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Conservation Law Form

Definition: an equation (or set of equations) is said to be in
conservation law form — or more precisely, in divergence form — if
it is written as follows

∂W

∂t
+
−→
∇ ·

−→
F (W ) = S

If S = 0, the equation is said to be in strong conservation law form

For example, many of the equations presented in Chapter 2 are
written in strong conservation form
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Conservation Law Form

Recall that the transonic small disturbance equation discussed in
Chapter 2 was written as(

1−M2
∞ − (γ + 1)M2

∞

∂ϕ
∂x

∥v⃗∞∥

)
∂2ϕ

∂x2
+

∂2ϕ

∂y2
+

∂2ϕ

∂z2
= 0

This equation can be re-written in strong conservation form using

−→
F =

([
(1−M2

∞)
∂ϕ

∂x
− (γ + 1)M2

∞

∂ϕ
∂x

2

2 ∥v⃗∞∥

]
∂ϕ

∂y

∂ϕ

∂z

)T
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Integral Form

The integration over an arbitrary stationary volume Ω enclosed by the surface ∂Ω of a
generic equation written in conservation form can be written as∫

Ω

∂W

∂t
dΩ +

∫
Ω

−→
∇ ·

−→
F (W ) dΩ =

∫
Ω

S dΩ

Dividing by Ω and using the divergence (Gauss, or Ostrogradsky) theorem leads to

∂W

∂t
+

1

Ω

∫
∂Ω

−→
F ·

−−→
d∂Ω =

1

Ω

∫
Ω

S dΩ (1)

where W =
1

Ω

∫
Ω

W dΩ

The above equation represents the rate of change of the mean value of W over the volume

Ω caused by the net flux of
−→
F crossing the surface ∂Ω and the volume source S
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Relations at Discontinuities

Stationary Discontinuities

Let f (x , y , z) = 0 represent a surface located at a possible
discontinuity within the fluid

Assume that the flow is continuous within each of the two
subdomains shown in the figure above

Assume also that Ω is placed symmetrically about an arbitrary
point of the surface and is allowed to shrink to zero
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Relations at Discontinuities

Stationary Discontinuities

Now, for the case of a steady flow, Eq. (1) becomes∫
∂Ω

−→
F ·

−−→
d∂Ω =

∫
Ω

S dΩ

As Ω → 0, the term on the right goes to zero at a faster rate than

the surface integration term (h3 vs h2, where h ≈ Ω
1
3 = ∂Ω

1
2 )

It follows that for an infinitesimal Ω∫
∂Ω

−→
F ·

−−→
d∂Ω = 0
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Relations at Discontinuities

Stationary Discontinuities

0 =

∫
∂Ω

−→
F ·

−−→
d∂Ω =

6∑
i=1

−→
F i · n⃗i d∂Ωi , where ∥n⃗i∥2 = 1, i = 1, · · · , 6

Since the flow is continuous within each of subdomain D1 and
subdomain D2, in the limit when ∂Ω → 0
−→
F 3·n⃗3 d∂Ω3 +

−→
F 4·n⃗4 d∂Ω4 = 0 and

−→
F 5·n⃗5 d∂Ω5 +

−→
F 6·n⃗6d∂Ω6 = 0

=⇒
∫
∂Ω

−→
F ·

−−→
d∂Ω =

−→
F 1 · n⃗1 d∂Ω1 +

−→
F 2 · n⃗2 d∂Ω2 = 0

=⇒ (
−→
F 1 −

−→
F 2) · n⃗1 = 0 with n⃗1 =

−→
∇f∥∥∥−→∇f
∥∥∥

=⇒ (
−→
F 1 −

−→
F 2) ·

−→
∇f = 0
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Relations at Discontinuities

Stationary Discontinuities

The jump of
−→
F across the surface f is defined as and denoted by(−→

F 1 −
−→
F 2

)
=

r−→
F

z2

1

=⇒
r−→
F

z2

1
·
−→
∇f = 0

which can also be written as

JFxK
2
1

∂f

∂x
+ JFy K

2
1

∂f

∂y
+ JFzK

2
1

∂f

∂z
= 0

If
−→
F is the flux vector of the Euler equations, the above steady jump

relations at surface f (x , y , z) = 0 represent the Rankine-Hugoniot
relations across a shock wave
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Relations at Discontinuities

Moving Discontinuities

Consider now the surface f (x , y , z , t) = 0 representing a dynamic
surface located at a possible moving discontinuity within a volume Ω
of a fluid

Let
−→
∇⋆ =

(
∂

∂t

∂

∂x

∂

∂y

∂

∂z

)T

and −→
F ⋆(W ) =

(
W T FT

x (W ) FT
y (W ) FT

z (W )
)T

Then
∂W

∂t
+
−→
∇ ·

−→
F (W ) = S can be rewritten as

−→
∇⋆ ·

−→
F ⋆(W ) = S

Using the above notation, which includes time as a dimension, the
previous discussion on stationary discontinuities can be generalized
to obtain the following unsteady jump relations for moving
discontinuities

J−→F ⋆K21 ·
−→
∇⋆f = JW K21

∂f

∂t
+ JFxK

2
1

∂f

∂x
+ JFy K

2
1

∂f

∂y
+ JFzK

2
1

∂f

∂z
= 0
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Relations at Discontinuities

