracking Method for the Motion, Deformation and Adhesion of Cir-

culating Cells , J. Comp. Phys. 143, 346–380 (1998).

[4] Aleinov, I., Puckett, E. and Sussman, M., Formation of Droplets in Microscale

Jetting Devices , in Proceedings of the Third ASME/JSME Joint Fluids Engi-

neering Conference, FEDSM99-7106 , 1999.

[5] Amsden, A., Numerical Calculation of Surface Waves: A Modified ZUNI Code

with Surface Particles and Partial Cells , Technical Report LA-5146, Los Alamos

Scientific Laboratory (1973).

[6] Amsden, A. and Harlow, F., The SMAC Method: A Numerical Technique for

Calculating Incompressible Fluid Flows , Technical Report LA–4370, Los Alamos

Scientific Laboratory (1970).

[7] Baker, G. R., Meiron, D. I. and Orszag, S. A., Generalized vortex methods for

free-surface flow problems , J. Fluid Mech. 123, 477–501 (1982).

[8] Bell, J., Colella, P. and Glaz, H., A Second-Order Projection Method for the

Incompressible Navier-Stokes Equations , J. Comp. Phys. 85, 257–283 (1989).

89

BIBLIOGRAPHY 90

[9] Briggs, W. L., A Multigrid Tutorial , SIAM, Philadelphia, PA, 1987.

[10] Caiden, R., Fedkiw, R. and Anderson, C., A Numerical Method For Two-Phase

Flow Consisting of Separate Compressible and Incompressible Regions , J. Comp.

Phys. 166, 1–27 (2001).

[11] Cerne, G., Petelin, S. and Tiselj, I., Coupling of the Interface Tracking and

the Two-Fluid Models for the Simulation of Incompressible Two-Phase Flow , J.

Comp. Phys. 171, 776–804 (2001).

[12] Chan, R. K.-C. and Street, R. L., A Computer Study of Finite-Amplitude Water

Waves , J. Comp. Phys. 6, 68–94 (1970).

[13] Chang, Y., Hou, T., Merriman, B. and Osher, S., A Level Set Formulation of

Eulerian Inteface Capturing Methods for Incompressible Fluid Flows , J. Comp.

Phys. 124, 449–464 (1996).

[14] Chen, J. and Lobo, N., Toward Interactive-Rate Simulation of Fluids with Moving

Obstacles Using the Navier-Stokes Equations , Computer Graphics and Image

Processing 57, 107–116 (1994).

[15] Chen, S., Johnson, D. and Raad, P., Velocity Boundary Conditions for the Sim-

ulation of Free Surface Fluid Flow , J. Comp. Phys. 116, 262–276 (1995).

[16] Chen, S., Johnson, D., Raad, P. and Fadda, D., The Surface Marker and Micro

Cell Method , Int. J. for Num. Meth. in Fluids 25, 749–778 (1997).

[17] Chopp, D. L., Some Improvements of the Fast Marching Method , SIAM J. Sci.

Comput. 23, 230–244 (2002).

[18] Chorin, A. J., Numerical Solution of the Navier-Stokes Equations , Math. Comp.

22, 745–762 (1968).

[19] Cottet, G.-H. and Koumoutsakos, P. D., Vortex Methods , Cambridge Univ.

Press, Cambridge, UK, 2000.

BIBLIOGRAPHY 91

[20] Courant, R., Issacson, E. and Rees, M., On the Solution of Nonlinear Hyperbolic

Differential Equations by Finite Differences , Comm. Pure and Applied Math 5,

243–255 (1952).

[21] DeBar, R., A Method in Two-D Eulerian Hydrodynamics , Technical Report

UCID-19683, Lawrence Livermore National Laboratory (1974).

[22] Farmer, J., Martinelli, L. and Jameson, A., Fast Multigrid Method for Solving

Incompressible Hydrodynamic Problems with Free Surfaces , AIAA Jounral 32,

1175–1182 (1994).

