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Preliminaries

Throughout this chapter — and as a matter of fact, this entire
course — the flow is assumed to be compressible and the fluid is
assumed to be a perfect gas (thermally and calorically)

The Equation Of State (EOS) of a thermally perfect gas is

p = ρRT ⇒ p = p(ρ,T ) or T = T (p, ρ)

where p denotes the gas pressure, ρ its density, T its temperature,
and R is the specific gas constant (in SI units, R = 287.058
m2/s2/K)

The internal energy per unit mass e of a calorically perfect gas is

e = CvT =
R

γ − 1
T ⇒ e = e(T ) or T = T (e)

where Cv denotes the heat capacity at constant volume of the gas, γ
denotes the ratio of its heat capacities (Cp/Cv , where Cp denotes
the heat capacity at constant pressure), and Cp − Cv = R
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Nomenclature

γ heat capacity ratio
ρ density
p pressure
T temperature
superscript T transpose
v⃗ velocity vector
e internal energy per unit mass

E = ρe +
1

2
ρ∥v⃗∥2 total energy per unit volume

H = E + p total enthalpy per unit volume
τ (deviatoric) viscous stress tensor/matrix
µ (τ = µdv/dy) (laminar) dynamic (absolute) molecular viscosity

→ measure of force
ν (laminar) kinematic molecular viscosity, µ/ρ

→ measure of velocity
κ thermal conductivity
I identity tensor/matrix
M Mach number
Re Reynolds number, ρ∥v⃗∥Lc/µ = ∥v⃗∥Lc/ν
Lc characteristic length
t time
t⃗ unitary axis for the time dimension
subscript t turbulence eddy quantity
subscripts x , y , z (or occasionally i , j) components in the x , y , and z directions
e⃗x (e⃗y , or e⃗z ) unitary axis in the x (y , or z) direction
subscript ∞ free-stream quantity
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Equations Hierarchy

Navier-Stokes equations

Reynolds-averaged Navier-Stokes equations (RANS)
large eddy simulation (LES)

Euler equations

Full potential equation

Small-perturbation potential equation – transonic regime

Linearized small-perturbation potential equation – subsonic and
supersonic regimes
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Navier-Stokes Equations

Assumptions

The fluid of interest is a continuum

The fluid of interest is not moving at relativistic velocities

The fluid stress is the sum of a pressure term and a diffusing viscous
term proportional to the gradient of the velocity

σ = −pI︸︷︷︸
negative in
compression

+ τ = −pI+ 2µ

[
1

2
(∇+∇T )v⃗ − 1

3
(
−→
∇ · v⃗)I

]
︸ ︷︷ ︸

τ

(1)

where

v⃗ = (vx vy vz )
T
, ∇v⃗ =



∂vx

∂x

∂vy

∂x

∂vz

∂x
∂vx

∂y

∂vy

∂y

∂vz

∂y
∂vx

∂z

∂vy

∂z

∂vz

∂z

 , ∇T v⃗ =



∂vx

∂x

∂vx

∂y

∂vx

∂z
∂vy

∂x

∂vy

∂y

∂vy

∂z
∂vz

∂x

∂vz

∂y

∂vz

∂z


−→
∇ =

(
∂

∂x

∂

∂y

∂

∂z

)T

⇒
−→
∇ · v⃗ =

∂vx

∂x
+

∂vy

∂y
+

∂vz

∂z
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Navier-Stokes Equations

Governing Equations

Eulerian setting

Dimensional form

∂W

∂t
+
−→
∇ ·
−→
F (W ) =

−→
∇ ·
−→
R(W )

W =
(
ρ ρv⃗ T E

)T
−→
F (W ) =

(
FT

x (W ) FT
y (W ) FT

z (W )
)T

−→
R(W ) =

(
RT

x (W ) RT
y (W ) RT

z (W )
)T

One continuity equation, three momentum equations and one energy
equation ⇒ five equations

Closed system
(
ρ, v⃗ , e, T = T (e), p = p(ρ,T )

)
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Navier-Stokes Equations

Governing Equations

(Fx(W ) Fy (W ) Fz(W )) =


ρv⃗ T

ρvx v⃗
T + pe⃗ T

x

ρvy v⃗
T + pe⃗ T

y

ρvz v⃗
T + pe⃗ T

z

(E + p)v⃗ T



(Rx(W ) Ry (W ) Rz(W )) =


0⃗T

(τ · e⃗x)T
(τ · e⃗y )T
(τ · e⃗z)T

(τ · v⃗ + κ∇T )T


e⃗ T
x = (1 0 0), e⃗ T

y = (0 1 0), e⃗ T
z = (0 0 1), 0⃗T = (0 0 0)
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Navier-Stokes Equations

