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L Scalar Convection-Diffusion Equation

m Combines the convection (or advection) and diffusion equations to
describe physical phenomena where physical quantities are
transferred inside a physical system due to two processes, namely,
convection and diffusion

m Convection is a transport mechanism of a substance or conserved
property by a fluid due to the fluid's bulk motion

m Diffusion is the net movement of a substance from a region of high
concentration to a region of low concentration

m Also referred to by different communities as the drift-diffusion,
Smoluchowski, or scalar transport equation

%+?~(;&):?(D?c)+s

where c is the variable of interest (species concentration for mass

transfer, temperature for heat transfer, ---), D is the diffusivity (or ¥
diffusion coefficient), 3is the average velocity of the quantity that is %
moving, and S describes sources or sinks of the quantity ¢
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L Scalar Convection-Diffusion Equation

m Common simplifications

m the diffusion coefficient D is constant, there are no sources or sinks
(5 =0), and the velocity field describes an incompressible flow

(V-3=V-v=0)

Jc

+é’~?c: DV?c
ot

in this form, the convection-diffusion equation combines both
parabolic and hyperbolic partial differential equations

m stationary convection-diffusion equation

V. (3c)=V (DY) + S
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L Scalar Convection-Diffusion Equation

m Why is it a good representative model problem (and of what)?

m for an incompressible flow (p = cst), the Navier-Stokes equations can
be written as

9(pv) + (\7. ?) (pV) = V2 (%(p\?’)) +(F - ?P) (1)

ot

<
N
—~
A
<4
-
I

(V(ow) V2(om) Vi(ow))'
(¥ Fow) ¥-Fow) ¥-T(ow)'

(A(pvx) Alpvy) Apve))”

and fis a body force such as gravity
¥
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L Scalar Convection-Diffusion Equation

m Why is it a good representative model problem? (continue)

m for an incompressible flow (p = cst), the Navier-Stokes equations can
be written as

5 (79 en=5 (Gum) + - T

m compare with the convection-diffusion equation when D is constant
and the velocity field describes an incompressible flow (? -V =0)

%—l—i?c:Vz(Dc)—!—S

= the convection-diffusion equation mimics the incompressible
Navier-Stokes equations

b
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|—Burgers Equation

m Dropping the pressure term from the incompressible Navier-Stokes
equations (1) leads to

oev) (v 9) (o7) = v <‘;(pv)> +f

ot

m In one-dimension and assuming that u is constant, the above
equation simplifies to Burgers equation (proposed in 1939 by the
dutch scientist Johannes Martinus Burgers)

Ovy N Ovy A%v, N
e Vx—(w— =V X
ot ax  oxz &

fx
where v = £ and g = —
P P
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|—Burgers Equation

Ove o, Ov _ v
ot Xox T Vo TE

m The above equation can be transformed into a linear parabolic
¢

equation using the Hopf-Cole transformation (v, = —21/(;56—
X

) then
solved exactly

m This allows one to compare numerically obtained solutions of this
nonlinear equation with the exact one

m For all these reasons, the Burgers equation is often used to
investigate the quality of a proposed CFD scheme for viscous (and
inviscid, see next) flows
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I—Inviscid Burgers Equation

m For v =0 and g = 0, the Burgers equation simplifies to

Ovy Ovy
- +VX—V:O

ot Ox

which is known as the inviscid Burgers equation

m It is a prototype for equations whose solution can develop
discontinuities (shock waves)

m It can be solved by the method of characteristics

m It can be written in strong conservation law form as follows

) o b
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I—Inviscid Burgers Equation

m Consider the following inviscid Burgers problem

10/63

2
Ovy 4 9 (?) 0
ot Ox N
_ v, if x<0
Vx(Xao) - { Vg if x>0 (2)
VK
VXR
VKL
0
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I—Inviscid Burgers Equation

m Consider the following inviscid Burgers problem (continue)
m consider now scaling x and t by a constant a > 0

X = ax, t = at, a>0
m since

9 _ ag and 9 _ oz2

ot ot Ox  0Ox

the inviscid Burgers equation is not affected by this scaling

m furthermore, since the initial condition depends only on the sign of x,

it is not affected by the above scaling
¥
i
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I—Inviscid Burgers Equation

m Scale invariance often implies the risk of multiple solutions

if vi(x, t) is the solution of problem (2), then u(x, t) = vi(ax, at) is
also a solution of problem (2) for any a > 0

hence, desiring uniqueness of the solution of the above problem is
desiring u = v, — that is

Vie(X, t) = (i)
t
this implies that the solution vi(x, t) is constant on the rays
(characteristics) x = ct, and therefore the solution is said to be
self-similar *
in a homework, it will be shown that more precisely, the solution of

problem (2) is
_ o /x X
=5 ()=
this solution is called a rarefaction wave centered at the origin

