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I—Non Conservation Form and Jacobians

m Consider the following equation written in conservation law form
w
MG Fw) =
where 7(W) = (FT(W) FT(W) FT(W))"

m In three dlmen5|ons, th|s equation can be re-written as follows

ow  O0Fx ow  OF, ow  OF,(W)ow
oW OF(W)OW | OF,(W)OW OF(W)OW _

ot oW ox oW  ay | oW oz
ow aow 8W (9W
where 5 5 o,
_ Fx _ 9y _
A= AW) = Pxw), = Bw) = 2rw), ¢ = cw) = Peqw)

OWe
are called the Jacobians of F, F,, and F;, with respect to W, %
respectively
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I—Non Conservation Form and Jacobians

m For example, for the Euler equations in two dimensions, each of the

Jacobians is a 4 x 4 matrix

m In general for m-dimensional vectors W = (W

F= (F - Fn)T
9F
OF 8W1
ow %
owy

0F1
oW,

OFn
ow,,

W,, )T and
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I—Non Conservation Form and Jacobians

m If W= W(V), Eq. (1) can be transformed as follows

oV o ,0V oV oV

o A B T =
where
A = TLAT, B' = T7!BT, =TT,
and ow Y
T="5y Tl=ow

represents the Jacobian of W with respect to V

m The Jacobians with respect to W are then given by

9 _909v _ 9
oW — avow — aVv

-1
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I—Non Conservation Form and Jacobians

m Definition: G(W4, ---, W,,) is said to be a homogeneous function
of degree p, where p is an integer, if

Vs >0 Q(sz, e sz):ng(Wl, e Wm)
m Example: A linear function is a homogeneous function of degree 1
Vs >0, G(sWiy, - -, sW,)=sG(Wy, ---, Wy)

m Exercise: Show that for a perfect gas, the fluxes F, F,, and F; of
the Euler equations written in conservation form are homogeneous
functions (of W) of degree 1 (see TA Session)

m A homogeneous function of degree p has scale invariance — that is,
it has some properties that remain constant when looking at them
either at different length- or time-scales and thus represent a
universality

® In mathematics, scale invariance usually refers to an invariance of
individual functions or curves: A closely related concept is -
self-similarity, where a function or curve is invariant under a discrete %
subset of dilations (transformations that change the size of a

geometric figure but not its shape) )
6/34
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|—Non Conservation Form and Jacobians

m Example: Fractals are scale-invariant — more precisely, self-similar (in
the figure below, the same drawing is repeated within itself at
smaller and smaller scales)
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I—Non Conservation Form and Jacobians

m Theorem 1 (Euler’s theorem): A differentiable function

Q}( V1/1, c

if

m
i=1

oG
ow;

(Wi, -

; W)W = pG(Wy, -

; W)
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, W.,) is a homogeneous function of degree p if and only
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I—Non Conservation Form and Jacobians

m Theorem 1 (Euler’s theorem): A differentiable function

G(Wy, ---, W,) is a homogeneous function of degree p if and only
if

m 89
E Wq. --- Wm M/’: W7 SRR Wm
ar 3W( 1 ) ) pg( 1 )

1

m Proof: (=) differentiate definition with respect to s and set s =1
(«=) define g(s) = G(sWh, -+, sWp)—sPG(W4, -+, Wy,),
differentiate g(s) to get an ordinary differential equation
in g(s), note that g(1) = 0, and conclude that
g(s)=cst=0

%
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I—Non Conservation Form and Jacobians

m Theorem 2: If G(W4, ---, Wp,) is differentiable and homogeneous
of degree p, then each of its partial derivatives : (fori=1,---,
m) is a homogeneous function of degree p — 1 ’

oG oG
Vs >0 Wy, -+, sW,)=sP1! Wy, -, W,
s> ) 3W (5 1, , S ) S BW( 1, ) )

m Proof: Straightforward (differentiate both sides of the definition with
respect to W;)

