

AA214: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS

Linearization and Characteristic Relations

Outline

- 1 Non Conservation Form and Jacobians
- 2 Linearization Around a Localized Flow Condition
- 3 Hyperbolic Requirement
- 4 Characteristic Relations
- 5 Application to the One-Dimensional Euler Equations
- 6 Boundary/Initial Conditions
- 7 Expansion Fans and Shocks

└ Non Conservation Form and Jacobians

- Consider the following equation written in conservation law form

$$\frac{\partial W}{\partial t} + \vec{\nabla} \cdot \vec{\mathcal{F}}(W) = S$$

where $\vec{\mathcal{F}}(W) = (\mathcal{F}_x^T(W) \ \mathcal{F}_y^T(W) \ \mathcal{F}_z^T(W))^T$

- In three dimensions, this equation can be re-written as follows

$$\frac{\partial W}{\partial t} + \frac{\partial \mathcal{F}_x(W)}{\partial W} \frac{\partial W}{\partial x} + \frac{\partial \mathcal{F}_y(W)}{\partial W} \frac{\partial W}{\partial y} + \frac{\partial \mathcal{F}_z(W)}{\partial W} \frac{\partial W}{\partial z} = S$$

$$\text{or } \boxed{\frac{\partial W}{\partial t} + A \frac{\partial W}{\partial x} + B \frac{\partial W}{\partial y} + C \frac{\partial W}{\partial z} = S} \quad (1)$$

where

$$A = A(W) = \frac{\partial \mathcal{F}_x}{\partial W}(W), \quad B = B(W) = \frac{\partial \mathcal{F}_y}{\partial W}(W), \quad C = C(W) = \frac{\partial \mathcal{F}_z}{\partial W}(W)$$

are called the Jacobians of \mathcal{F}_x , \mathcal{F}_y , and \mathcal{F}_z with respect to W , respectively

└ Non Conservation Form and Jacobians

- For example, for the Euler equations in two dimensions, each of the Jacobians is a 4×4 matrix
- In general for m -dimensional vectors $W = (W_1 \ \dots \ W_m)^T$ and $\mathcal{F} = (\mathcal{F}_1 \ \dots \ \mathcal{F}_m)^T$

$$\frac{\partial \mathcal{F}}{\partial W} = \begin{pmatrix} \frac{\partial \mathcal{F}_1}{\partial W_1} & \dots & \frac{\partial \mathcal{F}_1}{\partial W_m} \\ \vdots & \ddots & \vdots \\ \frac{\partial \mathcal{F}_m}{\partial W_1} & \dots & \frac{\partial \mathcal{F}_m}{\partial W_m} \end{pmatrix}$$

└ Non Conservation Form and Jacobians

- If $W = W(V)$, Eq. (1) can be transformed as follows

$$\boxed{\frac{\partial V}{\partial t} + A' \frac{\partial V}{\partial x} + B' \frac{\partial V}{\partial y} + C' \frac{\partial V}{\partial z} = S'} \quad (2)$$

where

$$A' = T^{-1}AT, \quad B' = T^{-1}BT, \quad C' = T^{-1}CT, \quad S' = T^{-1}S$$

and

$$T = \frac{\partial W}{\partial V}, \quad T^{-1} = \frac{\partial V}{\partial W}$$

represents the Jacobian of W with respect to V

- The Jacobians with respect to W are then given by

$$\frac{\partial}{\partial W} = \frac{\partial}{\partial V} \frac{\partial V}{\partial W} = \frac{\partial}{\partial V} T^{-1}$$

└ Non Conservation Form and Jacobians

- Definition: $\mathcal{G}(W_1, \dots, W_m)$ is said to be a homogeneous function of degree p , where p is an integer, if

$$\forall s > 0 \quad \mathcal{G}(sW_1, \dots, sW_m) = s^p \mathcal{G}(W_1, \dots, W_m)$$