[23] Fedkiw, R. P., Aslam, T., Merriman, B. and Osher, S., A Non-oscillatory Eule-

rian Approach to Interfaces in Multimaterial Flows (The Ghost Fluid Method),

J. Comp. Phys. 152, 457–492 (1999).

[24] Foster, N. and Fedkiw, R., Practical Animation of Liquids , in Fiume, E., ed.,

Proceedings of SIGGRAPH 2001 , Computer Graphics Proceedings, Annual Con-

ference Series, pp. 23–30, ACM, ACM Press / ACM SIGGRAPH, 2001.

[25] Foster, N. and Metaxas, D., Realistic Animation of Liquids , Graphical Models

and Image Processing 58, 471–483 (1996).

[26] Fournier, A. and Reeves, W. T., A Simple Model of Ocean Waves , in Computer

Graphics (Proceedings of SIGGRAPH 86), 20(4), pp. 75–84, ACM, 1986.

[27] Glassner, A., Principles of Digital Image Synthesis , Morgan Kaufmann Publish-

ers, Inc., San Francisco, CA, 1995.

[28] Golub, G. H. and Loan, C. F. V., Matrix Computations , Johns Hopkins Univer-

sity Press, Baltimore, MD, 1996, 3rd edition.

[29] Grilli, S. T., Guyenne, P. and Dias, F., A fully non-linear model for three-

dimensional overturning waves over an arbitrary bottom, Int. J. for Num. Meth.

in Fluids 35, 829–867 (2001).

BIBLIOGRAPHY 92

[30] Harlow, F., Shannon, J. and Welch, J., THE MAC METHOD: A Computing

Technique for Solving Viscous, Incompressible, Transient Fluid-Flow Problems

Involving Free Surfaces , Technical Report LA-3425, Los Alamos Scientific Lab-

oratory (1965).

[31] Harlow, F. and Welch, J., Numerical Calculation of Time-Dependent Viscous

Incompressible Flow of Fluid with Free Surface, Phys. Fluids 8, 2182–2189 (1965).

[32] Helmsen, J., A Comparison of Three-Dimensional Photolithography Development

Methods , Ph.D. thesis, U.C. Berkeley (1994).

[33] Hiltzik, M. A. and Pham, A., Synthetic Actors Guild , Los Angeles Times (2001),

may 8, 2001, natl. ed. : A1+.

[34] Hirt, C. and Nichols, B., Volume of Fluid (VOF) Method for the Dynamics of

Free Boundaries , J. Comp. Phys. 39, 201–225 (1981).

[35] Hirt, C. and Shannon, J., Free-Surface Stress Conditions for Incompressible-Flow

Calculations , J. Comp. Phys. 2, 403–411 (1968).

[36] Hou, T., Lowengrub, J. and Shelley, M., Boundary Integral Methods for Mul-

ticomponent Fluids and Multiphase Materials , J. Comp. Phys. 169, 302–362

(2001).

[37] Hou, T. Y., Numerical Solutions to Free Boundary Problems , Acta Numerica pp.

335–415 (1995).

[38] Jensen, H. W., Realistic Image Synthesis Using Photon Maps , A K Peters, 2001.

[39] Jiang, G.-S. and Peng, D., Weighted ENO Schemes for Hamilton-Jacobi Equa-

tions , SIAM J. Sci. Comput. 21, 2126–2143 (2000).

[40] Johnsgard, H., A Numerical Model for Run-Up of Breaking Waves , Int. J. for

Num. Meth. in Fluids 31, 1321–1331 (1999).

[41] Kang, M., Fedkiw, R. and Liu, X.-D., A Boundary Condition Capturing Method

for Multiphase Incompressible Flow , J. Sci. Comput. 15, 323–360 (2000).

BIBLIOGRAPHY 93

[42] Kass, M. and Miller, G., Rapid, Stable Fluid Dynamics for Computer Graphics ,

in Computer Graphics (Proceedings of SIGGRAPH 90), volume 24, pp. 49–57,

ACM, 1990.

