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AA214: NUMERICAL METHODS FOR

COMPRESSIBLE FLOWS
The Finite Volume Method

These slides are partially based on the recommended textbook: Culbert B. Laney.
“Computational Gas Dynamics,” CAMBRIDGE UNIVERSITY PRESS, ISBN 0-521-62558-0

i
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Outline

Conservative Finite Volume Methods in One Dimension
Introduction to Reconstruction-Evolution Methods

First-Order Upwind Reconstruction-Evolution Methods

B Introduction to Second- & Higher-Order Reconstruction-Evolution
Methods

EH The MUSCL/TVD Method

[@ The Steger-Warming Flux Vector Splitting Method for The Euler
Equations

Multidimensional Extensions
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Note: The material covered in this chapter equally applies to scalar
conservation laws and the Euler equations, in one and multiple
dimensions. To keep matters as simple as possible however, this material
is presented primarily in one dimension then briefly extended to multiple
dimensions.
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|—Conservative Finite Volume Methods in One Dimension

—
e
2 i3/2 1 i1/2 i i+1/2 i+l i#3/2 42

m Recall that the integral form of a conservation law can be written as

¢+l

[ et a0 de = = [0 (w1 200) — F (a2, )]

Xi—1/2 t
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|—Conservative Finite Volume Methods in One Dimension

—
e
2 i3/2 1 i1/2 i i+1/2 i+l i#3/2 42

m Recall that the integral form of a conservation law can be written as

tn+1

/ T, 67— u(x, )] o = — [ 1 /20 0) = (w2, 0)]

Xi—1/2 t"

m This leads to the following numerical conservation form

7oa\ o o
At(at). = —Mfi1o —f21)2) (1)
where
1 e , 1
THES E/ u(x, t")dx, £y, = E/t F(u(xis1ye,t)) dt

Xj—1/2
(2)

and the rest of the notation is the same as in the previous Chapter

&
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|—Conservative Finite Volume Methods in One Dimension

m I is the spatial cell-integral average value of u at time t” — that is, the average value of u
in the cell (or control volume) [x;_1/2, Xj11/2] at time t"
] Ffll/z is the time-integral average of f at the point x;;1/2
m Note that for a uniform spatial discretization,
Xit1/2 — Xj—1/2 = (X,'+1 + X,')/Z — (X,' + X,'_l)/2 = (X,'+1 — X,'_1)/2 = Ax is constant,
Xi+1/2 = X; & Ax/2, and therefore

1

[ gtodk = a) + 084" ©

Xi—1/2

m From (1)—(3), it follows that

m if u? is replaced by &}, ALL concepts and results presented in the previous Chapter —
that is, for the finite difference method — equally apply for the finite volume method
presented in this Chapter

B on a uniform spatial discretization, @ = u + O(Ax?) = first-order accuracy and
second-order accuracy in space are not affected by identifying & with u] and
vice-versa = there is no need to distinguish between finite volume and finite
difference when the order of spatial accuracy is less or equal to 2

W the “bar” notation is often dropped in the remainder of this chapter, particularly

when this should not create any confusion
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|—Introduction to Reconstruction-Evolution Methods

L ,—I L
. . .
i-2 i-3/2 i-1 i-1/2 i i+1/2 i+l i+3/2  i+2
Xit1/2 "t
/ [u(x, )~ u(x, ")] dx = — / [F (u(xis1 20 £)— F (ulxi_1/2, £))] dt
Xi—1/2 "

ou £n £n
At<at> = A2 = 1112)

tn+1

. L/Xﬁm u(x, t")dx, F1 A 7/ f(u(xisront) dt g
u; = Ax e 9 3 i+1/2 ~ At " i+1/25 ! &
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|—Introduction to Reconstruction-Evolution Methods

m Two-step finite volume design approach
m spatial reconstruction
m reconstruct u(x, t") in each cell without necessarily accounting for
the upwind direction
m this step differentiates the finite volume method which forms u then
f(u), from the finite difference method which forms directly f(u)

m temporal evolution
m approximate u(xiy1/2, t) for t" <t < t" = {i(x;y1/0, t), then

evaluate
tn+1

. 1 B

fi11/2: E/tn f(U(X,'+1/2,t)) dt

m any reasonable approximation based on waves and characteristics
naturally introduces the minimal amount of upwinding required by
the CFL condition
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|—Introduction to Reconstruction-Evolution Methods

m Two-step finite volume design approach
m spatial reconstruction
m reconstruct u(x, t") in each cell without necessarily accounting for
the upwind direction
m this step differentiates the finite volume method which forms u then
f(u), from the finite difference method which forms directly f(u)
m temporal evolution
m approximate u(xiy1/2, t) for t" <t < t" = {i(x;y1/0, t), then

evaluate
1 tn+1

n _ 1 "

i = At /t“ f (0(xiz1/2, 1)) dt

m any reasonable approximation based on waves and characteristics
naturally introduces the minimal amount of upwinding required by
the CFL condition

m Reconstruction-evolution methods are sometimes called
Godunov-type methods or MUSCL-type methods e ig
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|—Introduction to Reconstruction-Evolution Methods

characteristic lines

(pe(t) = p,(x))

tn+1

P ]| f(p.(t)d

tn

Xi1/2

u(x, t") = p,(x)