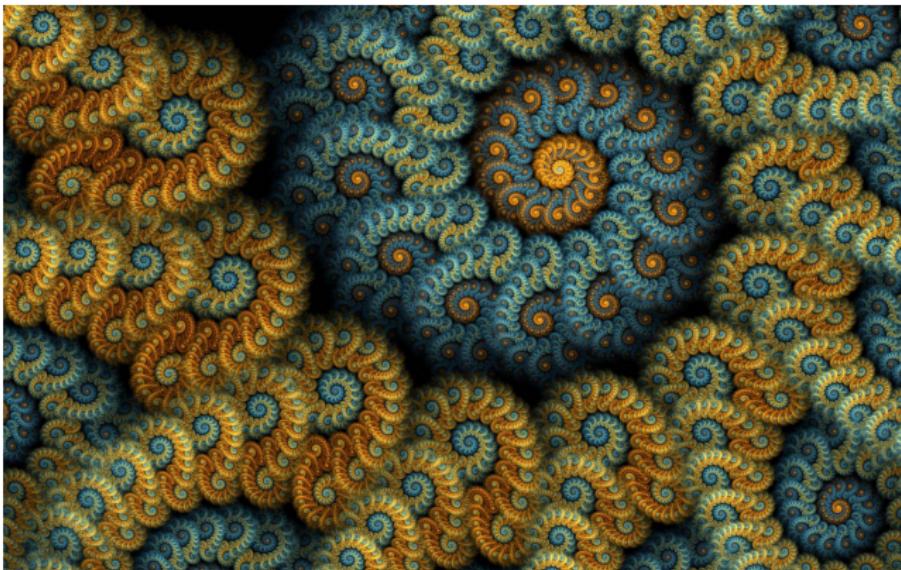
- Example: A linear function is a homogeneous function of degree 1

$$\forall s > 0, \quad \mathcal{G}(sW_1, \dots, sW_m) = s\mathcal{G}(W_1, \dots, W_m)$$

- Exercise: Show that for a perfect gas, the fluxes \mathcal{F}_x , \mathcal{F}_y , and \mathcal{F}_z of the Euler equations written in conservation form are homogeneous functions (of W) of degree 1 (see TA Session)
- A homogeneous function of degree p has *scale invariance* – that is, it has some properties that remain constant when looking at them either at different length- or time-scales and thus represent a universality
- In mathematics, scale invariance usually refers to an invariance of individual functions or curves: A closely related concept is self-similarity, where a function or curve is invariant under a discrete subset of dilations (transformations that change the size of a geometric figure but not its shape)

└ Non Conservation Form and Jacobians

- Example: Fractals are scale-invariant – more precisely, self-similar (in the figure below, the same drawing is repeated within itself at smaller and smaller scales)



└ Non Conservation Form and Jacobians

- Theorem 1 (Euler's theorem): A differentiable function $\mathcal{G}(W_1, \dots, W_m)$ is a homogeneous function of degree p if and only if

$$\sum_{i=1}^m \frac{\partial \mathcal{G}}{\partial W_i}(W_1, \dots, W_m) W_i = p \mathcal{G}(W_1, \dots, W_m)$$

└ Non Conservation Form and Jacobians

- Theorem 1 (Euler's theorem): A differentiable function $\mathcal{G}(W_1, \dots, W_m)$ is a homogeneous function of degree p if and only if

$$\sum_{i=1}^m \frac{\partial \mathcal{G}}{\partial W_i}(W_1, \dots, W_m) W_i = p \mathcal{G}(W_1, \dots, W_m)$$

- Proof: (\Rightarrow) differentiate definition with respect to s and set $s = 1$
 (\Leftarrow) define $g(s) = \mathcal{G}(sW_1, \dots, sW_m) - s^p \mathcal{G}(W_1, \dots, W_m)$,
differentiate $g(s)$ to get an ordinary differential equation
in $g(s)$, note that $g(1) = 0$, and conclude that
 $g(s) = cst = 0$

└ Non Conservation Form and Jacobians

- Theorem 2: If $\mathcal{G}(W_1, \dots, W_m)$ is differentiable and homogeneous of degree p , then each of its partial derivatives $\frac{\partial \mathcal{G}}{\partial W_i}$ (for $i = 1, \dots, m$) is a homogeneous function of degree $p - 1$

$$\boxed{\forall s > 0, \quad \frac{\partial \mathcal{G}}{\partial W_i}(sW_1, \dots, sW_m) = s^{p-1} \frac{\partial \mathcal{G}}{\partial W_i}(W_1, \dots, W_m)}$$

- Proof: Straightforward (differentiate both sides of the definition with respect to W_i)