[43] Kim, I. and Sirignano, W. A., Three-dimensional wave distortion and disintegra-

tion of thin planar liquid sheets , J. Fluid Mech. 410, 147–183 (2000).

[44] Kim, J. and Moin, P., Application of a fractional-step method to incompressible

Navier-Stokes equations , J. Comp. Phys. 59, 308–323 (1985).

[45] Lafaurie, B., Nardone, C., Scardovelli, R., Zaleski, S. and Zanetti, G., Modelling

Merging and Fragmentation in Multiphase Flows with SURFER, J. Comp. Phys.

113, 134–147 (1994).

[46] Lapenta, G. and Brackbill, J., Dynamic and Selective Control of the Number of

Particles in Kinetic Plama Simulations , J. Comp. Phys. 115, 213–227 (1994).

[47] Leveque, R., High-Resolution Conservative Algorithms For Advection In Incom-

pressible Flow , SIAM J. Numer. Anal. 33, 627–665 (1996).

[48] Longuet-Higgins, M. and Cokelet, E., The deformation of steep surface waves on

water. I. A numerical method of computation, Proc. R. Soc. London Ser. A 350,

1–26 (1976).

[49] Mansour, N. and Lundgren, T., Satellite formation in capillary jet breakup, Phys.

Fluids A 2, 1141–1144 (1990).

[50] Marschner, S. and Lobb, R., An Evaluation of Reconstruction Filters for Volume

Rendering , in Proceedings of Visualization 94 , pp. 100–107, IEEE Comput. Soc.

Press, 1994.

[51] Masten, G., Watterberg, P. and Mareda, I., Fourier Synthesis of Ocean Scenes ,

IEEE Computer Graphics and Application 7, 16–23 (1987).

[52] McDonald, A., Accuracy of Multiply-Upstream, Semi-Lagrangian Advective

Schemes , Monthly Weather Review 112, 1267–1275 (1982).

BIBLIOGRAPHY 94

[53] Miller, G. and Pearce, A., Globular Dynamics: A Connected Particle System for

Animating Viscous Fluids , Computers and Graphics 13(3), 305–309 (1989).

[54] Mitchell, I. and Tomlin, C., Level Set Methods for Computation in Hybrid Sys-

tems , in Krogh, B. and Lynch, N., eds., Hybrid Systems: Computation and

Control , pp. 310–323, Springer Verlag, 2000.

[55] Nguyen, D. Q., Fedkiw, R. P. and Kang, M., A Boundary Condition Capturing

Method for Incompressible Flame Discontinuities , J. Comp. Phys. 172, 71–98

(2001).

[56] Nichols, B. and Hirt, C., Improved Free Surface Boundary Conditions for Nu-

merical Incompressible-flow Calculations , J. Comp. Phys. 8, 434–448 (1971).

[57] O’Brien, J. and Hodgins, J., Dynamic Simulation of Splashing Fluids , in Pro-

ceedings of Computer Animation 95 , pp. 198–205, 1995.

[58] Osher, S. and Fedkiw, R., Level Set Methods: An Overview and Some Recent

Results , J. Comp. Phys. 169, 463–502 (2001).

[59] Osher, S. and Fedkiw, R., The Level Set Method and Dynamic Implicit Surfaces ,

Springer-Verlag, New York, 2002.

[60] Osher, S. and Sethian, J., Fronts Propagating with Curvature Dependent Speed:

Algorithms Based On Hamiliton-Jacobi Formulations , J. Comp. Phys. 79, 12–49

(1988).

[61] Peachey, D. R., Modeling Waves and Surf , in Computer Graphics (Proceedings

of SIGGRAPH 86), 20(4), pp. 65–74, ACM, 1986.

[62] Peng, D., Merriman, B., Osher, S., Zhao, H.-K. and Kang, M., A PDE-Based

Fast Local Level Set Method , J. Comp. Phys. 155, 410–438 (1999).

