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|—Preliminaries

m Throughout this chapter — and as a matter of fact, this entire
course — the flow is assumed to be compressible and the fluid is
assumed to be a perfect gas (thermally and calorically)

m The Equation Of State (EOS) of a thermally perfect gas is

p=pRT = p=p(p,T)or T =T(p,p)

where p denotes the gas pressure, p its density, T its temperature,
and R is the specific gas constant (in Sl units, R = 287.058
m?/s?/K)

m The internal energy per unit mass e of a calorically perfect gas is

e:CVT:ilT:Me:e(T)or T=T(e)
o

denotes the ratio of its heat capacities (C,/C,, where C, denotes

where C, denotes the heat capacity at constant volume of the gas, v E
\/
the heat capacity at constant pressure), and C, — C, = R
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L Nomenclature

¥ heat capacity ratio

P density

p pressure

T temperature

superscript T transpose

v velocity vector

e internal energy per unit mass

E = pe + %pH\’/HZ total energy per unit volume

H=E+p total enthalpy per unit volume

T (deviatoric) viscous stress tensor/matrix

p (7 = pdv/dy) (laminar) dynamic (absolute) molecular viscosity
— measure of force

v (laminar) kinematic molecular viscosity, 1/ p
— measure of velocity

K thermal conductivity

I identity tensor/matrix

M Mach number

Re Reynolds number, p||V||Lc/p = ||V||Lc/v

L. characteristic length

t time

t unitary axis for the time dimension

subscript t turbulence eddy quantity

subscripts x, y, z (or occasionally i, j) components in the x, y, and z directions

& (&, or &) unitary axis in the x (y, or z) direction

subscript co free-stream quantity
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|—Equations Hierarchy

m Navier-Stokes equations

m Reynolds-averaged Navier-Stokes equations (RANS)
m large eddy simulation (LES)

Euler equations

Full potential equation

Small-perturbation potential equation — transonic regime

m Linearized small-perturbation potential equation — subsonic and
supersonic regimes
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L Navier-Stokes Equations

L Assumptions

m The fluid of interest is a continuum

m The fluid of interest is not moving at relativistic velocities

6/29

m The fluid stress is the sum of a pressure term and a diffusing viscous
term proportional to the gradient of the velocity

<i

1 S 1 _
o= —pl +r=—pl42u|2(V+VT)— (-7
= 2 3
negative in
compression
where Ovy Avy ov, Ovy Ovy
Ox Ox Ix Ox dy
7] 17}
= ), wr=| 2 08 e gryo | D0 08
dy oy Ay Ox oy
dvx  Ov, Ov, dv, Ov,
0z 0z 0z Ox dy
- <EEQ>T:>§>_V:E)VX v, | Ov.
Ox Oy 0Oz Ox dy Oz

(1)
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L Navier-Stokes Equations

LGoverning Equations

m Eulerian setting

m Dimensional form

%+?-?(W):€-3(W)

W = (,0 pv T E)T
F(wW) = (FT(w) FJ(w) FT(w))"
R(W) = (RT(W) RT (W) RI(W))"

m One continuity equation, three momentum equations and one energy
equation = five equations

B
m Closed system (p, vV,e, T=T(e), p=plp, T)) %
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L Navier-Stokes Equations
LGoverning Equations
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L Navier-Stokes Equations

LGoverning Equations

m The Navier-Stokes equations are named after Claude-Louis Navier
(French engineer) and George Gabriel Stokes (Irish mathematician
and physicist)

m They are generally accepted as an adequate description for
aerodynamic flows at standard temperatures and pressures

m Because of mesh resolution requirements however, they are
practically useful “as is” only for laminar viscous flows, and low
Reynolds number turbulent viscous flows

m Today, mathematicians have not yet proven that in three dimensions
solutions always exist, or that if they do exist, then they are smooth

m The above problem is considered one of the seven most important
open problems in mathematics: the Clay Mathematics Institute .
offers $ 1,000,000 prize for a solution or a counter-example X
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L Navier-Stokes Equations
LReynolds—Averaged Navier-Stokes Equations