└ Linearization Around a Localized Flow Condition

- Linearization can be either physically relevant (small perturbations), convenient for analysis, or useful for constructing a linear model problem – in either case, it leads to a linear problem
- For the purpose of constructing a linear model version of Eq. (1), the coefficient matrices A , B , and C of this equation are often simply “frozen” to their values at a local flow condition designated by the subscript o and represented by the fluid state vector W_o , which leads to

$$\boxed{\frac{\partial W}{\partial t} + A_o \frac{\partial W}{\partial x} + B_o \frac{\partial W}{\partial y} + C_o \frac{\partial W}{\partial z} = S_o} \quad (3)$$

- The above linear equation can be insightful for the construction or analysis of a CFD scheme

└ Linearization Around a Localized Flow Condition

- On the other hand, the “genuine” linearization of

$$\frac{\partial W}{\partial t} + A \frac{\partial W}{\partial x} + B \frac{\partial W}{\partial y} + C \frac{\partial W}{\partial z} = S$$

(with S dependent on W) about a flow equilibrium condition W_o – which is physically more relevant – leads to the following equation where the perturbation δW around W_0 has been renamed W for simplicity

$$\begin{aligned} \frac{\partial W}{\partial t} + A_o \frac{\partial W}{\partial x} + B_o \frac{\partial W}{\partial y} + C_o \frac{\partial W}{\partial z} - \frac{\partial S}{\partial W} \Big|_o W \\ + \frac{\partial A}{\partial W} \Big|_o W \frac{\partial W_o}{\partial x} + \frac{\partial B}{\partial W} \Big|_o W \frac{\partial W_o}{\partial y} + \frac{\partial C}{\partial W} \Big|_o W \frac{\partial W_o}{\partial z} = 0 \end{aligned}$$

└ Linearization Around a Localized Flow Condition

$$\begin{aligned} \frac{\partial W}{\partial t} + A_o \frac{\partial W}{\partial x} + B_o \frac{\partial W}{\partial y} + C_o \frac{\partial W}{\partial z} - \frac{\partial S}{\partial W} \Big|_o W \\ + \frac{\partial A}{\partial W} \Big|_o W \frac{\partial W_o}{\partial x} + \frac{\partial B}{\partial W} \Big|_o W \frac{\partial W_o}{\partial y} + \frac{\partial C}{\partial W} \Big|_o W \frac{\partial W_o}{\partial z} = 0 \end{aligned} \quad (4)$$

- Hence, the following remarks are noteworthy:
 - in a genuine linearization around a dynamic equilibrium condition, the source term does not contribute a “frozen” right hand-side
 - in general, Eq. (4) and Eq. (3) are different
 - however, if the linearization is performed about a uniform flow condition W_o and S is independent of W (or $S = 0$), Eq. (4) and Eq. (3) become identical

└ Linearization Around a Localized Flow Condition

- Consider here the linear model equation (3)

$$\frac{\partial W}{\partial t} + A_o \frac{\partial W}{\partial x} + B_o \frac{\partial W}{\partial y} + C_o \frac{\partial W}{\partial z} = S_o$$

- Linear equations such as the above equation have exact solutions
- Let $W(x, y, z, t^0)$ denote an initial value for W at time t^0 : This initial condition can be expanded by Fourier decomposition with wave numbers k_{x_j} , k_{y_j} , and k_{z_j} as follows

$$W(x, y, z, t^0) = I(x, y, z) = \sum_j c_j e^{i(k_{x_j}x + k_{y_j}y + k_{z_j}z)}$$

- In this case, the exact solution of Eq. (3) for $t > t^0$ is

$$W(x, y, z, t) = \underbrace{\sum_j e^{-i(t-t^0)(k_{x_j}A_o + k_{y_j}B_o + k_{z_j}C_o)} c_j e^{i(k_{x_j}x + k_{y_j}y + k_{z_j}z)}}_{\text{homogeneous solution}} + \underbrace{(t - t^0)S_o}_{\text{particular solution}}$$

└ Linearization Around a Localized Flow Condition

$$W(x, y, z, t) = \sum_j e^{-i(t-t^0)(k_{xj}A_o + k_{yj}B_o + k_{zj}C_o)} c_j e^{i(k_{xj}x + k_{yj}y + k_{zj}z)} + (t-t^0)S_o$$