(x=t=0) B
1Self-similarity is the property of having a substructure analogous or identical to an %
overall structure. For example, a part of a line segment is itself a line segment, and

thus a line segment exhibits self-similarity.
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I—Inviscid Burgers Equation

m Self-similarity in nature (Romanesco broccoli)
R
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I—Inviscid Burgers Equation

m A rarefaction wave can be attached to a constant solution (for a
proof, look at the form of (2))

m It can also join two constants

VX
X
=T
Ve = Vo= 1
-t t x
-1+
V=Y =-1
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I—Inviscid Burgers Equation

m In many circumstances, the uniqueness of the solution is enforced by
imposing the condition that characteristics must impinge on a
discontinuity from both sides, which is known as the Lax Entropy

Condition
m consider a shock located along the curve x = «(t) and traveling at
the speed V = L = v

dt
m let v, (t) and vy, (t) denote the left and right limits of the solution
Vi(x, t) of problem (2) across the shock, respectively
m the Lax Entropy Condition states that

Vi, (1) < V < v (2)

(recall that the flow before a normal shock wave must be supersonic)

m in particular, the Lax Entropy Condition states that the solution
must jump down

m for problem (2), it can be shown that for o > 0, the solution jumps
up at the discontinuity (see initial condition): Thus, the only -
admissible solution — that is, the solution in which any shock %
satisfies the Lax Entropy Condition — is the continuous solution i

which has no shock
15/63
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|—Scalar Conservation Laws

m Scalar conservation laws are simple scalar models of the Euler
equations

m They can be written in strong conservation form as

ou  Of(u)

ot T ax 0 (3)

m Their integral form in the space-time domain [x1, x] x [t!, t?] is

[t )~ a1+ /t: [F (u(e, £)) — F (u(x1, )] dt = O
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|—Scalar Conservation Laws

m The solutions of the integral form (4) may contain jump
discontinuities: In this case, the discontinuous solutions are called
weak solutions of the differential form (3)

m Jump discontinuities in the differential form (3) must satisfy a jump
condition derived from the integral form.

m From (4), it follows that the jump condition for a jump discontinuity
traveling at a speed V is

Fur) — F(us) = V(g —us) & [F)]; = VId; | (5)

and therefore is analogous to the Rankine- Hugoniot relations (recall

[[?*]}2 v+ *g = 0, here with ? f(u))" and

g(x, t)—xfxofV(tftO) %
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|—Scalar Conservation Laws

m Using chain rule, the non conservation form (or wave speed form) of
a scalar conservation law is

ou ou
E"‘Q(U)& — 0
where
df
a(u) = T

m a(u) is called the wave speed
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|—Scalar Conservation Laws

m Examples
2

mf(u) = % = Burgers equation

m f(u) = au = linear advection

2

u
m f(u) = ——————, where c is a constant = Bucky-Leverett
(1) u?+c(1—u)? Y
equation which is a simple model of two-phase flow in a porous
medium
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|—Scalar Conservation Laws

LExpansion Waves

m Scalar conservation laws support features analogous to simple
expansion waves

m For scalar conservation laws, an expansion wave (or a rarefaction
wave) is any region in which the wave speed a(u) increases from left
to right

2(u(x ) <a(uly.t),  bi(t) < x <y < ba(t))

m A centered expansion fan is an expansion wave where all
characteristics originate at a single point in the x — t plane

m Centered expansion fans must originate in the initial
conditions or at intersections between shocks and contacts

(see definitions next) . 2
\/
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|—Sc.';\Iar Conservation Laws

L Expansion Waves

centered rarefaction wave
(expansion fan)

corm
post-

21/63

[pressed,

contact
prefied gas !~ discontinuity
!\
fa
!
/ compressed,
post-shock gas

by A0

.
— shock wave

uncompressed gas
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|—Scalar Conservation Laws

LCompression and Shock Waves

m Scalar conservation laws support features analogous to simple
compression and shock waves

m For scalar conservation laws, a compression wave is any region in
which the wave speed a(u) decreases from left to right

2@ 1) > a(uly, 1), bi(t) < x <y < bo(t))

m A centered compression fan is a compression wave where all
characteristics converge on a single point in the x — t plane

m The converging characteristics in a compression wave must
eventually intersect, creating a shock wave

s
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|—Scalar Conservation Laws
LCompression and Shock Waves

m Mean value theorem: Let f : [a, b] — R be a continuous function on the closed interval
[a, b], and differentiable on the open interval |a, b[, where a < b. Then, there exists some

¢ € ]a, b[ such that f'(c) = w < f(b) — f(a) = f'(c)(b— a) 2

.ly "_'

Secant

y=169 Iy

Tangent at «

2Note that f/(c) = % = ﬁ fab f'(x)dx = average tangent
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|—Scalar Conservation Laws
LCompression and Shock Waves

m Mean value theorem: Let f : [a, b] — R be a continuous function on the closed interval
[a, b], and differentiable on the open interval |a, b[, where a < b. Then, there exists some

¢ € ]a, b[ such that f'(c) = w < f(b) — f(a) = f'(c)(b— a) 2

.ly "_'

Secant

y=169 Iy

Tangent at «

-
a C b x

m A shock wave is a jump discontinuity governed by the jump condition
f(uy) — f(u—) = V(uy — u_) (see (5)): From the mean value theorem, it follows that

_df

Vfa(ﬁ):a(s), u_ < €< u, tg.
¥ /)

2Note that f'(c) = % = ﬁ fab f'(x)dx = average tangent
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|—Scalar Conservation Laws

