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|—Conservation Law Form

m Definition: an equation (or set of equations) is said to be in
conservation law form — or more precisely, in divergence form — if
it is written as follows

oW
e TV FwW)=s

m If S =0, the equation is said to be in strong conservation law form

m For example, many of the equations presented in Chapter 2 are
written in strong conservation form
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|—Conservation Law Form

m Recall that the transonic small disturbance equation discussed in
Chapter 2 was written as

o \Po Po P
ox2  Qy? 0z

(1 YA Y

Voo |
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|—Conservation Law Form

m Recall that the transonic small disturbance equation discussed in
Chapter 2 was written as

o \Po Po P
ox2  Qy? 0z

(1 YA Y

Voo |

This equation can be re-written in strong conservation form using

)
- ) (06 , 2% 9 09
?‘([(1_"”%)&‘““)"”%2% dy oz
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|—Integral Form

m The integration over an arbitrary stationary volume Q enclosed by the surface 9 of a
generic equation written in conservation form can be written as

/Q%d9+/n§>.?(mdﬂ:/95dﬂ
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|—Integral Form

m The integration over an arbitrary stationary volume Q enclosed by the surface 9 of a
generic equation written in conservation form can be written as

/Q%d9+/n§>.?(mdﬂ:/95dﬂ

m Dividing by Q and using the divergence (Gauss, or Ostrogradsky) theorem leads to

ow 1 1
el .dﬁ = = dQ 1
ot +Q an? 9 Q/x‘zs )

J— 1 .
where W = — / W dQ [
Q Ja
L/
m The above equation represents the rate of change of the mean value of W over the volume &

€ caused by the net flux of ? crossing the surface 92 and the volume source S
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I—Relations at Discontinuities

LStatio:mary Discontinuities

fxy,2) =0

5

m Let 7(x,y,z) = 0 represent a surface located at a possible
discontinuity within the fluid

m Assume that the flow is continuous within each of the two
subdomains shown in the figure above

m Assume also that Q is placed symmetrically about an arbitrary
point of the surface and is allowed to shrink to zero &
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|—Relations at Discontinuities

LStatio:mary Discontinuities

f(xy,2) =0
CD]

o

m Now, for the case of a steady flow, Eq. (1) becomes

/m?.ﬁi:/QSdQ
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I—Relations at Discontinuities

LStatio:mary Discontinuities

f(xy,2) =0
@l

o

m Now, for the case of a steady flow, Eq. (1) becomes

/m?.ﬁi:/QSdQ

m As Q — 0, the term on the right goes to zero at a faster rate than
1
the surface integration term (h3 vs h2, where h ~ Q3 = 9Q2)
m It follows that for an infinitesimal Q

R aks
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|—Relations at Discontinuities

LStatio:mary Discontinuities

doaQs

6
0= F-dos=3F, i doQ;, where [Al2=1,i=1,-
09 i=1
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I—Relations at Discontinuities

LStatio:mary Discontinuities

doaQs

6
0= F-dos=S"F, i doQ;, where [Allz=1,i=1,-,6
o0 i—1

m Since the flow is continuous within each of subdomain D; and
subdomain D5, in the limit when 92 — 0

Pty dOQs + FaeflsdOQs =0 and  Fe-is dOQs + Fo-isddQ = 0
- ?'(m:?lﬁﬂdaﬂlJr?z~ﬁgd392:0
o

i
— (F1—Fo) =0  with = .
P

ﬁ(?l—?z)'?fzo

8/16



AA214: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS 9/16
I—Relations at Discontinuities

LStationary Discontinuities

daQs

m The jump of ? across the surface f is defined as and denoted by
2
(%)= 7.
== [[?]]2 . ?f =0
1
which can also be written as

2af

28f 28f

[750h 5, + AL y T [Foly ;=0

m If ? is the flux vector of the Euler equations, the above steady jump E h
relations at surface f(x,y, z) = 0 represent the Rankine-Hugoniot

relations across a shock wave
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I—Relations at Discontinuities

L Moving Discontinuities

m Consider now the surface f(x, y, z, t) = 0 representing a dynamic
surface located at a possible moving discontinuity within a volume Q

of a fluid
S (0 0 2 o\
-\ 0t Ox Jy Oz

m Let
and
Frw) = (WT FT(w) FT(w) FT(w))"

m Then aa—v‘t/ + v ?(W) — S can be rewritten as V'* - ?*(W) =S

m Using the above notation, which includes time as a dimension, the
previous discussion on stationary discontinuities can be generalized
to obtain the following unsteady jump relations for moving
discontinuities

[2]2 - 9*F = W2 af+[[]—‘ I af+[[]:y]]2 of IR 5 of o%
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I—Relations at Discontinuities
LShock Waves