Shock Waves

Simple Wave Equation

Consider the model hyperbolic equation with constant wave speed c ̸= 0 and with scalar
variable u

∂u

∂t
+ c

∂u

∂x
= 0

consider first the case of a stationary discontinuity surface of the form
f (x) = x − x0 = 0

in this case,
−→
F ⋆ = (u cu)T and n⃗1 =

−→
∇⋆ f∥∥∥−→∇⋆ f

∥∥∥ = (0 1)T , and therefore the jump

relation is r−→
F ⋆

z2

1
·
−→
∇⋆f = JcuK21 = c(u1 − u2) = 0 ⇔ u1 = u2

this implies that no stationary jump is possible, which is not surprising for a linear

equation
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Relations at Discontinuities

Shock Waves

Simple Wave Equation

Consider the model hyperbolic equation with constant wave speed c ̸= 0 and with scalar
variable u (continue)

∂u

∂t
+ c

∂u

∂x
= 0

consider next the case of a discontinuity surface moving at constant speed w ,
f (x, t) = x − x0 − w(t − t0) = 0

in this case, n⃗1 =
−→
∇⋆ f∥∥∥−→∇⋆ f

∥∥∥ = 1√
1+w2

(−w 1)T , and therefore the jump relation is

r−→
F ⋆

z2

1
·
−→
∇⋆f = −w JuK21 + JcuK21 = −w(u1 − u2) + c(u1 − u2) = 0

⇔ (c − w)(u1 − u2) = 0

this implies that any jump is possible, as long as it moves at the speed c
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Relations at Discontinuities

Shock Waves

Mach Waves

Mach wave: pressure wave traveling with the speed of sound caused by a slight change of pressure
added to a compressible flow – these weak waves can combine in supersonic flow to become a
shock wave if sufficient Mach waves are present at any location

sin θ =
c

v∞
=

1

M∞
⇒ tan θ =

sin θ√
1 − sin2 θ

=
1√

M2
∞ − 1
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Relations at Discontinuities

Shock Waves

Mach Waves: Linearized Small-Perturbation Potential Equation in the Supersonic Regime

Recall the linearized small-perturbation potential equation modeling
a two-dimensional steady flow in either the subsonic or supersonic
regime

(
1−M2

∞
) ∂2ϕ

∂x2
+

∂2ϕ

∂y2
= 0 ⇔

−→
∇ ·

(
(1−M2

∞)
∂ϕ

∂x

∂ϕ

∂y

)T

= 0

For M∞ > 1.2, this equation is hyperbolic and can describe purely
supersonic flows with small perturbations about a supersonic
free-stream with velocity v⃗∞ = ∥v⃗∞∥ e⃗x
⇒ v⃗ = v⃗∞ +

−→
∇ϕ =

(
∥v⃗∞∥+ ∂ϕ

∂x

)
e⃗x +

∂ϕ

∂y
e⃗y

Consider as a possible stationary discontinuity surface
f (x , y) = a(x − x0)− b(y − y0) = 0, where a and b are constants
(stationary w.r.t the object generating it)
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Relations at Discontinuities

Shock Waves

Mach Waves: Linearized Small-Perturbation Potential Equation in the Supersonic Regime

In this case,
−→
F =

(
(1 − M2

∞)
∂ϕ

∂x

∂ϕ

∂y

)T

and n⃗1 =
−→
∇f∥∥∥−→∇f

∥∥∥ = 1√
a2+b2

(a − b)T , and

therefore the jump relation is

r−→
F

z2

1
·
−→
∇f = a

(
1 − M2

∞

)s
∂ϕ

∂x

{2

1

− b

s
∂ϕ

∂y

{2

1

= 0

⇔ a
(
1 − M2

∞

)(
∂ϕ

∂x

∣∣
1
−

∂ϕ

∂x

∣∣
2

)
− b

(
∂ϕ

∂y

∣∣
1
−

∂ϕ

∂y

∣∣
2

)
= 0

if a = 0 or b = 0, there are no permissible jumps (why?)

otherwise, a small perturbation jump can occur across a Mach line f (x, y) with angle

θ, in which case the slope of the discontinuity surface is
a

b
= tan θ =

1√
M2

∞ − 1

(recall that the Mach angle is given by sin θ =
1

M∞
): along this Mach line, the jump

relation simplifies to −
√

M2
∞ − 1

s
∂ϕ

∂x

{2

1

=

s
∂ϕ

∂y

{2

1
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Relations at Discontinuities

Shock Waves

Mach Waves: Linearized Small-Perturbation Potential Equation in the Supersonic Regime

(Continue)

along the Mach line with the slope
a

b
= tan θ =

1√
M2

∞ − 1
, where

−
√

M2
∞ − 1

s
∂ϕ

∂x

{2

1

=

s
∂ϕ

∂y

{2

1

, the flow can turn through an angle δ (small value

because small perturbation) from the free-stream direction (see above figure, where
−→
∇ϕ

∣∣
1
= 0) such that

∂ϕ

∂x

∣∣
2
=

− tan δ

tan δ +
√

M2
∞ − 1

∥v⃗∞∥ ≈
− tan δ√
M2

∞ − 1
∥v⃗∞∥ and

∂ϕ

∂y

∣∣
2
=

tan δ
√

M2
∞ − 1

tan δ +
√

M2
∞ − 1

∥v⃗∞∥ ≈ tan δ ∥v⃗∞∥
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