LCompression and Shock Waves

m A shock wave may originate in a jump discontinuity in the initial
conditions or it may form spontaneously from a smooth compression
wave

m In addition to the jump condition (5), shock waves must satisfy
(think of the Lax Entropy Condition)

la(u) >V > a(u)|

m If wave speeds are interpreted as slopes in the x — t plane, then the
above equation implies that compression waves (characteristics)
terminate on shocks and never originate in shocks (shocks only

absorb waves — they never emit waves)
¥
ik
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|—Scalar Conservation Laws

LContact Discontinuities

m Scalar conservation laws support features analogous to contact
discontinuities — that is, surfaces that separate flow zones of
different density and temperature, but same pressure and velocity

m For scalar conservation laws, a contact discontinuity is a jump
discontinuity from u_ to uy such that

au-) = a(uy)

m Like contacts in the Euler equations, contacts in scalar
conservation laws must originate in the initial conditions and
can occur adjacent to shocks

i
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I—Riemann Problems

m In the theory of hyperbolic equations, a Riemann problem (named
after Bernhard Riemann) consists of a conservation law equipped
with uniform initial conditions on an infinite spatial domain, except
for a single jump discontinuity

m In one-dimension (1D), for a hyperbolic problem governing the field
u, the Riemann problem centered on x = xp and t = t° has the
following initial conditions

0 u if x<xg
ux,t”) = .
(. %) {uR if x> xg

m For example, problem (2) is a Riemann problem
m For convenience, the remainder of this chapter uses xp = 0 and

¥

26 /63
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I—Riemann Problems

m In 1D, the Riemann problem has an exact analytical solution for the:
1) Euler equations; 2) scalar conservation laws; and 3) any linear
system of equations

m Furthermore, the solution is self-similar (or self-preserving): It
stretches uniformly in space as time increases but otherwise retains
its shape, so that u(x, t*) and u(x, t?) are “similar” to each other
for any two times t! and t> — in other words, the solution depends

. . X
on the single variable n rather than on x and t separately

m The Riemann problem is very useful for the understanding of the
Euler equations because rarefaction waves may appear as
characteristics in the solution — and shocks are significant
features in the solution, arising from the characteristics of the
system

m Riemann problems appear in a natural way in finite volume methods
for the solution of equations of conservation laws due to the &
discreteness of the grid: They give rise to the Riemann solvers which &
are very popular in CFD
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Lip Riemann Problems for the Euler Equations
L Shock Tube

m Consider a 1D tube containing two regions of stagnant fluid at
different pressures

m Suppose that the two regions are initially separated by a rigid
diaphragm

m Suppose that this diaphragm is instantly removed (for example, by a
small explosion)

m pressure imbalance = 1D unsteady flow containing a steadily moving
shock, a steadily moving simple centered expansion fan, and a
steadily moving contact discontinuity separating the shock and
expansion 3

m the shock, expansion, and contact separate regions of uniform flow

[
3A steadily moving wave means a wave that propagates with constant speed and %
unchanged structure, i.e., its shape, strength, and profile are time-invariant in a

moving reference frame
28/63
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Lip Riemann Problems for the Euler Equations

L Shock Tube

diaphragm

|1e3

O || [0 =0
a H [}

low
—>
pressure

pressure
— ]

expansion fan contact
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Lip Riemann Problems for the Euler Equations
L Shock Tube

m The flow in a shock tube has always zero initial velocity

m Removing this restriction, the shock tube problem becomes a
Riemann problem and thus is a special case of the Riemann problem

m Major result:

m like the shock tube problem, the Riemann problem may give rise to a
steadily moving shock, a steadily moving simple centered expansion
fan, and a steadily moving contact separating the shock and
expansion; and the shock, expansion, and contact separate regions of
uniform flow

m unlike the shock tube however, one or two of these waves may be
absent — depending on the initial conditions

b
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Lip Riemann Problems for the Euler Equations

LGoverning Equations

M+8J:X =0
ot x
W= pw E). Fo = (v p2+p (E+p)w)

W, = (,DL PLVx, EL)T if x<0
Wg = (pR PR Vxg ER)T if x>0
(6)

W(x,0) = {

2
X

with p= (v —1) (E — pv2) and the speed of sound ¢ given by
2_ 7P
0

C
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Lip Riemann Problems for the Euler Equations
L Exact Solution

m First, consider the shock

m in a frame moving with the (steadily moving) shock, the
Rankine-Hugoniot conditions * can be written as

p2(VX2 - V) = pl(vxl - V)
/)2(sz - V)2+P2 = pl(VXl - V)2+Pl
(B +p2)( = V) = (Bt p)(vm — V)

where V is the speed of the shock

m recall the expression of the speed of sound

=4
p

[
s
“4In this case, the Rankine-Hugoniot conditions are given by [[?x}]% R [[]-'X}]% =0
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Lip Riemann Problems for the Euler Equations

LExact Solution

Exact Solution

m First, consider the shock (continue)
m from the Rankine-Hugoniot conditions applied in a frame moving

with the (steadily moving) shock it follows that

a1 P2
-G (2 ™)
ot P1

(8)