= (/a0 "o 0 ax . i :
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|—Introduction to Reconstruction-Evolution Methods

m Example: first-order reconstruction-evolution method for the linear
advection equation

B piecewise constant reconstruction in the cell [x;_1 /2, Xi11/2]:
u(x, t") = pr(x) = @y

m for the linear advection equation, u(x, t) = u(x — a(t — t"), t") and
therefore

U(Xiv172,t)  ~  (Xiq1/2,t)
= Peir12(t) = pr (xiz12 —a(t —t")); —1<Aa<1
a’ for 0<Xia<l1
ufy, for —=1<Xxa<o0
m then

¢+l ¢+l

. 1 1
it1/2 = E/tn f (Peit1/2(t)) dt = E/ ape,iv1/2(t)dt

tn
aa; for 0<Xa<1 s )
ag’,; for —1<Xa<0 R
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|—Introduction to Reconstruction-Evolution Methods

| 1 |
T ——1

-2 i-3/2 i1 i-1/2 i i+1/2 i+l i+43/2  i+2

m What if the previous example was about a nonlinear conservation
law instead of the linear advection equation?
B piecewise constant reconstruction

B gives rise to a Riemann problem at each cell edge, and the Riemann
problem has an exact solution at x/t =0

B an approximate Riemann solver can be used instead of the true
Riemann solver without changing the numerical solution (surprisingly)

m higher-order reconstruction

B the jump at each cell edge in the higher-order piecewise polynomial
reconstruction gives rise to a problem that lacks a known exact
solution

. . . . w
B the exact solution can be approximated using Riemann solvers

10/62
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|—Introduction to Reconstruction-Evolution Methods

 ——— o ]

T [====s= I
i-3/2 12 0 i#l/2 i+l i43/2

i+5/2
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I—First-Order Upwind Reconstruction-Evolution Methods

L Scalar Conservation Laws

m Suppose that the reconstruction is piecewise constant: Then, each
cell edge gives rise to a Riemann problem
m The exact evolution of the piecewise constant reconstruction yields

~ A

“,Hl =ui — )‘(fin+1/2 - 7L—irl1/2)

where

t,nJrl

N 1
,"_;_1/2 = E [n f (URiemann(Xi+l/2a t)) dt
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I—First-Order Upwind Reconstruction-Evolution Methods

L Scalar Conservation Laws

Suppose that the reconstruction is piecewise constant: Then, each
cell edge gives rise to a Riemann problem
The exact evolution of the piecewise constant reconstruction yields

“,Hl =ui — )‘(fin+1/2 - 7‘;'11/2)

~ A

where

n+1

- 1t
,"_;_1/2 = E/ f (URiemann(Xi+l/2a t)) dt

tn

Since the solution of the Riemann problem is self-similar (a function

of (x — x,-+1/2)/t), uRiemann(Xi+1/2a t)=u ((Xi+1/2 - Xi+1/2)/t))
= u(0) is constant for all time

g A,'C’rl/z =f (URiemann(Xi+1/27 t)) = f(URiemann(O)) (4)

approximate Riemann solver and t is any arbitrary time t > t”
Many first-order upwind methods for scalar conservation laws are
based on (4)

where f (URiemann(Xi+1/2, t)) is computed using any exact or B E
U/
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L First-Order Upwind Reconstruction-Evolution Methods

L Scalar Conservation Laws

= Upwind methods based on £, 12 = F (URiemann(Xi41/2, 1))

iv5/2

o s

2 0 w2 i+l i3

32

)2;11/2 =f (URiemann(Xi+1/27 t)) = f(URiemann(O))

13/62

m above equation assumes that the waves from different cell edges do
not interact (or at least that any interaction does not affect the

m |Xa(u)| < 1/2 = waves originating at one cell edge cannot interact [

solution at the cell edges)

with those originating from any other cell edge

® |Aa(u)| < 1= they can, but the interactions cannot reach the cell

edges in one time-step

13/62
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I—First-Order Upwind Reconstruction-Evolution Methods