- Hence, the solution of Eq. (3) has both a linear growth term and, depending on the eigenvalues of the matrix

$$M_j = k_{xj}A_o + k_{yj}B_o + k_{zj}C_o$$

a possible exponential growth in time components

└ Hyperbolic Requirement

- Consider the following equation

$$\frac{\partial G}{\partial x_\alpha} + \frac{\partial H}{\partial x_1} = 0 \quad (5)$$

- For example, for the unsteady Euler equations in one dimension

$$x_\alpha = t, \quad x_1 = x, \quad G = W = (\rho \quad \rho v_x \quad E)^T$$

$$H = \mathcal{F}_x = (\rho v_x \quad \rho v_x^2 + p \quad (E + p)v_x)^T$$

- For the steady Euler equations in two dimensions

$$x_\alpha = x, \quad x_1 = y$$

$$G = \mathcal{F}_x (\rho v_x \quad \rho v_x^2 + p \quad \rho v_x v_y \quad (E + p)v_x)^T$$

$$H = \mathcal{F}_y = (\rho v_y \quad \rho v_x v_y \quad \rho v_y^2 + p \quad (E + p)v_y)^T$$

└ Hyperbolic Requirement

- Let

$$A = \frac{\partial H}{\partial G}$$

and let $\Lambda = \text{diag}(\lambda_1, \dots, \lambda_m)$ be the diagonal matrix of eigenvalues $\lambda_1, \dots, \lambda_m$ of A

- Eq. (5) is hyperbolic if

- (1) λ_k is real for each $k = 1, \dots, m$
- (2) A has a complete set of eigenvectors $\Leftrightarrow A$ is diagonalizable – that is

$$\exists Q / A = \frac{\partial H}{\partial G} = Q^{-1} \Lambda Q$$

- In the general multidimensional case (see Eq. (1)), the system is hyperbolic if the matrix

$$M = k_x A + k_y B + k_z C$$

has only real eigenvalues and a complete set of eigenvectors, for all sets of real numbers (k_x, k_y, k_z)

└ Characteristic Relations

- In mathematics, the “method” of characteristics is a technique for solving partial differential equations
- Essentially, it reduces a *partial differential equation* to a **family** of *ordinary differential equations* along which the solution can be integrated from some initial data given on a suitable **hypersurface**
- It is applicable to any hyperbolic partial differential equation, but has been developed mostly for first-order hyperbolic partial differential equations
- Characteristic “theory” is pertinent to the treatment of boundary conditions and CFD schemes such as flux split schemes (Steger and Warming) and flux difference splitting schemes (Roe)

└ Characteristic Relations

- Consider the following unsteady homogeneous hyperbolic equations written in non conservation form

$$\frac{\partial W}{\partial t} + A \frac{\partial W}{\partial x} = 0, \quad A = \frac{\partial \mathcal{F}}{\partial W} = A(W) \quad (6)$$

- A is diagonalizable and therefore

$$A = Q^{-1} \Lambda Q \quad (7)$$

where $\Lambda = \text{diag}(\lambda_1, \dots, \lambda_m) = \Lambda(W)$ and $Q = Q(W)$

- Let r_i denote the i -th column of Q^{-1} :
 $AQ^{-1} = Q^{-1}\Lambda \Rightarrow Ar_i = \lambda_i r_i \Rightarrow r_i$ is A 's i -th *right* eigenvector
- Let ℓ_i denote the i -th column of Q^T which is the i -th row of Q :
 $QA = \Lambda Q \Rightarrow A^T Q^T = Q^T \Lambda \Rightarrow A^T \ell_i = \lambda_i \ell_i$ (or $\ell_i^T A = \lambda_i \ell_i^T$) $\Rightarrow \ell_i$ is A 's i -th *left* eigenvector

└ Characteristic Relations

- Substituting Eq. (7) into Eq. (6) and pre-multiplying by Q leads to the so-called *characteristic form* of Eq. (6)

$$Q \frac{\partial W}{\partial t} + \Lambda Q \frac{\partial W}{\partial x} = 0$$

- The *characteristic variables* $\xi = (\xi_1 \ \cdots \ \xi_m)^T$ are defined as follows (note the differential form)

$$d\xi = Q(W)dW$$

- Substituting in the characteristic form of the governing equations leads to

$$\frac{\partial \xi}{\partial t} + \Lambda \frac{\partial \xi}{\partial x} = 0 \quad (8)$$

which is also called the characteristic form of the governing equations and which **decouples** the characteristic variables