BEEEN
. whs

p1

— functions of the ratio
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Lip Riemann Problems for the Euler Equations
LExact Solution

Exact Solution

m Next, consider the contact discontinuity
m by definition

Vg =  Vx (10)
P33 = P2 (11)
m Finally, consider the simple centered expansion fan
m recall that for the 1D Euler equations, an expansion wave is a wave
where the wave speed (vy, or vix £ ¢) increases monotonically from
left to right
m recall that a simple wave is a wave where all states lie on the same
integral curve of one of the characteristic families = a simple wave
in the entropy characteristic family & is a wave where
dé+ = dé_ = 0 and therefore v, = cst and p = cst = entropy
waves cannot create expansions "
m it follows that the simple centered expansion fan here is a simple
centered acoustic fan associated with the characteristic curve &
dx = (v« — ¢)dt
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Lip Riemann Problems for the Euler Equations
L Exact Solution
m Finally, consider the simple centered expansion fan (continue)
m along the integral curve of a simple centered expansion fan
associated with the characteristic curve dx = (v — ¢)dt, the two
Riemann invariants & (entropy) and &+ are constant
dp _ 2c
pc  y—1

d, =1
déo = dp — C—l; =0=p=ocstp’ and c = \/cst*yp72 =

2
des =dvi+ %2 — 05 €0 = v+ 25 = cst for dx = (e + C)dt
pc v—1

2c

(andg,:vx—wi1

for dx = (vx — ¢)dt)

m hence, along the integral curve of a simple centered expansion fan
associated with the characteristic curve dx = (vx — c)dt and on this
characteristic curve

2c 2c
s=cst, v+ —— =cst, and vy — o = cst
P

1 v — €
therefore in this flow region, all flow properties are constant and R
dx = (v« — c)dt becomes the straight line x = (v« — c)t + cst
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Lip Riemann Problems for the Euler Equations
L Exact Solution

m Finally, consider the simple centered expansion fan (continue)
m now, along the integral curve of a simple centered expansion fan

associated with the characteristic curve x = (vx — ¢)t (cst =0 as
fan centered at 0)

2c N 2¢cy
y—1 T ~y—1

Vx +

m hence along this integral curve and on the characteristic curve
X .
x=(w—c)t&c=v— : the following holds

v—|—72 (v i)—v—|—2c4
X "}/—1 X — Vxy "}/—1

W
2y
) s
p = (from the isentropic relations)
Cy

36/63
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Lip Riemann Problems for the Euler Equations
L Exact Solution

37/63

m Combine now the shock, contact, and expansion results to determine

(Pz) across the shock in terms of the known ratio Pe _ PL
p1 b1 Pr
. . 2c L
m simple wave condition vy + o cst implies
=
2C3 2C4
Vi3 + ﬁ = Vx4 + ﬁ (12)

m from the third of equations (36) and (12) it follows that

5 =1
Cs p3\ >

x3 — Vx, 1-—- -

Ve v4+7—1[ (P4) }

m from (10), (11) and (12) it follows that

y=1 =

= p2> i = (pl (pz)) i
Vi, = Vi, + 1— (= = v+ 1— (2 (=
2 71[ <p4 fy—1 ps \ p1
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Lip Riemann Problems for the Euler Equations
L Exact Solution

m Solving equation (13) for Pa gives
p1

2y
—-1 Tyl
Ps _ (’”) {1 vy — ) (14)
2C4

p1 p1

m Finally, combining (8) and (14) delivers the nonlinear equation in
(5)
P1
A
p1 p1 A 2) _ 1) +1
P1

(15)

which can be solved by a preferred numerical method to obtain

2¢y ol
™
(Pz) and therefore p, %
b1

38/63
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Lip Riemann Problems for the Euler Equations

LExact Solution

Once p, is found, equation (8) gives vy,, equation (7) gives ¢y, and
equation (9) gives the speed of the shock V/, which completely
determines the state 2

Then, equations (10) and (11) give vi, and p3 and equation (12)
gives c3, which completely determines state 3
And from the expressions of all components of the solution indexed

by the subscripts 2 and 3, it follows that the shock, expansion, and
contact separate regions of uniform flow

Finally, the first, second, and third of equations (36) deliver vy, c,
and p inside the expansion, respectively

In some cases (depending on the values of W, and Wg), the
Riemann problem may yield only one or two waves, instead of three:
To a large extent, the solution procedure described above handles
such cases automatically
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Lip Riemann Problems for the Euler Equations

LRiemann Problems for the Linearized Euler Equations

m The exact solution of the Riemann problem (6) is (relatively)
expensive because finding p, requires solving the nonlinear
equation (15)

m To this effect, approximate Riemann problems are often constructed
as surrogate Riemann problems for the Euler equations

m Here, the family of approximate Riemann problems based on a
linearization of problem (6) is considered in the general case of m
dimensions
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Lip Riemann Problems for the Euler Equations

LRiemann Problems for the Linearized Euler Equations

m Consider the linear Riemann problem

OW | oW _
ot ox
[ WL if x<0
W(x.0) = {WR if x>0 (16)

where A is an m X m constant matrix whose construction is
discussed in the next section

m Assume that A is diagonalizable
A= QAQ, A =diag(A1, -+, Am)

where @ and A are constant matrices, and that r; and /;,
i=1,..., mare its right and left eigenvectors, respectively