Motivations

m Consider the flow graphically depicted in the figure below

Incident shock
wave

Reflected shock

M,>1

Boundary layer .

m an oblique shock wave impinges on a boundary layer

m the adverse pressure gradient (dP/ds > 0) produced by the shock
can propagate upstream through the subsonic part of the boundary
layer and, if sufficiently strong, can separate the flow forming a
circulation within a separation bubble

m the boundary layer thickens near the incident shock wave and then
necks down where the flow reattaches to the wall, generating two
sets of compression waves bounding a rarefaction fan, which
eventually form the reflected shockwave
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L Navier-Stokes Equations
LReynolds—Averaged Navier-Stokes Equations

Motivations

m Consider the flow graphically depicted in the figure below (continue)

Incident shock
wave

Reflected shock
wave e

Ms>1

Bou ndaryr layer

m the Navier-Stokes equations describe well this problem

m but at Reynolds numbers of interest to aerodynamics (high Re), their
practical discretization cannot capture adequately the
inviscid-viscous interactions described above

m today, this problem and most turbulent viscous flow problems of
interest to aerodynamics require turbulence modeling to represent
scales of the flow that are not resolved by practical grids

m the Reynolds-Averaged Navier—Stokes (RANS) equations are one
approach for modeling a class of turbulent flows
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L Navier-Stokes Equations
LReynolds—Averaged Navier-Stokes Equations

Approach

m The RANS equations are time-averaged equations of motion for fluid flow

o 1 047
W— W= lim — / W dt
T—oo T Ji0

m The main idea is to decompose an instantaneous quantity into time-averaged and
fluctuating components o

W = wo o+ w

N~ ~—~

time — averaged  fluctuation

m The substitution of this decomposition (first proposed by the Irish engineer Osborne
Reynolds) into the Navier-Stokes equations, the time averaging of the resulting equations
and the injection in them of various approximations based on knowledge of the properties of
flow turbulence lead to a closure problem induced by the arising nonlinear Reynolds stress

v p ovi avf 7,7
term R,-jzfviv, —— +v + — v!Vv!
J p Ox;  Ox; J

I
m Additional modeling of Rj; is therefore required to close the RANS equations, which has led [
ﬂ;vﬁ

to many different turbulence models
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L Navier-Stokes Equations
LReynolds—Averaged Navier-Stokes Equations

Approach

m Many of these turbulence models are based on

m the Boussinesq assumption R = Rjj(v:) — that is, on assuming that
the additional turbulence stresses are given by augmenting the
laminar molecular viscosity p with a (turbulence) eddy viscosity p.
(which leads to augmenting the laminar kinematic molecular viscosity
v with a (turbulence) kinematic eddy viscosity ;) (see Eq. (1))

m a parameterization vy = v¢(X1, ***, Xm)

m additional transport equations similar to the Navier-Stokes equations
for modeling the dynamics of the parameters x1, -+, Xm

i
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L Navier-Stokes Equations
LReynolds—Averaged Navier-Stokes Equations

Governing Equations

m In any case, whatever RANS turbulence model is chosen, W is
augmented by the m parameters of the chosen turbulence model
(usually, m =1 or 2)

Waug A (P /0‘7T EXl Xm)T

and the standard Navier-Stokes equations are transformed into the
RANS equations which have the same form but are written in terms
of W and feature a source term S that is turbulence model
dependent

7W+$>.?( —V-RW)+SW, x1, -, xm) i&
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L Euler Equations
L Additional Assumptions

m The fluid of interest is assumed to be inviscid — that is, the flow is
assumed to involve no friction, thermal conduction, or diffusion (or
these are assumed to be negligible)

u=0=7=0

A = R(W)=0

m Inviscid flows do not truly exist in nature; however, there are many
practical aerodynamic problems where the flow can be modeled as
inviscid

m Theoretically, inviscid flow is approached in the limit when Re — oo

15/29



AA214: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS 16 /29
L Euler Equations