└ Characteristic Relations

└ Characteristic Relations

- Each characteristic equation within Eq. (8) can be written as

$\left[\frac{\partial \xi_i}{\partial t} \frac{\partial \xi_i}{\partial x} \right]^T \cdot (1 \ \lambda_i)^T = \vec{\nabla}^* \xi_i \cdot (1 \ \lambda_i)^T = 0, \ i = 1, \dots, m$, which shows and states that in the $x - t$ plane,

- $\frac{\partial \xi_i}{\partial t} + \lambda_i \frac{\partial \xi_i}{\partial x}$ is a *directional derivative*¹ – in the direction $(1 \ \lambda_i)^T$
- there is no change in the solution ξ_i in the direction of $(1 \ \lambda_i)^T$

- Now, consider a curve $x = x(t)$ that is everywhere tangent to $(1 \ \lambda_i)^T$ in the $x - t$ plane: Then, the slope of the vector $(1 \ \lambda_i)^T$ is the slope of the curve $x = x(t)$ and is given by

$$\frac{dx}{dt} = \lambda_i$$

¹The directional derivative $\vec{\nabla}_u f(x_0, y_0, z_0)$ is the rate at which the function $f(x, y, z)$ changes at a point (x_0, y_0, z_0) in the direction \vec{u} . It can be defined as: $\vec{\nabla}_u f = \vec{\nabla} f \cdot \vec{u} / \|\vec{u}\| = \lim_{h \rightarrow 0} (f(X + hu) - f(X)) / h$.

└ Characteristic Relations

- Then, Eq. (8) is equivalent to

$$d\xi_i = 0 \text{ (or } \xi_i = \text{cst}) \quad \text{on} \quad \frac{dx}{dt} = \lambda_i, \quad i = 1, \dots, m$$

- This is a wave solution: The eigenvalues λ_i are wave speeds, and the wavefronts $\frac{dx}{dt} = \lambda_i$ are sometimes also called *characteristic curves* (or simply *characteristics*)

└ Application to the One-Dimensional Euler Equations

$$\frac{\partial W}{\partial t} + \frac{\partial \mathcal{F}_x}{\partial x} = 0, \quad W = (\rho \ \rho v_x \ E)^T, \quad \mathcal{F}_x = \left(\rho v_x \ \rho v_x^2 + p \ (E + p)v_x \right)^T$$

with $p = (\gamma - 1) \left(E - \rho \frac{v_x^2}{2} \right)$ and the speed of sound c given by

$$c^2 = \gamma \frac{p}{\rho}$$

- Choose $V = (\rho \ v_x \ p)^T$ as the fluid state vector (with primitive variables) and re-write the governing equations in non conservation form (see Eq. (1) and Eq. (2))

$$\frac{\partial V}{\partial t} + A' \frac{\partial V}{\partial x} = 0, \quad A' = \begin{pmatrix} v_x & \rho & 0 \\ 0 & v_x & \frac{1}{\rho} \\ 0 & \rho c^2 & v_x \end{pmatrix}$$

└ Application to the One-Dimensional Euler Equations

- Diagonalize the resulting hyperbolic equations

$$A' = Q^{-1} \Lambda Q \Leftrightarrow Q A' Q^{-1} = \Lambda$$

$$\Lambda = \begin{pmatrix} v_x & 0 & 0 \\ 0 & v_x + c & 0 \\ 0 & 0 & v_x - c \end{pmatrix}$$

$$Q = \begin{pmatrix} 1 & 0 & -\frac{1}{c^2} \\ 0 & 1 & \frac{1}{\rho c} \\ 0 & 1 & -\frac{1}{\rho c} \end{pmatrix} \quad Q^{-1} = \begin{pmatrix} 1 & \frac{\rho}{2c} & -\frac{\rho}{2c} \\ 0 & \frac{1}{2} & \frac{1}{2} \\ 0 & \frac{\rho c}{2} & -\frac{\rho c}{2} \end{pmatrix} \quad (9)$$