Governing Equations

The Navier-Stokes equations are named after Claude-Louis Navier
(French engineer) and George Gabriel Stokes (Irish mathematician
and physicist)

They are generally accepted as an adequate description for
aerodynamic flows at standard temperatures and pressures

Because of mesh resolution requirements however, they are
practically useful “as is” only for laminar viscous flows, and low
Reynolds number turbulent viscous flows

Today, mathematicians have not yet proven that in three dimensions
solutions always exist, or that if they do exist, then they are smooth

The above problem is considered one of the seven most important
open problems in mathematics: the Clay Mathematics Institute
offers $ 1,000,000 prize for a solution or a counter-example
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Navier-Stokes Equations

Reynolds-Averaged Navier-Stokes Equations

Motivations

Consider the flow graphically depicted in the figure below

an oblique shock wave impinges on a boundary layer
the adverse pressure gradient (dP/ds > 0) produced by the shock
can propagate upstream through the subsonic part of the boundary
layer and, if sufficiently strong, can separate the flow forming a
circulation within a separation bubble
the boundary layer thickens near the incident shock wave and then
necks down where the flow reattaches to the wall, generating two
sets of compression waves bounding a rarefaction fan, which
eventually form the reflected shockwave
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Navier-Stokes Equations

Reynolds-Averaged Navier-Stokes Equations

Motivations

Consider the flow graphically depicted in the figure below (continue)

the Navier-Stokes equations describe well this problem
but at Reynolds numbers of interest to aerodynamics (high Re), their
practical discretization cannot capture adequately the
inviscid-viscous interactions described above
today, this problem and most turbulent viscous flow problems of
interest to aerodynamics require turbulence modeling to represent
scales of the flow that are not resolved by practical grids
the Reynolds-Averaged Navier–Stokes (RANS) equations are one
approach for modeling a class of turbulent flows
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Navier-Stokes Equations

Reynolds-Averaged Navier-Stokes Equations

Approach

The RANS equations are time-averaged equations of motion for fluid flow

W → W = lim
T→∞

1

T

∫ t0+T

t0
W dt

The main idea is to decompose an instantaneous quantity into time-averaged and
fluctuating components

W = W︸︷︷︸
time−averaged

+ W ′︸︷︷︸
fluctuation

The substitution of this decomposition (first proposed by the Irish engineer Osborne
Reynolds) into the Navier-Stokes equations, the time averaging of the resulting equations
and the injection in them of various approximations based on knowledge of the properties of
flow turbulence lead to a closure problem induced by the arising nonlinear Reynolds stress

term Rij = −v ′
i v

′
j

(
−

p̄

ρ
+ ν

(
∂v̄i

∂xj
+

∂v̄j

∂xi

)
− v ′

i v
′
j

)
Additional modeling of Rij is therefore required to close the RANS equations, which has led
to many different turbulence models
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Navier-Stokes Equations

Reynolds-Averaged Navier-Stokes Equations

Approach

Many of these turbulence models are based on

the Boussinesq assumption Rij = Rij(νt) — that is, on assuming that
the additional turbulence stresses are given by augmenting the
laminar molecular viscosity µ with a (turbulence) eddy viscosity µt

(which leads to augmenting the laminar kinematic molecular viscosity
ν with a (turbulence) kinematic eddy viscosity νt) (see Eq. (1))

a parameterization νt = νt(χ1, · · · , χm)

additional transport equations similar to the Navier-Stokes equations
for modeling the dynamics of the parameters χ1, · · · , χm
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Navier-Stokes Equations

Reynolds-Averaged Navier-Stokes Equations

Governing Equations

In any case, whatever RANS turbulence model is chosen, W is
augmented by the m parameters of the chosen turbulence model
(usually, m = 1 or 2)

Waug ←
(
ρ ρv⃗ T E χ1 · · · χm

)T
and the standard Navier-Stokes equations are transformed into the
RANS equations which have the same form but are written in terms
of W and feature a source term S that is turbulence model
dependent

∂W

∂t
+
−→
∇ ·
−→
F (W ) =

−→
∇ ·
−→
R(W ) + S(W , χ1, · · · , χm)
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Euler Equations

Additional Assumptions

The fluid of interest is assumed to be inviscid – that is, the flow is
assumed to involve no friction, thermal conduction, or diffusion (or
these are assumed to be negligible)

=⇒

{
µ = 0⇒ τ = 0

κ = 0

}
⇒
−→
R(W ) = 0⃗

Inviscid flows do not truly exist in nature; however, there are many
practical aerodynamic problems where the flow can be modeled as
inviscid

Theoretically, inviscid flow is approached in the limit when Re →∞
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Euler Equations

Governing Equations

Eulerian setting

Dimensional form

∂W

∂t
+
−→
∇ ·
−→
F (W ) = (0 0⃗ 0)T

One continuity equation, three momentum equations and one energy
equation
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Euler Equations