LGoverning Equations

m Eulerian setting

m Dimensional form
w
a LV FW)=(000)7

m One continuity equation, three momentum equations and one energy
equation
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L Euler Equations

LGoverning Equations

m The Euler equations are named after Leonhard Euler (Swiss
mathematician and physicist)

m Historically, only the continuity and momentum equations have been
derived by Euler around 1757, and the resulting system of equations
was underdetermined except in the case of an incompressible fluid

m The energy equation was contributed by Pierre-Simon Laplace
(French mathematician and astronomer) in 1816 who referred to it
as the adiabatic condition

m The Euler equations are nonlinear hyperbolic equations and their
general solutions are waves (propagating dynamic disturbances)

m Waves described by the Euler equations can break and give rise to

B
shock waves %
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L Euler Equations

LGoverning Equations

m Mathematically, this is a nonlinear effect and represents the solution
becoming multi-valued

m Physically, this represents a breakdown of the assumptions that led
to the formulation of the differential equations

m Weak solutions are then formulated by working with jumps of flow
quantities (density, velocity, pressure, entropy) using the
Rankine-Hugoniot shock conditions

m In real flows, these discontinuities are smoothed out by viscosity

m Shock waves with Mach numbers just ahead of the shock greater
than 1.3 are usually strong enough to cause boundary layer
separation and therefore require using the Navier-Stokes equations

m Shock waves described by the Navier-Stokes equations would
represent a jump as a smooth transition — of length equal to a few
mean free paths 1 — between the same values given by the Euler

equations "
1The mean free path is the average distance over which a moving particle (such as an atom, a I %«

molecule, or a photon) travels before substantially changing its direction or energy (or, in a specific
context, other properties), typically as a result of one or more successive collisions with other
particles
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I—FuII Potential Equation
L Additional Assumptions

m Flow is isentropic
= flow contains weak (or no) shocks and with peak Mach number
below 1.3

m And flow is irrotational — that is, ? xv=0
— V= ?d), where @ is referred to as the velocity potential

= not suitable in flow regions where vorticity (curl of the velocity)
is known to be important (for example, wakes and boundary layers)
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I—FuII Potential Equation
LGoverning Equation

m Steady flow (but the potential flow approach equally applies to
unsteady flows)
m from the isentropic flow conditions (p/p” = cst) and vV = ?(D, it

follows that
a¢2 992 | 902
T = To|1-22iwg Toy tor
2 ([ Vio |2
902 | 02 | a2 e
’y—]. 2 +8y +82
P = P |l-— Mz -1
{ 2 ( [Vl
1
202 | 992 | 992 =1
y—=1,7 +35 ta:
P = P |1-— M = -1
{ 2 °°< [Vl

m note that the above expressions are consistent with p = pRT, which [
can be substituted for one of them tprsy
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I—FuII Potential Equation
LGoverning Equation

m Steady flow (continue)
m non-conservative form (see later)

(1-98) 52 0 (1 08) B 1)

Ox? dy? 0z2
o o o
- 2MM, ——— — 2M Mzi — 2MZMX7 =0
Y Ox Oy Y 0y 0z 0z Ox
where
1 o _1loo _1o9o
*Tceox' YT coy’ T coz
are the local Mach components and
e [P
p

is the local speed of sound
m compare the above equation to the Euler equation

LY FW)=(000)7 %
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I—FuII Potential Equation

LGoverning Equation

m Steady flow (continue)

m conservative form (see later)

. od .
o(p22) 2(r3r) ()