AI’,’ = )\,’I‘,‘, ATé,' = )\,[,- (OI’ é,TA = )\,EIT )

41/63
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Lip Riemann Problems for the Euler Equations

LRiemann Problems for the Linearized Euler Equations

m In the linear case, the change to characteristic variables dé = QdW

simplifies to

and leads to the following characteristic form of problem (16)

o6 | 08
E+A§ 0

B f[_:QW[_ if x<0
§(x,0) {gR:QWR if x>0

m The individual form of the above problem is

96 &; .
o + A I 0, i=1 .., m
f'(X 0) { f[_l. = EITW[_ if x<0

[
ER/,:f,-TWR if x>0 (17)%
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Lip Riemann Problems for the Euler Equations

LRiemann Problems for the Linearized Euler Equations

- E.;Ll
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|—lD Riemann Problems for the Euler Equations

LRiemann Problems for the Linearized Euler Equations

T 2, hed il
L t
& = E.le & =&u
M L=k Y
&= s & =Cs
=Rl &1=¢&un &=
t & =S & = Ero
& =63 & = &3
X

44 /63
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Lip Riemann Problems for the Euler Equations

LRiemann Problems for the Linearized Euler Equations

m Since ); is constant, the solution of problem (17) is trivial: For
m = 3, it can be written as (A1 > Ay > A3)

(L e &) if Z<ng
(51-1 ng §R3)T if /\3 < % < Ao

. X
(£L1 £R2 gRs)T if )‘2 < ? < )\1

(§R1 §R2 §R3)T if ? >\
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Lip Riemann Problems for the Euler Equations

LRiemann Problems for the Linearized Euler Equations

45 /63

m Since ); is constant, the solution of problem (17) is trivial: For
m = 3, it can be written as (A1 > Ay > A3)

(€L, &1, &5)T
(€ €1, ry)T
(6L &ry €r))T
(&R &R, €R))T

X
if — <A
I ; < A3
if A3 < % < X
N (18)

if - > A
| ¢ 1

mIf AW = Wg — W, then A{ = QAW, and AE; = Z,-TAW is often
referred to as the strength or amplitude of the i-th wave

45/63



AA214: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS 45 /63
Lip Riemann Problems for the Euler Equations

LRiemann Problems for the Linearized Euler Equations

m Since ); is constant, the solution of problem (17) is trivial: For
m = 3, it can be written as (A1 > Ay > A3)

(L e &) if Z<ng

t
(€L &L Sr)T I A< Zen
e =€(%) = ¢ (18)
! (St &r &R)TIF Do < T <N
(§R1 §R2 §R3)T if % >\

mIf AW = Wg — W, then A{ = QAW, and AE; = Z,-TAW is often
referred to as the strength or amplitude of the i-th wave
m Let

AL = (86 00), A =(0A&0)", AS =(00Ag)"

v
Note that the superscripts used above are NOT powers: They are %
used only to distinguish each of the above vector quantities from the |

scalar jump A&; in the i-th characteristic
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m Noting that A& + A2 + AE3 = A¢ = &g — &, the solution (18)
can be rewritten as

€L =& — A — A2 — AgLif §<>\3<>\2</\1
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m Noting that A& + A2 + AE3 = A¢ = &g — &, the solution (18)
can be rewritten as
€1 = tr— AL — AL2 — A if §<,\3<,\2 <A

&+ Ag3
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m Noting that A& + A2 + AE3 = A¢ = &g — &, the solution (18)
can be rewritten as

€ =Er — A — A — AgYif §<,\3<,\2 <\

EL+ A8 =Er— AL — A if A< ; <X <A
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m Noting that A& + A2 + AE3 = A¢ = &g — &, the solution (18)
can be rewritten as

€L =Er— AL — A2 — AgLif §<>\3<>\2</\1
Cx ELAAS =Er— A2 — ALl if A3< <<\

et =8(%) = £x (19)
t L+ AL+ AL =g — AL f M <do <L <M

EL+AS+ AL+ AL =g if A3<A2<A1<§
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m Noting that A& + A2 + AE3 = A¢ = &g — &, the solution (18)
can be rewritten as

€L =Er— AL — A2 — AgLif §<>\3<>\2</\1
Cx ELAAS =Er— A2 — ALl if A3< <<\

et =8(%) = £x (19)
t L+ AL+ AL =g — AL f M <do <L <M

EL+AS+ AL+ AL =g if A3<A2<A1<§

m And noting that Q 1A¢ = A&r;, i = 1, 2, 3, the solution (19) can
be rewritten in terms of the original variables W = Q¢ as follows
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m Noting that A& + A2 + AE3 = A¢ = &g — &, the solution (18)
can be rewritten as

€L =Er— AL — A2 — AgLif §<>\3<>\2</\1
Cx ELAAS =Er— A2 — ALl if A3< <<\

et =8(%) = £x (19)
t L+ AL+ AL =g — AL f M <do <L <M

EL+AS+ AL+ AL =g if A3<A2<A1<§

m And noting that Q 1A¢ = A&r;, i = 1, 2, 3, the solution (19) can
be rewritten in terms of the original variables W = Q¢ as follows