Governing Equations

The Euler equations are named after Leonhard Euler (Swiss
mathematician and physicist)

Historically, only the continuity and momentum equations have been
derived by Euler around 1757, and the resulting system of equations
was underdetermined except in the case of an incompressible fluid

The energy equation was contributed by Pierre-Simon Laplace
(French mathematician and astronomer) in 1816 who referred to it
as the adiabatic condition

The Euler equations are nonlinear hyperbolic equations and their
general solutions are waves (propagating dynamic disturbances)

Waves described by the Euler equations can break and give rise to
shock waves
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Euler Equations

Governing Equations

Mathematically, this is a nonlinear effect and represents the solution
becoming multi-valued

Physically, this represents a breakdown of the assumptions that led
to the formulation of the differential equations

Weak solutions are then formulated by working with jumps of flow
quantities (density, velocity, pressure, entropy) using the
Rankine-Hugoniot shock conditions

In real flows, these discontinuities are smoothed out by viscosity

Shock waves with Mach numbers just ahead of the shock greater
than 1.3 are usually strong enough to cause boundary layer
separation and therefore require using the Navier-Stokes equations

Shock waves described by the Navier-Stokes equations would
represent a jump as a smooth transition — of length equal to a few
mean free paths 1 — between the same values given by the Euler
equations

1The mean free path is the average distance over which a moving particle (such as an atom, a
molecule, or a photon) travels before substantially changing its direction or energy (or, in a specific
context, other properties), typically as a result of one or more successive collisions with other
particles
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Full Potential Equation

Additional Assumptions

Flow is isentropic
=⇒ flow contains weak (or no) shocks and with peak Mach number
below 1.3

And flow is irrotational – that is,
−→
∇ × v⃗ = 0⃗

=⇒ v⃗ =
−→
∇Φ, where Φ is referred to as the velocity potential

=⇒

{ −→
∇ ×

−→
∇Φ = 0⃗

−→
∇ × v⃗ = 0⃗

=⇒ not suitable in flow regions where vorticity (curl of the velocity)
is known to be important (for example, wakes and boundary layers)
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Full Potential Equation

Governing Equation

Steady flow (but the potential flow approach equally applies to
unsteady flows)

from the isentropic flow conditions (p/ργ = cst) and v⃗ =
−→
∇Φ, it

follows that

T = T∞

[
1− γ − 1

2
M2

∞

(
∂Φ
∂x

2
+ ∂Φ

∂y

2
+ ∂Φ

∂z

2

∥v⃗∞∥2 − 1

)]

p = p∞

[
1− γ − 1

2
M2

∞

(
∂Φ
∂x

2
+ ∂Φ

∂y

2
+ ∂Φ

∂z

2

∥v⃗∞∥2 − 1

)] γ
γ−1

ρ = ρ∞

[
1− γ − 1

2
M2

∞

(
∂Φ
∂x

2
+ ∂Φ

∂y

2
+ ∂Φ

∂z

2

∥v⃗∞∥2 − 1

)] 1
γ−1

note that the above expressions are consistent with p = ρRT , which
can be substituted for one of them
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Full Potential Equation

Governing Equation

Steady flow (continue)
non-conservative form (see later)

(
1−M2

x

) ∂2Φ

∂x2
+
(
1−M2

y

) ∂2Φ

∂y 2
+
(
1−M2

z

) ∂2Φ

∂z2

− 2MxMy
∂2Φ

∂x ∂y
− 2MyMz

∂2Φ

∂y ∂z
− 2MzMx

∂2Φ

∂z ∂x
= 0

where

Mx =
1

c

∂Φ

∂x
, My =

1

c

∂Φ

∂y
, Mz =

1

c

∂Φ

∂z

are the local Mach components and

c =

√
γp

ρ

is the local speed of sound
compare the above equation to the Euler equation

∂W

∂t
+

−→
∇ ·

−→
F (W ) = (0 0⃗ 0)T
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Full Potential Equation

Governing Equation

Steady flow (continue)

conservative form (see later)

∂
(
ρ∂Φ

∂x

)
∂x

+
∂
(
ρ∂Φ
∂y

)
∂y

+
∂
(
ρ∂Φ

∂z

)
∂z

= 0

where

ρ = ρ∞

1− γ − 1

2
M2

∞

 ∂Φ
∂x

2
+ ∂Φ

∂y

2
+ ∂Φ

∂z

2

∥v⃗∞∥2
− 1

 1
γ−1
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Small-Perturbation Potential Equation - Transonic Regime

Additional Assumptions

Uniform free-stream flow near Mach one (say 0.8 ≤ M∞ ≤ 1.2 ⇒ transonic regime)