9/34
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I—Linearization Around a Localized Flow Condition

m Linearization can be either physically relevant (small perturbations),
convenient for analysis, or useful for constructing a linear model
problem — in either case, it leads to a linear problem

m For the purpose of constructing a linear model version of Eq. (1),
the coefficient matrices A, B, and C of this equation are often
simply “frozen” to their values at a local flow condition designated
by the subscript , and represented by the fluid state vector W,,
which leads to

ow ow ow ow
TR R )

m The above linear equation can be insightful for the construction or

analysis of a CFD scheme B g
L/
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I—Linearization Around a Localized Flow Condition

m On the other hand, the “genuine” linearization of

oW oW oW _ow
LALANNY ALY AL AL
ot A tBh T 70

(with S dependent on W) about a flow equilibrium condition W, —
which is physically more relevant — leads to the following equation
where the perturbation §W around Wy has been renamed W for

simplicity
ow ow ow ow oS
e T Ao TR T maw| W
DAl OWo | OB| W,  OC| O,
ow|, Ox ow|, 09y ow|, 0z B
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I—Linearization Around a Localized Flow Condition

ot ° Ox ° Oy ° 0z ow|,
DA| | OW,  OB| | OW,  OC| oW,
oW\, ox OW|, a9y  oW|,6 9z
(4)

m Hence, the following remarks are noteworthy:

in a genuine linearization around a dynamic equilibrium condition,
the source term does not contribute a “frozen” right hand-side

in general, Eq. (4) and Eq. (3) are different

however, if the linearization is performed about a uniform flow
condition W, and S is independent of W (or S = 0), Eq. (4) and
Eq. (3) become identical

%
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I—Linearization Around a Localized Flow Condition

m Consider here the linear model equation (3)

ow ow ow ow
— 4+ A—+B,—+C— =5
ot T oax TPy T T
m Linear equations such as the above equation have exact solutions
m Let W(x,y,z,t%) denote an initial value for W at time t°: This
initial condition can be expanded by Fourier decomposition with

wave numbers kxj, kyj, and kzj as follows

W(x,y,z, to) = I(x,y,2) = Z Cjei(kxjx+ky,-y+kzjz)
J

m In this case, the exact solution of Eq. (3) for t > t% is

. 0 .
—i(t—t")(kx; Ao+ky. Bo+kz: C kx. x+ky.y+kz.
W(x,y,z,t) = E e Wk Aoky; Bo+hz O)‘:je'( Gy Z/Z)+ (t — t°)S,

- — ™
J . .
particular solution &
homogeneous solution
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I—Linearization Around a Localized Flow Condition

it ;
W(X,y,Z7 t) _ Z e i(t—t )(kaAo+kijo+kzj Co)cjel(kaXJrkyijrkzjz)+(t_tO)SO
J

m Hence, the solution of Eq. (3) has both a linear growth term and,
depending on the eigenvalues of the matrix

M; = kAo + ky, Bo + k;, Co

a possible exponential growth in time components

14 /34
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I—Hyperbolic Requirement

m Consider the following equation

96 oM _
Ox,  Ox

(5)
m For example, for the unsteady Euler equations in one dimension

Xo=t, x1=x, G=W=(p pv E)T

H=Fc=(ps p2+p (E+p)w)’
m For the steady Euler equations in two dimensions
Xog =X, X1 =Y
C=TFclpw p2+p puevy (E+pv)’ i
H=F, = (pvy pwvy pvf—i—p (E—l—p)vy)T %
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I—Hyperbolic Requirement

m Let oK
A= —
oG
and let A = diag(\1, -+, Am) be the diagonal matrix of eigenvalues
A1, oo, Amof A
m Eq. (5) is hyperbolic if
m (1) A isreal foreach k=1, --- | m
m (2) A has a complete set of eigenvectors < A is diagonalizable —
that is oM
_9H _ 41
AQ/A= 9C QA

m In the general multidimensional case (see Eq. (1)) the system is
hyperbolic if the matrix

M= kA+ k,B+ k,C

E
has only real eigenvalues and a complete set of eigenvectors, for all %
sets of real numbers (ky, ky, k)