Application to the One-Dimensional Euler Equations

- Let $\xi = (\xi_0 \ \xi_+ \ \xi_-)^T$ denote the characteristic variables
- The three characteristic equations are

$$\begin{aligned}\frac{\partial \xi_0}{\partial t} + v_x \frac{\partial \xi_0}{\partial x} &= 0 \\ \frac{\partial \xi_+}{\partial t} + (v_x + c) \frac{\partial \xi_+}{\partial x} &= 0 \\ \frac{\partial \xi_-}{\partial t} + (v_x - c) \frac{\partial \xi_-}{\partial x} &= 0\end{aligned}$$

with in this case $d\xi = Q(V)dV$ and $V = (\rho \ v_x \ p)^T$

- From (9), it follows that the above equations are equivalent to

$$d\xi_0 = d\rho - \frac{dp}{c^2} = ds = 0 \quad \text{for} \quad dx = v_x dt \quad (s \text{ denotes here the entropy})$$

$$d\xi_+ = dv_x + \frac{dp}{\rho c} = 0 \quad \text{for} \quad dx = (v_x + c) dt$$

$$d\xi_- = dv_x - \frac{dp}{\rho c} = 0 \quad \text{for} \quad dx = (v_x - c) dt$$

└ Application to the One-Dimensional Euler Equations

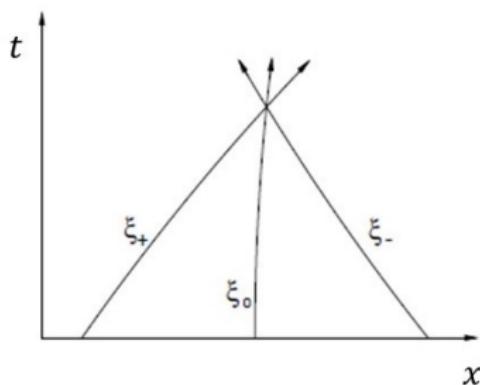
- The solution of these characteristic equations can be written as

$$\begin{aligned}\xi_0 = s = cst &\quad \text{on } dx = v_x dt \quad (\text{entropy wave}) \\ \xi_+ = v_x + \int \frac{dp}{\rho c} = cst &\quad \text{on } dx = (v_x + c)dt \quad (\text{acoustic wave}) \\ \xi_- = v_x - \int \frac{dp}{\rho c} = cst &\quad \text{on } dx = (v_x - c)dt \quad (\text{acoustic wave})\end{aligned}\tag{10}$$

- Notice that in this case, only the first characteristic equation is fully analytically integrable (but not its corresponding characteristic curve $dx = v_x dt$)
- For this and other reasons, characteristics are important conceptually, but not of too great importance quantitatively

└ Application to the One-Dimensional Euler Equations

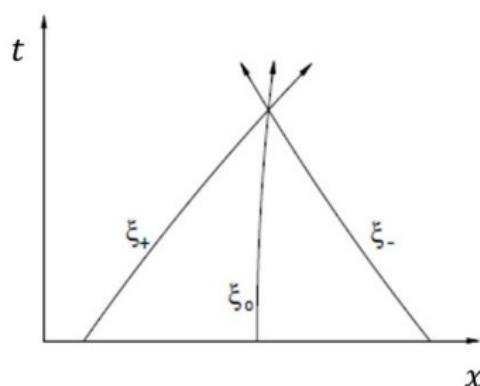
- Note that



⇒ the state (ξ_0, ξ_+, ξ_-) at a point in the $x - t$ plane can be fully determined by walking along each of the three corresponding characteristic curves

└ Application to the One-Dimensional Euler Equations

- Note that



⇒ the state (ξ_0, ξ_+, ξ_-) at a point in the $x - t$ plane can be fully determined by walking along each of the three corresponding characteristic curves

- Recall that $d\xi = Q(V)dV \Leftrightarrow dV = Q^{-1}(V)d\xi$
⇒ the corresponding state V can be fully determined accordingly, as shown next

└ Application to the One-Dimensional Euler Equations

- Integral curves of the characteristic family

└ Application to the One-Dimensional Euler Equations

■ Integral curves of the characteristic family

- recall that the i -th column of Q^{-1} ($i = 1, 2, 3$), denoted here by r_i , is the i -th right eigenvector of the Jacobian matrix (here A') associated with the i -th eigenvalue λ_i defining the characteristic curve $\frac{dx}{dt} = \lambda_i$: It depends entirely and only on the state

$$V = (\rho \ v_x \ p)^T = (V_1 \ V_2 \ V_3)^T \text{ and therefore defines a vector field}$$