Wi = Wg — Asrs — Abors — Abrr if ; <A< <A

X Wi+ A&rs = Wr — Ao — Aéin if A3 < % <A< A

w (7) W, + A&srs + Abors = Wr — Afyry if A3 < Ap < ; <A
Wi+ A&+ A+ Aéin = Wr  if A3< <A1 < ;
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m Many CFD methods do not use the solution of a Riemann problem
directly, whether expressed in terms of £ or W, but use instead only

the flux at x =0

m Here (linear Riemann problem), the flux function at x = 0 is AW(0)

m From (20), it follows that

AW = AWR — A&3A3r3 — A& dor — A1Ain
AW(0) = AW + Aé3A3rs = AWR — A don — Aéidin
AW + A3 A3rs 4+ Adodorn = AWR — Ad1Ain
AWL + A&3A3r3 + A& dor + Aéidin = AWR

if
if
if
if

0< A3 <A<,
A3<0< <N
A3 < A<0< A
A3 <A <A <0
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m Many CFD methods do not use the solution of a Riemann problem
directly, whether expressed in terms of £ or W, but use instead only
the flux at x =0
m Here (linear Riemann problem), the flux function at x = 0 is AW/(0)
m From (20), it follows that
AW, = AWR — A&3dzrs — Aéodorn — A& if 0< A3 <A< g
AW(O) o AW + A&3A3rs = AWR — A& o — A dn if A3 <0< < A\
AW 4 A&3Azrs + Aéadorn = AWR — A& if A3 < <0<\
AW + A&3A3rs + Ao + Aéiain = AWgr  if A3 < <A1 <0

m Let A, =min(0,\;) and AT = max(0,\;) = A7 — A7 = |\
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Many CFD methods do not use the solution of a Riemann problem
directly, whether expressed in terms of £ or W, but use instead only

the flux at x =0

m Here (linear Riemann problem), the flux function at x = 0 is AW(0)
m From (20), it follows that

AW, = AWgR — A&3Azrs — Aéodory — A& i if
AW(0) = AW + Aé3Azrs = AWR — Al dor — A& if
AW + A& A3rs 4+ Ao dorn = AWR — Aéihin if
AW + A&3Azrs + A& dor + A1 din = AWR  if

0< A3 <A<,
A3<0< <N
A3 < A<0< A
A3 <A <A <0

m Let A, =min(0,\;) and AT = max(0,\;) = A7 — A7 = |\
m Then, the flux function at x = 0 can be rewritten as

3
AW(0) = AW+ A AGr

i=1
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Many CFD methods do not use the solution of a Riemann problem
directly, whether expressed in terms of £ or W, but use instead only

the flux at x =0

m Here (linear Riemann problem), the flux function at x = 0 is AW(0)
m From (20), it follows that

AW = AWR — A&3A3r3 — A& dor — A1Ain
AW(0) = AW + Aé3A3rs = AWR — A don — Aéidin
AW + A3 A3rs 4+ Adodorn = AWR — Ad1Ain
AWL + A&3A3r3 + A& dor + Aéidin = AWR

if
if
if
if

0< A3 <A<,
A3<0< <N
A3 < A<0< A
A3 <A <A <0

m Let A, =min(0,\;) and AT = max(0,\;) = A7 — A7 = |\
m Then, the flux function at x = 0 can be rewritten as

3 3

AW(0) = AW+ A\ A& = AWg — Y A AGr

i=1 i=1
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Many CFD methods do not use the solution of a Riemann problem
directly, whether expressed in terms of £ or W, but use instead only

the flux at x =0

m Here (linear Riemann problem), the flux function at x = 0 is AW(0)
m From (20), it follows that

AW = AWR — A&3A3r3 — A& dor — A1Ain
AW(0) = AW + Aé3A3rs = AWR — A don — Aéidin
AW + A3 A3rs 4+ Adodorn = AWR — Ad1Ain
AWL + A&3A3r3 + A& dor + Aéidin = AWR

if
if
if
if

0< A3 <A<,
A3<0< <N
A3 < A<0< A
A3 <A <A <0

m Let A, =min(0,\;) and AT = max(0,\;) = A7 — A7 = |\
m Then, the flux function at x = 0 can be rewritten as

3 3
AW(0) = AW+ A\ A& = AWg — Y A AGr
i=1 i=1
1 1< 2
= EA(WR + W) — 5 |Ni| AEjr; (21) %

i=1

47/63



AA214: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS
Lip Riemann Problems for the Euler Equations

LRiemann Problems for the Linearized Euler Equations

m Note that
)\,*—)\,’ :|)\,-|:/\+—/\_ = |A|

M+ =XN=A"+A =A
(Definitions) AT = Q7IATQ, AT =Q'AQ,
AT+ A" =A AT A =|A

48 /63

Al = QHAIQ
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m Note that
)\,*—)\,’ :|)\,-|:/\+—/\_ = |A|

M+ =XN=A"+A =A
(Definitions) AT =Q7'ATQ, A" =Q7'ATQ, [Al=Q'AQ
At + A" =A AT —A = A
m It follows that
3