Thin body and small angle of attack

=⇒ flow slightly perturbed from the uniform free-stream condition

=⇒ v⃗ = ∥v⃗∞∥e⃗x +
−→
∇ϕ

where ϕ – which is not to be confused with Φ 2 – is referred to as the small-perturbation
velocity potential

vx = ∥v⃗∞∥ +
∂ϕ

∂x
, vy =

∂ϕ

∂y
, vz =

∂ϕ

∂z∣∣∣∣∂ϕ∂x
∣∣∣∣ << ∥v⃗∞∥,

∣∣∣∣∂ϕ∂y
∣∣∣∣ << ∥v⃗∞∥,

∣∣∣∣∂ϕ∂z
∣∣∣∣ << ∥v⃗∞∥

2It can be easily shown that Φ = ϕ + ∥v⃗∞∥x
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Small-Perturbation Potential Equation - Transonic Regime

Governing Equation

Steady flow (but the small-perturbation velocity potential approach
equally applies to unsteady flows)(

1−M2
∞ − (γ + 1)M2

∞

∂ϕ
∂x

∥v⃗∞∥

)
∂2ϕ

∂x2
+

∂2ϕ

∂y2
+

∂2ϕ

∂z2
= 0

The leading term of the above equation cannot be simplified in the
transonic regime (0.8 ≤ M∞ ≤ 1.2)

The velocity vector is obtained from v⃗ = ∥v⃗∞∥e⃗x +
−→
∇ϕ and the

pressure and density from the first-order expansion of the second
and third isentropic flow conditions as in the previous case

The temperature is obtained from T = T (p, ρ) and the total energy
per unit mass is obtained from e = e(T )
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Small-Perturbation Potential Equation - Transonic Regime

Governing Equation

In the transonic regime, the small-perturbation potential equation is
also known as the “transonic small-disturbance equation”

It is a nonlinear equation of the mixed type

elliptic if (
1−M2

∞ − (γ + 1)M2
∞

∂ϕ
∂x

∥v⃗∞∥

)
> 0

hyperbolic if (
1−M2

∞ − (γ + 1)M2
∞

∂ϕ
∂x

∥v⃗∞∥

)
< 0
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Linearized Small-Perturbation Potential Equation – Subsonic and Supersonic Regimes

Additional Assumptions (Revisited)

Uniform free-stream flow near Mach one (say 0.8 ≤ M∞ ≤ 1.2)
⇒ subsonic or supersonic regime

If supersonic, preferrably when 1.2 < M∞ < 1.3 (why?)

Thin body and small angle of attack =⇒ flow slightly perturbed
from the uniform free-stream condition

=⇒ v⃗ = ∥v⃗∞∥e⃗x +
−→
∇ϕ

where ϕ is referred to as the small-perturbation velocity potential

vx = ∥v⃗∞∥ +
∂ϕ

∂x
, vy =

∂ϕ

∂y
, vz =

∂ϕ

∂z∣∣∣∣∂ϕ∂x
∣∣∣∣ << ∥v⃗∞∥,

∣∣∣∣∂ϕ∂y
∣∣∣∣ << ∥v⃗∞∥,

∣∣∣∣∂ϕ∂z
∣∣∣∣ << ∥v⃗∞∥

=⇒
(
1 − M2

∞ − (γ + 1)M2
∞

∂ϕ
∂x

∥v⃗∞∥

)
≈
(
1 − M2

∞

)
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Linearized Small-Perturbation Potential Equation – Subsonic and Supersonic Regimes

Governing Equation

Steady flow

(
1−M2

∞
) ∂2ϕ

∂x2
+

∂2ϕ

∂y2
+

∂2ϕ

∂z2
= 0
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Linearized Small-Perturbation Potential Equation – Subsonic and Supersonic Regimes

Governing Equation

Steady flow (continue)

the velocity vector is obtained from v⃗ = ∥v⃗∞∥e⃗x +
−→
∇ϕ and the

pressure and density from the first-order expansion of the second and
third isentropic flow conditions as follows

p = p∞

(
1− γM2

∞

∂ϕ
∂x

∥v⃗∞∥

)

ρ = ρ∞

(
1−M2

∞

∂ϕ
∂x

∥v⃗∞∥

)

the temperature is obtained from T = T (p, ρ) and the total energy
per unit mass from e = e(T )
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Linearized Small-Perturbation Potential Equation – Subsonic and Supersonic Regimes

Governing Equation

The linearized small-perturbation potential equation

(
1−M2

∞
) ∂2ϕ

∂x2
+

∂2ϕ

∂y2
+

∂2ϕ

∂z2
= 0

is much easier to solve than the nonlinear transonic
small-perturbation potential equation, or the nonlinear full potential
equation: it can be recast into Laplace’s equation using the simple
coordinate stretching in the e⃗x direction

x̃ =
x√

(1−M2
∞)

(subsonic regime)
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