16 /34
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|—Characteristic Relations

® In mathematics, the “method” of characteristics is a technique for
solving partial differential equations

m Essentially, it reduces a partial differential equation to a family of
ordinary differential equations along which the solution can be
integrated from some initial data given on a suitable hypersurface

m It is applicable to any hyperbolic partial differential equation, but
has been developed mostly for first-order hyperbolic partial
differential equations

m Characteristic “theory” is pertinent to the treatment of boundary
conditions and CFD schemes such as flux split schemes (Steger and
Warming) and flux difference splitting schemes (Roe)

%

17/34
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|—Characteristic Relations

m Consider the following unsteady homogeneous hyperbolic equations
written in non conservation form

Wl —o A= 08— aw) (6)
m A is diagonalizable and therefore
A=QAQ (7)
where A = diag (A1, -+, Am) = A(W) and Q = Q(W)

m Let r; denote the i-th column of Q~1:
AQ™! = QA = Ar, = \irj = r; is A’s i-th right eigenvector

m Let ¢; denote the i-th column of Q7 which is the i-th row of Q:
QRA=AQ = ATQT = QT/\ = ATE,' = )\,’g,' (OI’ g,TA = )\,é,T) = (,'

B
is A's i-th left eigenvector %

18/34
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L Characteristic Relations
m Substituting Eq. (7) into Eq. (6) and pre-multiplying by Q leads to
the so-called characteristic form of Eq. (6)
ow ow
— +AQ—=0
Q ot +AQ Ox

m The characteristic variables € = (& -+ &,)7 are defined as follows
(note the differential form)

| dg = Q(W)dw |
m Substituting in the characteristic form of the governing equations
leads to o o
—=+A==0 8
ot * Ox (8)
which is also called the characteristic form of the governing .
equations and which decouples the characteristic variables M
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|—Characteristic Relations

20 /34
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|—Characteristic Relations

m Each characteristic equation within Eq. (8) can be written as

o¢ 0g 1" . ,
[8&; ai (1 /\,-)T:?*g,--(l M)T=0,i=1, ---, m, which
shows and states that in the x — t plane,

L] 96 + )\;agi is a directional derivative ! — in the direction (1 \;)"

ot ox
m there is no change in the solution &; in the direction of (1 A\;)7

m Now, consider a curve x = x(t) that is everywhere tangent to
(1 X\;)T in the x — t plane: Then, the slope of the vector (1 \;)7 is
the slope of the curve x = x(t) and is given by

dx

==\
dt

w
IThe directional derivative ?uf(xo,yo, zp) is the rate at which the function %
f(x,y,z) changes at a point (xo, Y0, 20) in the direction &. It can be defined as:

Yuf = Vf-a/||d) = lim (F(X + hu) = £(X))/h.

20/34
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|—Characteristic Relations

m Then, Eq. (8) is equivalent to

dx

¢ (or& =cst) on it

)\hi:la e, M

m This is a wave solution: The eigenvalues \; are wave speeds, and the
dx . ..
wavefronts — = )\; are sometimes also called characteristic curves

(or simply characteristics)

21/34
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I—Application to the One-Dimensional Euler Equations

oW OF,

T 2 T
5t =0 W= ) Fo=(pw pii+p (E+p)w)

2
with p = (v — 1) (E - pv2x> and the speed of sound ¢ given by

c2:73

m Choose V = (p v, p)T as the fluid state vector (with primitive
variables) and re-write the governing equations in non conservation
form (see Eq. (1) and Eq. (2))

ot ox - .