3
DN AGH = QY T INIAE = QTHAl AS = |A|(Wk — W)
i=1 . i=1
Q-TAc QAW
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m Note that
M= A =[N = A=A =\
M+ =XN=A"+A =A
(Definitions) A" = Q7'ATQ, A" =Q7'ATQ, |Al=Q7'AQ
AT +AT = A At — AT = |A|

m It follows that

3 3
SN AGr = Q7 STINIAE = QYA AE = |A|(Wk — W)
i=1 . i=1
Q1AL QAW

m Hence, the solution (21) can be written as

AW(0) = AW, + A~ (Wg — W,) = AWg — AT (Wg — W)

— | AW(0) = %A(WR + W) - %\A\(WR -w)| (22 %
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L Secant Approximations

m Consider first any nonlinear scalar function f(w), where w is also a
scalar variable, and let

df (w)
dw

a(w) =

m Two linear approximations of the function f(w) are
m the tangent line approximation(s)

m the secant line approximation
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L Secant Approximations
m Tangent line approximations
aboutwg : f(w) = f(wg) + a(wg) (w — wg)
aboutw; @ f(w) = f(wy) + a(wy) (w — wy)

These two approximations are more accurate near wg and w,
respectively
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L Secant Approximations

m Secant line approximation

f(W) ~ f(WR) + aRL(w — WR) = f(W) ~ f(WL) + aRL(W — WL)

where
_ f(wr) — f(w)
aRL - <
(wr — wp)
It is more accurate on average over the entire region between w;
and wg
i
v
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L Secant Approximations

m The mean value theorem connects tangent line and secant line
approximations as follows

ar. = a(n) for n between w; and wg

which essentially states that secant line slopes are average tangent
line slopes
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L Secant Approximations
m Consider next any nonlinear vector function (W), where W is also

a vector
m The tangent plane approximation about W is defined as

F(W) > F(WL) + AW (W — W) |

df . ) .
where A = W is the Jacobian matrix
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L Secant Approximations
m Consider next any nonlinear vector function (W), where W is also

a vector
m The tangent plane approximation about W is defined as

F(W) > F(WL) + AW (W — W) |

where A = d—f is the Jacobian matrix

m A secant plane is any plane containing the line connecting W, and
Wkg: There are an infinite number of such planes

53/63



AA214: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS 54 /63
L Roe’s Approximate Riemann Solver for the Euler Equations

L Secant Approximations

m Secant plane approximations are defined as follows

F(W) & F(WL) + Apc (W — W,) = F(Wr) + Arc (W — W)

where Ag; is any matrix such that

’ f(WR) — f(W,) = Ar.(Wr — W) ‘ (23)

s
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L Secant Approximations

m Secant plane approximations are defined as follows

F(W) & F(WL) + Apc (W — W,) = F(Wr) + Arc (W — W)

where Ag; is any matrix such that

’ f(WR) — f(W,) = Ar.(Wr — W) ‘ (23)

Age is a matrix with m? elements: Hence, equation (23) consists of

m Note that if each of W and f(W) is a vector with m components, 2
\/
m equations with m? unknowns

54/63



AA214: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS

55 /63

L Roe’s Approximate Riemann Solver for the Euler Equations

L Secant Approximations

m Example 1

fi(Wr) — A(WL)

WR1 —

m Example 2

fi(WRr) — A(W,)

fi(WRr) — A(W,)

fi(WRr) — A(W,)

Wgy — Wiy

H(WR) — (W)

Wy, — Wi,

H(WR) — (W)

We, — Wi,

H(WR) — H(W,)

3 Wr, — Wiy

f3(WR) — (W)

W, — Wi,

f3(WR) — (W)

Wr, — Wi,

f3(WR) — (W)

We, — Wi,

Wgy, — Wi,

Wr, — Wi,
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L Secant Approximations

/

f(Wg) — f(W,) = Are (Wr — W)

m By analogy with the scalar case, suppose that one requires that in
the vector case, secant planes be average tangent planes: In this
case,

ArL = A(Wkge)
where Wg, is an average between Wg and W, and there are only m 2
\/

unknowns — the components of Wg; — that can be determined by *

solving equation (23)
56 /63
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L Roe Averages

m Consider now the one-dimensional Euler equations: For these
equations, the conservative state vector W, flux vector F,, and

. ) OF, .
Jacobian matrix A = —= can be written as

ow
T 1 1 2\
W = (p pw E) =[p pvx —ph+ —(v—1)pv;
Y 2y
T vy—1 v+1 T
Fx = (/)Vx v+ p (E+p)vx) = (K)Vx ——ph+ oV} Pth>
Y 2y
0 1 0
A = “’T*E‘VXZ (3 —7)w y—1 (24)

—veh+3(v =1 h—(v =1  yu

H
where h = — is the specific enthalpy and H = E + p is the total

P
enthalpy per unit volume ™ ?
¥ \/
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L Roe’s Approximate Riemann Solver for the Euler Equations
LRoe Averages
m Choose Ag; = A(Wkgy): In this case, equation (24) leads to the Roe-average Jacobian matrix