└ Application to the One-Dimensional Euler Equations

■ Integral curves of the characteristic family

- recall that the i -th column of Q^{-1} ($i = 1, 2, 3$), denoted here by r_i , is the i -th right eigenvector of the Jacobian matrix (here A') associated with the i -th eigenvalue λ_i defining the characteristic curve $\frac{dx}{dt} = \lambda_i$: It depends entirely and only on the state
- $V = (\rho \ v_x \ p)^T = (V_1 \ V_2 \ V_3)^T$ and therefore defines a vector field
- since $d\xi = Q(V)dV \Leftrightarrow dV = Q^{-1}(V)d\xi$, it follows that

$$dV = Q^{-1}(V)d\xi = \sum_{i=1}^3 r_i(V)d\xi_i \quad (11)$$

Application to the One-Dimensional Euler Equations

■ *Integral curves of the characteristic family*

- recall that the i -th column of Q^{-1} ($i = 1, 2, 3$), denoted here by r_i , is the i -th right eigenvector of the Jacobian matrix (here A') associated with the i -th eigenvalue λ_i defining the characteristic curve $\frac{dx}{dt} = \lambda_i$: It depends entirely and only on the state
- $V = (\rho \ v_x \ p)^T = (V_1 \ V_2 \ V_3)^T$ and therefore defines a vector field
- since $d\xi = Q(V)dV \Leftrightarrow dV = Q^{-1}(V)d\xi$, it follows that

$$dV = Q^{-1}(V)d\xi = \sum_{i=1}^3 r_i(V)d\xi_i \quad (11)$$

- hence, one can look for a set of states $V(\eta)$ that connect to some starting state V_0 through integration along one of the vector fields r_i : These constitute *integral curves of the characteristic family*

Application to the One-Dimensional Euler Equations

■ Integral curves of the characteristic family

- recall that the i -th column of Q^{-1} ($i = 1, 2, 3$), denoted here by r_i , is the i -th right eigenvector of the Jacobian matrix (here A') associated with the i -th eigenvalue λ_i ; defining the characteristic curve $\frac{dx}{dt} = \lambda_i r_i$: It depends entirely and only on the state $V = (\rho \ v_x \ p)^T = (V_1 \ V_2 \ V_3)^T$ and therefore defines a vector field
- since $d\xi = Q(V)dV \Leftrightarrow dV = Q^{-1}(V)d\xi$, it follows that

$$dV = Q^{-1}(V)d\xi = \sum_{i=1}^3 r_i(V)d\xi_i \quad (11)$$

- hence, one can look for a set of states $V(\eta)$ that connect to some starting state V_0 through integration along one of the vector fields r_i : These constitute *integral curves of the characteristic family*
- two states V_a and V_b belong to the same j -characteristic integral curve if they are connected via the integral

$$V_b = V_a + \int_a^b r_j(V) d\xi_j \quad (12)$$

└ Application to the One-Dimensional Euler Equations

■ *Integral curves of the characteristic family* (continue)

- consider now the case of a linear hyperbolic equation with a constant advection matrix A'
 - the state vector V can be decomposed in eigen components as follows

$$V(x, t) = Q^{-1}\xi(x, t) = \sum_{i=1}^3 r_i \xi_i(x, t)$$

- a j -characteristic integral curve in state-space is a set of states for which only the component ξ_j along the eigenvector r_j varies, while the components along the other eigenvectors may be non zero but should be non varying
- for a nonlinear hyperbolic equation, the above decomposition of V is no longer a useful concept, but the integral curves are the nonlinear equivalent of this idea