22/34
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I—Application to the One-Dimensional Euler Equations

m Diagonalize the resulting hyperbolic equations

A = QIANQe QAQI=A
Vy 0 0
A = 0 w+c 0
0 0 Vi — C
1
1 0 - 1
1 -1
Q = 01 — Q=10
pc
0 1 L 0
pC

SEISPRT

23 /34
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I—Application to the One-Dimensional Euler Equations

mlet £ = (&% &4 €.)7 denote the characteristic variables
m The three characteristic equations are

9% |, 9% _

8t+VX8X =0
2, o _
ot +(VX+C)8X =0
ae_ oc.
e P =0

with in this case | d¢é = Q(V)dV |and V = (p v p)"
m From (9), it follows that the above equations are equivalent to

d
déy =dp — C—f =ds=0 for dx = vdt (s denotes here the entropy)

d
déy = dvy + —/Z =0 for dx=(vx+c)dt -
p e
dp %
dé_ = dvy — Py 0 for dx=(vx— c)dt
p

24/34
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I—Application to the One-Dimensional Euler Equations

m The solution of these characteristic equations can be written as

o =s=cst on dx = v,dt (entropy wave)
d

Er=ve+ P _ st on dx= (vx + c)dt (acoustic wave)
pc
d

E_=v— P_ st on dx= (vx — ¢)dt (acoustic wave)
pc

(10)

m Notice that in this case, only the first characteristic equation is fully

analytically integrable (but not its corresponding characteristic curve
dx = v,dt)

m For this and other reasons, characteristics are important
conceptually, but not of too great importance quantitatively

%
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|—Application to the One-Dimensional Euler Equations

m Note that

= the state (&, £,,£_) at a point in the x — t plane can be fully
determined by walking along each of the three corresponding
characteristic curves

26 /34
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I—Application to the One-Dimensional Euler Equations

m Note that

= the state (&, £,,£_) at a point in the x — t plane can be fully
determined by walking along each of the three corresponding
characteristic curves

m Recall that d¢ = Q(V)dV & dV = Q7 1(V)d¢ .
= the corresponding state V' can be fully determined accordingly, as %
shown next i

26 /34
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I—Application to the One-Dimensional Euler Equations

m Integral curves of the characteristic family

27/34

27/34



AA214: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS 27 /34

I—Application to the One-Dimensional Euler Equations

m Integral curves of the characteristic family
m recall that the i-th column of Q! (i =1, 2, 3), denoted here by r;,
is the i-th right eigenvector of the Jacobian matrix (here A’)
associated with the i-th eigenvalue \; defining the characteristic

dx .
curve — = \;: It depends entirely and only on the state

V=(p v p)T =(Vi Vo V5)7 and therefore defines a vector field

27/34
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I—Application to the One-Dimensional Euler Equations

m Integral curves of the characteristic family
m recall that the i-th column of Q! (i =1, 2, 3), denoted here by r;,
is the i-th right eigenvector of the Jacobian matrix (here A’)
associated with the i-th eigenvalue \; defining the characteristic

dx .
curve P Ai: It depends entirely and only on the state

V=(p v p)T =(Vi Vo V3)7 and therefore defines a vector field
m since dé = Q(V)dV & dV = Q@ H(V)d¢, it follows that

dV = Q {(V)de = n(V)dg; (11)

i=1

27/34
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I—Application to the One-Dimensional Euler Equations

m Integral curves of the characteristic family
m recall that the i-th column of Q! (i =1, 2, 3), denoted here by r;,
is the i-th right eigenvector of the Jacobian matrix (here A’)
associated with the i-th eigenvalue \; defining the characteristic

dx .
curve P Ai: It depends entirely and only on the state

V=(p v p)T =(Vi Vo V3)7 and therefore defines a vector field
m since dé = Q(V)dV & dV = Q@ H(V)d¢, it follows that

dV = Q {(V)de = n(V)dg; (11)

m hence, one can look for a set of states V() that connect to some
starting state V{ through integration along one of the vector fields r;:
These constitute integral curves of the characteristic family