[63] Puckett, E., Almgren, A., Bell, J., Marcus, D. and Rider, W., A High-Order Pro-

jection Method for Tracking Fluid Interfaces in Variable Density Incompressible

Flows , J. Comp. Phys. 130, 269–282 (1997).

BIBLIOGRAPHY 95

[64] Raad, P., Chen, S. and Johnson, D., The Introduction of Micro Cells to Treat

Pressure in Free Surface Fluid Flow Problems , J. Fluids Eng. 117, 683–690

(1995).

[65] Radovitzky, R. and Ortiz, M., Lagrangian Finite Element Analysis of Newtonian

Fluid Flows , Int. J. Numer. Meth. Engng. 43, 607–619 (1998).

[66] Rider, W. and Kothe, D., A Marker Particle Method for Interface Tracking , in

Dwyer, H., ed., Proceedings of the Sixth International Symposium on Computa-

tional Fluid Dynamics , pp. 976–981, 1995.

[67] Rider, W. and Kothe, D., Stretching and Tearing Interface Tracking Methods , in

12th AIAA CFD Conference, 95–1717, AIAA, 1995.

[68] Rider, W. and Kothe, D., Reconstructing Volume Tracking , J. Comp. Phys. 141,

112–152 (1998).

[69] Schachter, B., Long Crested Wave Models , Computer Graphics and Image Pro-

cessing 12, 187–201 (1980).

[70] Sethian, J., Curvature and the Evolution of Fronts , Comm. Math. Phys. 101,

487–499 (1985).

[71] Sethian, J., Numerical Methods for Propagating Fronts , in Concus, P. and Finn,

R., eds., Variational Methods for Free Surface Interfaces , Springer-Verlag, 1987.

[72] Sethian, J., A Fast Marching Level Set Method for Monotonically Advancing

Fronts , Proc. Natl. Acad. Sci. 93, 1591–1595 (1996).

[73] Sethian, J., Fast Marching Methods , SIAM Rev. 41, 199–235 (1999).

[74] Sethian, J., Level Set Methods and Fast Marching Methods , Cambridge Univer-

sity Press, 1999.

[75] Sethian, J., Evolution, Implementation, and Application of Level Set and Fast

Marching Methods for Advancing Fronts , J. Comp. Phys. 169, 503–555 (2001).

BIBLIOGRAPHY 96

[76] Shu, C. and Osher, S., Efficient Implementation of Essentially Non-Oscillatory

Shock Capturing Schemes , J. Comp. Phys. 77, 439–471 (1988).

[77] Smolarkiewicz, P., The Multi-Dimensional Crowley Advection Scheme, Monthly

Weather Review 110, 1968–1983 (1982).

[78] Stam, J., Stable Fluids , in Proceedings of SIGGRAPH 99 , Computer Graphics

Proceedings, Annual Conference Series, pp. 121–128, ACM, ACM SIGGRAPH

/ Addison Wesley Longman, 1999.

[79] Staniforth, A. and Côté, J., Semi-Lagrangian Integration Schemes for Atmo-

spheric Models - A Review , Montly Weather Review 119, 2206–2223 (1991).

[80] Sussmam, M. and Puckett, E., A Coupled Level Set and Volume-of-Fluid Method

for Computing 3D and Axisymmetric Incompressible Two-Phase Flows , J. Comp.

Phys. 162, 301–337 (2000).

[81] Sussman, M., Almgren, A., Bell, J., Colella, P., Howell, L. and Welcome, M.,

An Adaptive Level Set Approach for Incompressible Two-Phase Flows , J. Comp.

Phys. 148, 81–124 (1999).

[82] Sussman, M. and Dommermuth, D., The Numerical Simulation of Ship Waves

Using Cartesian Grid Methods , in Twenty-Third Symposium on Naval Hydrody-

namics , pp. 762–779, 2001.