0 1 0
Apl = 13 VERL (B = Vvps y—1

Ve hre (Y =DV b= (v = Ve Vv
(25)
m Solving equation (23) using the above Roe-average Jacobian matrix leads after several
algebraic manipulations to
VPRVxg + /PLVx,
V, = _—
RL /PR + ﬁ

il
h R T W _ V/PrRhR + /PLhL
RL =
VPR+PL PR+ PL

m The usual perfect gas relationships hold between the Roe-averaged quantities: for example

1, ch 1,
hRL:EVXRL+’y—l = CRL = (’y—l) hRL_EV)‘RL

m Finally, define prr = /PrRPL

2
PRLCRL
= PRL = —
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LAlgorithm and Performance

m Roe's approximate Riemann solver

XRL

T
Xgi. SR Vit CaL
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m Roe’s approximate Riemann solver for the Euler equations (vector function f = F) is based
on two ideas: (1) the linear (secant) approximation of the flux vector

Fu(W) m Fo(W) = Fu(Wi) + Apc(W — W) = Fi(WR) + Arc (W — Wg) (26)

where Ag, is the Roe-average Jacobian given in (25); and (2) the exact solution of the
linear Riemann problem (16) with A = Ag, (see also (20) for A = Agy)
m Indeed, substituting (26) into the Euler equations (6) gives

BW+ {.7:(W)+A (W — W)}*8W+A 6W70
ot L RL =7, Rl =
m From (26) and (22), it follows that Roe's approximate Riemann solver computes the fluxes
at x =0as
Fe(W(0)) = Fu(Wo) + Ape (W(0) — Wi) = Fx (WR) + At (W(0) — W)

= ; (]: (WR) + Fx ( )) +ARLW(0) - *ARL(WR =+ WL)
= ;(]: (WR) + F(W, ))+;ARL(WR+WL) —|ArL|(Wr — W,)
- EARL(WR + Wi)

2 ™
(Fx(Wr) + Fx(WL)) — §|ARL|(WR - W) |

60/63
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LAlgorithm and Performance

m Like the true (exact) Riemann solver, Roe's approximate Riemann
solver yields three equally-spaced waves (see previous Figure)

m Unlike in the true Riemann solver however, all three waves in Roe's
approximate Riemann solver have zero spread (hence, Roe's
approximate Riemann solver cannot capture the finite spread of the
expansion fan)

m Roe’s approximate Riemann solver for the Euler equations is roughly
2.5 times faster than the exact Riemann solver

m What about its accuracy?
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m Suppose that the exact Riemann problem yields a single shock or a
single contact with speed V (recall that unlike in the shock tube
problem, one or two of the shock, contact, and expansion waves may
be absent in the solution of the exact Riemann problem)

m The shock or contact must satisfy the Rankine-Hugoniot conditions
.FX(WR) — fX(WL) = V(WR — WL) (:> V= CSt)

m For Roe's approximate Riemann solver, Ag; must satisfy the secant
plane condition

Fu(Wg) = Fu(WL) = Apc(Wr — W)

m it follows that
Art(Wr — W) = V(Wr — W)

v
which implies that V is a characteristic value (eigenvalue) of Ag. %
and Wg — W, is a right characteristic vector (eigenvector) of AgL
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m Let V = )j and Wg — W, = r;: then, the strength of the i-th wave
is given by
A& =T (We— W) =T =6;(QQt=n=14 1+ T 7=
§=10; (Wr— W) =0 rj = 6 ( =1)= 0 if i#j
= two of the three waves have zero strength

3
m Since AW = Q71A¢ = Y rAg;, it follows that the single non
i=1
trivial wave makes the full transition between W, and Wk at the

speed V
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m Let V = )j and Wg — W, = r;: then, the strength of the i-th wave
is given by
1 if i=j
T T -1 J
AE,-:&(WR—WL):Z,-I’J':(SU(QQ :I):{O if I7£j
= two of the three waves have zero strength
3
m Since AW = Q71A¢ = Y rAg;, it follows that the single non
i=1
trivial wave makes the full transition between W, and Wk at the
speed V
m It follows that for a single shock or a single contact, Roe’s
approximate Riemann solver yields the exact solution!

63/63



AA214: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS 63 /63

L Roe’s Approximate Riemann Solver for the Euler Equations

LAlgorithm and Performance
m Let V = )j and Wg — W, = r;: then, the strength of the i-th wave
is given by
1 if i=j
— — =0Ty =6, “1_n= J
Af, _gl (WR WL) fl g 6U(QQ I) { 0 if I7£j
= two of the three waves have zero strength

3

m Since AW = Q71A¢ = Y rAg;, it follows that the single non
trivial wave makes the fuIII %transition between W, and Wk at the
speed V

m It follows that for a single shock or a single contact, Roe’s
approximate Riemann solver yields the exact solution!

m Except in the above case however, Roe's approximate Riemann
solver deviates substantially from the true Riemann solver: more
specifically, unlike the true nonlinear flux function, Roe's linear flux
function allows for expansion shocks — that is, jump discontinuities
that satisfy the Rankine-Hugoniot relations but expand rather than
compress the flow and therefore violate the second law of
thermodynamics

b
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