27/34
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I—Application to the One-Dimensional Euler Equations

m Integral curves of the characteristic family
m recall that the i-th column of Q! (i =1, 2, 3), denoted here by r;,
is the i-th right eigenvector of the Jacobian matrix (here A’)
associated with the i-th eigenvalue \; defining the characteristic

dx .
curve P Ai: It depends entirely and only on the state

V=(p v p)T =(Vi Vo V3)7 and therefore defines a vector field
m since dé = Q(V)dV & dV = Q@ H(V)d¢, it follows that

dV = Q {(V)de = n(V)dg; (11)

i=1

m hence, one can look for a set of states V() that connect to some
starting state V{ through integration along one of the vector fields r;:
These constitute integral curves of the characteristic family

m two states V, and V), belong to the same j-characteristic integral
curve if they are connected via the integral

b -
Vo= Vot [ (Vg (12) e
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I—Application to the One-Dimensional Euler Equations

m Integral curves of the characteristic family (continue)
m consider now the case of a linear hyperbolic equation with a constant
advection matrix A’
m the state vector V can be decomposed in eigen components as follows

3

V(Xu t) = Q_lg(x) t) = Z r,-ﬁ,-(x, t)

i=1
B a j-characteristic integral curve in state-space is a set of states for
which only the component §; along the eigenvector r; varies, while
the components along the other eigenvectors may be non zero but
should be non varying
m for a nonlinear hyperbolic equation, the above decomposition of V is
no longer a useful concept, but the integral curves are the nonlinear
equivalent of this idea

28/34
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I—Application to the One-Dimensional Euler Equations

m Riemann invariants

B one can express integral curves not only as integrals along the
eigenvectors of the Jacobian (as in Eq. (12)), but also curves on
which some special scalars are constant (as in Eq. (11), with only
one d&j # 0 and thus two d§; = 0 = see Egs. (10))

m in the 3D parameter space of V = (Vi, Vo, V3) = (p, vx, p) — but
otherwise 1D Euler equation — each curve is defined by two of such
scalars

m such scalar fields are called Riemann invariants of the characteristic
family

m here, &4 and £ are the Riemann invariants of the 1-characteristic
integral curve
m &y and £_ are the Riemann invariants of the 2-characteristic integral

curve
B & and &4 are the Riemann invariants of the 3-characteristic integral
curve
B the 2- and 3-characteristic integral curves represent here acoustic
waves which, if they do not topple to become shocks, preserve &
entropy: Hence, entropy (&) is a Riemann invariant of these two Y
families

29/34
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|—Application to the One-Dimensional Euler Equations

m Riemann invariants (continue)

m hence, one can regard an integral curve as the crossing line between
two contour curves of two Riemann invariants

V=(p, Yy P)

V=(p, vy P) ' &, contour

&_contour

m the value of each of the two Riemann invariants identifies this »
characteristic integral curve M

30/34
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I—Application to the One-Dimensional Euler Equations

m Riemann invariants (continue)
® in summary, the Riemann invariants

B arise from mathematical transformations made on a system of
first-order partial differential equations to make them more easily
solvable

B are constant along characteristic integral curves of the partial
differential equation

31/34
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I—Application to the One-Dimensional Euler Equations

m Simple waves
m note that if the Riemann invariants are constant along the

. dx .
characteristic curve P A, all flow properties are constant along

this characteristic curve

m by definition, a wave is called a simple wave if all states along the
wave lie on the same integral curve of one of the characteristic
families

m hence, one can say that a simple wave is a pure wave in only one of
the eigenvectors

m examples

B a simple wave in the 1-characteristic family (dV = rnd&p) is a wave
(or region of the flow) in which vx = cst and p = cst but the entropy
s can vary

B a simple wave in the 3-characteristic family (dV = r3d¢_) is for
example an infinitesimally weak acoustic wave in one direction

m in Chapter 5, situations will be encountered where a contact “
discontinuity and a rarefaction wave are simple waves &

32/34
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I—Boundary/lnitial Conditions

xO x1 xX

m The characteristic relations coming to or from the boundaries
determine the number and nature of the required boundary
conditions for solving a given hyperbolic problem

33/34
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|—Expa\nsion Fans and Shocks

X
m In general, characteristic curves of the same family do not intersect:

If they do, they originate from a point to form an expansion fan or
merge into a shock

34/34
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