└ Application to the One-Dimensional Euler Equations

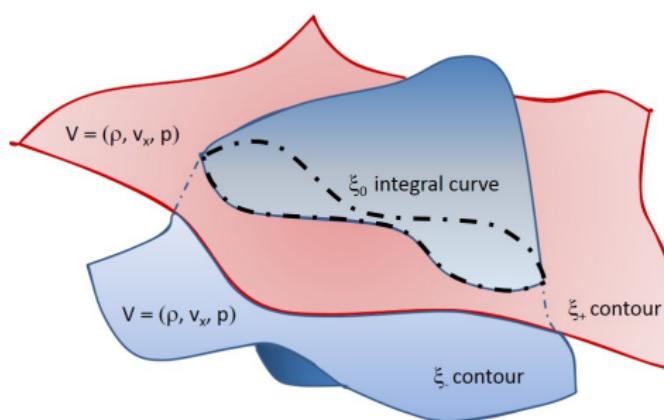
■ *Riemann invariants*

- one can express integral curves not only as integrals along the eigenvectors of the Jacobian (as in Eq. (12)), but also curves on which some *special scalars* are constant (as in Eq. (11), with only one $d\xi_j \neq 0$ and thus two $d\xi_i = 0 \Rightarrow$ see Eqs. (10))
- in the 3D parameter space of $V = (V_1, V_2, V_3) = (\rho, v_x, p)$ – but otherwise 1D Euler equation – each curve is defined by two of such scalars
- such scalar fields are called *Riemann invariants* of the characteristic family
 - here, ξ_+ and ξ_- are the Riemann invariants of the 1-characteristic integral curve
 - ξ_0 and ξ_- are the Riemann invariants of the 2-characteristic integral curve
 - ξ_0 and ξ_+ are the Riemann invariants of the 3-characteristic integral curve
 - the 2- and 3-characteristic integral curves represent here acoustic waves which, if they do not topple to become shocks, preserve entropy: Hence, entropy (ξ_0) is a Riemann invariant of these two families

└ Application to the One-Dimensional Euler Equations

■ Riemann invariants (continue)

- hence, one can regard an integral curve as the crossing line between two contour curves of two Riemann invariants



- the value of each of the two Riemann invariants identifies this characteristic integral curve

└ Application to the One-Dimensional Euler Equations

■ *Riemann invariants* (continue)

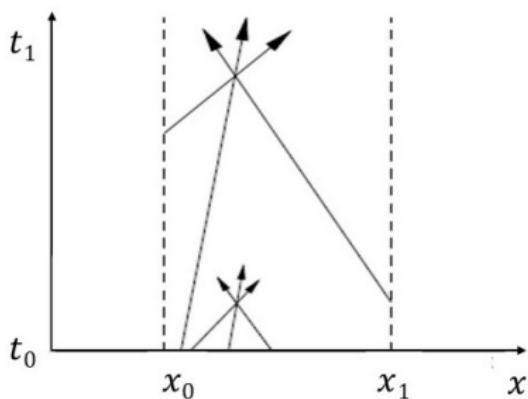
- in summary, the Riemann invariants
 - arise from mathematical transformations made on a system of first-order partial differential equations to make them more easily solvable
 - are constant along characteristic integral curves of the partial differential equation

└ Application to the One-Dimensional Euler Equations

■ Simple waves

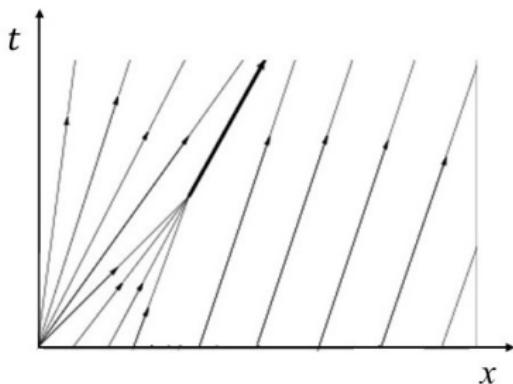
- note that if the Riemann invariants are constant along the characteristic curve $\frac{dx}{dt} = \lambda_i$, all flow properties are constant along this characteristic curve
- by definition, a wave is called a *simple wave* if all states along the wave lie on the same integral curve of one of the characteristic families
- hence, one can say that a simple wave is a pure wave in only one of the eigenvectors
- examples
 - a simple wave in the 1-characteristic family ($dV = r_1 d\xi_0$) is a wave (or region of the flow) in which $v_x = cst$ and $p = cst$ but the entropy s can vary
 - a simple wave in the 3-characteristic family ($dV = r_3 d\xi_-$) is for example an infinitesimally weak acoustic wave in one direction
- in Chapter 5, situations will be encountered where a *contact discontinuity* and a *rarefaction wave* are simple waves

└ Boundary/Initial Conditions



- The characteristic relations coming to or from the boundaries determine the number and nature of the required boundary conditions for solving a given hyperbolic problem

└ Expansion Fans and Shocks



- In general, characteristic curves *of the same family* do not intersect: If they do, they originate from a point to form an expansion fan or merge into a shock