[83] Sussman, M. and Fatemi, E., An Efficient, Interface-Preserving Level Set Redis-

tancing Algorithm and Its Application to Interfacial Incompressible Fluid Flow ,

SIAM J. Sci. Comput. 20, 1165–1191 (1999).

[84] Sussman, M., Fatemi, E., Smereka, P. and Osher, S., An Improved Level Set

Method for Incompressible Two-Phase Flows , Comput. and Fluids 27, 663–680

(1998).

[85] Sussman, M., Smereka, P. and Osher, S., A Level Set Approach for Comput-

ing Solutions to Incompressible Two-Phase Flow , J. Comp. Phys. 114, 146–159

(1994).

BIBLIOGRAPHY 97

[86] Terzopoulos, D., Platt, J. and Fleischer, K., Heating and melting deformable

models (From goop to glop), in Graphics Interface ’89 , pp. 219–226, 1989.

[87] Tomé, M., Filho, A., Cuminato, J., Mangiavacchi, N. and McKee, S., GENS-

MAC3D: a numerical method for solving unsteady three-dimensional free surface

flows , Int. J. for Num. Meth. in Fluids 37, 747–796 (2001).

[88] Tomé, M., McKee, S., Barratt, L., Jarvis, D. and Patrick, A., An Experimental

and Numerical Investigation of Container Filling With Viscous Liquids , Int. J.

for Num. Meth. in Fluids 31, 1333–1353 (1999).

[89] Tomlin, C., Mitchell, I. and Ghosh, R., Safety Verification of Conflict Resolution

Manoeuvres , IEEE Trans. Intell. Transp. Syst. 2, 110–120 (2001).

[90] Torres, D. and Brackbill, J., The Point-Set Method: Front Tracking without

Connectivity , J. Comp. Phys. 165, 620–644 (2000).

[91] Tryggvason, G., Bunner, B., Esmaeeli, A., Juric, D., Al-Rawahi, N., Tauber, W.,

Han, J., Nas, S. and Jan, Y.-J., A Front-Tracking Method for the Computations

of Multiphase Flow , J. Comp. Phys. 169, 708–759 (2001).

[92] Unverdi, S.-O. and Tryggvason, G., A Front-Tracking Method for Viscous, In-

compressible, Multi-fluid Flows , J. Comp. Phys. 100, 25–37 (1992).

[93] Williams, M., Kothe, D. and Puckett, E., Approximating Interfacial Topologies

with Applications for Interface Tracking Algorithms , in 37th AIAA Aerospace

Sciences Meeting , AIAA 99–1076, 1999.

[94] Williams, M., Kothe, D. and Puckett, E., Convergence and Accuracy of Kernal-

Based Continuum Surface Tension Models , in Shyy, W., ed., Fluid Dynamics at

Interfaces , pp. 347–356, Cambridge University Press, 1999.

[95] Witting, P., Computational Fluid Dynamics in a Traditional Animation Envi-

ronment , in Proceedings of SIGGRAPH 99 , Computer Graphics Proceedings,

Annual Conference Series, pp. 129–136, ACM, ACM SIGGRAPH / Addison

Wesley Longman, 1999.

BIBLIOGRAPHY 98

[96] Zalesak, S., Fully Multidimensional Flux-Corrected Transport Algorithms for Flu-

ids , J. Comp. Phys. 31, 335–362 (1979).

[97] Zhang, Y., Yeo, K., Khoo, B. and Wang, C., 3D Jet Impact and Toroidal Bubbles ,

J. Comp. Phys. 166, 336–360 (2001).

[98] Zhao, H.-K., Chan, T., Merriman, B. and Osher, S., A Variational Level Set

Approach to Multiphase Motion, J. Comp. Phys. 127, 179–195 (1996).

[99] Zhao, H.-K., Merriman, B., Osher, S. and Wang, L., Capturing the Behavior of

Bubbles and Drops Using the Variational Level Set Approach, J. Comp. Phys.

143, 495–518 (1998).