0
ox * dy * 0z
where
902 | 992 | 992
p=0p 1—7_1/\/72 ox Ty Tox
2 ([ Viso |2
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L Small-Perturbation Potential Equation - Transonic Regime
L Additional Assumptions

m Uniform free-stream flow near Mach one (say 0.8 < My, < 1.2 = transonic regime)
m Thin body and small angle of attack

— flow slightly perturbed from the uniform free-stream condition
— 7= |7 l& + Vo

where ¢ — which is not to be confused with ® 2 — is referred to as the small-perturbation
velocity potential

. ¢ 2o} 0¢
v = Voo |l + = vy = —, V; = —
Ox oy 0z
[
¢ . 0¢ - 9¢ S y
— — — ()
‘3)(‘ << Vs |l By‘ << [V |l ‘82 << ||Ves || £

2]t can be easily shown that ® = ¢ + ||V || x
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L Small-Perturbation Potential Equation - Transonic Regime

LGoverning Equation

m Steady flow (but the small-perturbation velocity potential approach
equally applies to unsteady flows)

9¢ 82¢ 82¢ 82¢
B 2 2 Ix —
(1 M — (v +1)M ) ax2 oy | 922 0

o0 =
[l Vol

m The leading term of the above equation cannot be simplified in the
transonic regime (0.8 < My, < 1.2)

m The velocity vector is obtained from vV = ||V & + ?gﬁ and the

pressure and density from the first-order expansion of the second
and third isentropic flow conditions as in the previous case

m The temperature is obtained from T = T(p, p) and the total energy g
per unit mass is obtained from e = ¢(T) %
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L Small-Perturbation Potential Equation - Transonic Regime

LGoverning Equation

m In the transonic regime, the small-perturbation potential equation is
also known as the “transonic small-disturbance equation”

m It is a nonlinear equation of the mixed type
m elliptic if

9¢
(1—M§o—(7+1)/\/12 Dx >>o

e SRTIY
Vool

m hyperbolic if

99
(1—M§O—(7+1)M§o Ox ><o

Vool
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L Linearized Small-Perturbation Potential Equation — Subsonic and Supersonic Regimes

L Additional Assumptions (Revisited)

m Uniform free-stream flow near-Mach-one{say0-8-<M<12}

= subsonic or supersonic regime
m If supersonic, preferrably when 1.2 < M, < 1.3 (why?)

m Thin body and small angle of attack = flow slightly perturbed
from the uniform free-stream condition

s V= |V ||E + Vo

where ¢ is referred to as the small-perturbation velocity potential

I 00 09
-
Ox dy oz
00| __ - 00| __ 1o 00 __ 1o
|52 <<l |52 <<l [5E] << o

2 2 %% - 2 "
= (1- M’ — (v +1)M%, 2 N(lflw)
°° Vol * ey
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L Linearized Small-Perturbation Potential Equation — Subsonic and Supersonic Regimes

LGoverning Equation

m Steady flow

a2¢ a2¢ 82(25
_p2\9, 09 09
(1-M2) o2t T oz 0
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L Linearized Small-Perturbation Potential Equation — Subsonic and Supersonic Regimes

LGoverning Equation

m Steady flow (continue)

m the velocity vector is obtained from V = ||V || & + ?qﬁ and the
pressure and density from the first-order expansion of the second and
third isentropic flow conditions as follows

26
P = Poo|l—yMi 2
([ Vi |

¢
= poo (1= Mi2
per ( °°|voo||>

m the temperature is obtained from T = T(p, p) and the total energy
per unit mass from e = e(T)
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L Linearized Small-Perturbation Potential Equation — Subsonic and Supersonic Regimes

LGoverning Equation

m The linearized small-perturbation potential equation

Py 0Py 0P
— 2 —_ T _ T —
(1 Moo) Ox? + Oy? + 0z2

is much easier to solve than the nonlinear transonic
small-perturbation potential equation, or the nonlinear full potential
equation: it can be recast into Laplace’s equation using the simple
coordinate stretching in the &, direction

X

X=— subsonic regime
T ( gime)

b
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