Simple Wave Equation

m Consider the model hyperbolic equation with constant wave speed ¢ # 0 and with scalar
variable u
ou N ou N
I
ot ox
B consider first the case of a stationary discontinuity surface of the form
f(x)=x—x=0

x =x
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I—Relations at Discontinuities
LShock Waves

Simple Wave Equation

m Consider the model hyperbolic equation with constant wave speed ¢ # 0 and with scalar
variable u
ou N ou N
I
ot ox
B consider first the case of a stationary discontinuity surface of the form
f(x)=x—x=0

x = x
& in thi . _ T = OrF T :
in this case, 7 (u cu)’ and m H ”H (01)", and therefore the jump

relation is

[[7'2*]]? V= el = (i — ) =06 U = w

B this implies that no stationary jump is possible, which is not surprising for a linear

equation
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I—Relations at Discontinuities
LShock Waves

Simple Wave Equation

m Consider the model hyperbolic equation with constant wave speed ¢ # 0 and with scalar
variable u (continue)
ou n ou 0
P
ot Ox
B consider next the case of a discontinuity surface moving at constant speed w,
fx,t) =x—x —w(t—1t°) =0

tt slope= 1/w
\‘\

ft)=0
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I—Relations at Discontinuities
LShock Waves

Simple Wave Equation

m Consider the model hyperbolic equation with constant wave speed ¢ # 0 and with scalar
variable u (continue)
ou n ou 0
P
ot Ox
B consider next the case of a discontinuity surface moving at constant speed w,
fx,t) =x—x —w(t—1t°) =0

tt slope= 1/w
\;\

FeD =0
t
Xy x
B in this case, M = Hg:;H = \/1172(7‘” 1)7, and therefore the jump relation is
w
2 *
H?*Hl-? fsz[[u]]iqL[cu]]i = —w(u —w)+c(uy —w)=0

[
< (c—w)(u—uw)=0 %

B this implies that any jump is possible, as long as it moves at the speed ¢
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I—Relations at Discontinuities
LShock Waves

Mach Waves

location of sound wave
attime t

~\ Vet Vool | X
location of beeper: location of beeper
attimet > t’ attimet =0

X

Mach wave: pressure wave traveling with the speed of sound caused by a slight change of pressure
added to a compressible flow — these weak waves can combine in supersonic flow to become a
shock wave if sufficient Mach waves are present at any location

ino c 1 = tan0 sin 0 1
sin = — = — an = —
Voo Moo \/l—sin29 \/Mic—l
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I—Relations at Discontinuities
LShock Waves

Mach Waves: Linearized Small-Perturbation Potential Equation in the Supersonic Regime

m Recall the linearized small-perturbation potential equation modeling
a two-dimensional steady flow in either the subsonic or supersonic
regime

2\ o 9% N A
(1-M)5a+57=0 * ?-((1—/\/190)& 8y> ~0

m For M, > 1.2, this equation is hyperbolic and can describe purely
supersonic flows with small perturbations about a supersonic
free-stream with velocity Vo, = ||Vl €
= 7=+ Vo= (17l + 57 ) 6+ 54

dy

m Consider as a possible stationary discontinuity surface .a
f(x,y) = a(x —xo) — b(y — y0) = 0, where a and b are constants %
(stationary w.r.t the object generating it)
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I—Relations at Discontinuities
LShock Waves

Mach Waves: Linearized Small-Perturbation Potential Equation in the Supersonic Regime

. 209 9o\T = _ Yf _ 1 T
m In this case, F= ((17 Mw)a 2y and Ay = H_V”(H = m(a —b)", and

therefore the jump relation is

P - o [5]- [5]

2 99 ¢ 9¢ 96\ _
= (=) (Gl 50) =2 (Gl 55k) =

B if a=0or b =0, there are no permissible jumps (why?)
W otherwise, a small perturbation jump can occur across a Mach line f(x, y) with angle
VM2 -1

1
(recall that the Mach angle is given by sin 6 = M—) along this Mach line, the jump |
ﬂ;v@

267> 0972
relation simplifies to —{/M2_ — 1 Hg]] = [[;H
X y

1

a
6, in which case the slope of the discontinuity surface is 5 =tanf =

1
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I—Relations at Discontinuities

LShock Waves
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Mach Waves: Linearized Small-Perturbation Potential Equation in the Supersonic Regime

yt
ach Wave
[
—Vp
¥ i
>
m (Continue)
a 1
B along the Mach line with the slope — =tanf =

, Where

T UM -1
97 2]
—\/ M2 —1 [[ﬁ]] = [[—‘b}] , the flow can turn through an angle § (small value
ox 1, oy 1,
because small perturbation) from the free-stream direction (see above figure, where
Vol =0) htht% 7l & i 7] and
= suci at — V, V, an
1 9x 27 tan§ + /M2 M1
ol tan 5\/

dy tanzSJr‘/M2

IVOOH ~ tand ||V ||
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