L Scalar Conservation Laws

m Upwind methods based on )e,-’jrl/2 =f (URiemann(Xi+1/27 t))

o | o 1
T r T

C— 1 =
i3/2 12 0 172 i+l is3/2 i+5/2

m CFL condition: |Aa(u)| <1

conservative, consistent, converge when Ax — 0 and At — 0 and

the CFL condition is satisfied

explicit, finite volume

linearly stable provided the CFL condition is satisfied

satisfy all nonlinear stability conditions of previous Chapter s
formally 1%*-order accurate in space and time (except possibly at i
sonic points)

14 /62
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I—First-Order Upwind Reconstruction-Evolution Methods

L Scalar Conservation Laws

m Upwind methods based on fiﬁrl/2 =f (uR,-ema,,,,(x,-H/z, t)) (continue)

m if [Aa(u)| < 1, waves can interact only if there is a compressive sonic (sonic
= a(u) = 0, compressive = wave direction switches from right to left)
point inside the cell

compressive sonic point

waves at the left cell edge are right-running, counterparts at the right cell
edge are left-running

B if the wave speeds are always positive, all waves originating from Xi11/2 are
right-running = fiil/z = f (URiemann(Xi+1/2, t)) = f(u) = FTBS

m if the wave speeds are always negative, all waves originating from x;, 1>
are left-running = fig—l/2 =f (uR,-emann(X,-H/Q, t)) = f(u;’H) = FTFS

B the above is true for the exact Riemann solver or any reasonable
approximate Riemann solver = all first-order upwind methods based on .

fl.”+1/2 =f (uR;emann(X;+1/2, t)) are FTBS or FTFS except near sonic points

where the wave speeds change sign |

1 Compressive sonic points typically occur inside stationary or slowly moving shocks.
15/62
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I—First-Order Upwind Reconstruction-Evolution Methods
LEuler Equations

m Assuming that the reconstruction is piecewise constant, each cell
gives rise to a Riemann problem and the exact evolution of the
piecewise constant reconstruction yields

tn+1

~n 1
]:Xi+1/2 = E /tn Fx (WRiemann(Xi+1/27 t)) dt

m Again, the solution of the Riemann problem being self-similar,
Whiiemann(Xi+1/2, t) is constant for all time

i ﬁn = Fx (WRiemann(Xi+1/27 t)) = Fx (WRiemann(O)) (5)

Xit+1/2

where F, (WR;emann(X;+1/2, t)) is computed using any exact or
approximate Riemann solver and t is any arbitrary time t > t”

v
m Many first-order upwind methods for the Euler equations are based %
on (5)
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I—First-Order Upwind Reconstruction-Evolution Methods
LEuler Equations

~

Fr == -FX (WRiemann(Xi+l/2a t))

Xi+1/2

m Again, equation (5) assumes that the waves from different cell edges
do not interact (or at least that any interaction does not affect the
solution at the cell edges)

m If Ap(A) < 1, waves travel at most one grid cell per time-step: They
can interact, but the interactions cannot reach the cell edges during
a single time-step

m Unlike in the case of scalar conservation laws where a compressive
point inside the cell must be present for waves to interact when
|[Aa(u)| < 1, waves in the subsonic Euler equations interact routinely
for 1/2 < Ap(A) < 1 (since there are always right- and left-running
waves in subsonic flows)

B
m \p(A) < 1is also the CFL condition for all first-order upwind %
methods

17/62
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I—First-Order Upwind Reconstruction-Evolution Methods
LEuler Equations

m Upwind methods based on Froo= Fx (WR,-emann(X,-H/z, t))

Xi+1/2
m if the wave speeds are always positive (as in some supersonic flows),
all waves originating from x;; 1/ are right-running

= .7:;“/2 = Fx (WRiemann(Xi+1/27 t)) = ]:X(van) = FTBS

m if the wave speeds are always negative (as in some supersonic flows),
all waves originating from x;,1/> are left-running
= }"X”iﬂ/2 = Fx (WRiemann(Xi+1/27 t)) = Fx(Wi1) = FTFS

m the above is true for the exact Riemann solver or any reasonable
approximate Riemann solver? = all first-order upwind methods based
on F/ = Fx (WR,-ema,,,,(x,-+1/2, t)) are FTBS or FTFS for

Xi+1/2

2Recall that for Roe's approximate Riemann solver:

F W) = F(W)+ A (We — Wi) (gﬁ; W)
L

Fe(W(0)) = Fu(Wr) — A (Wr — W) <Zﬁ; W )
R

[
—>  also shows that the temporal evolution introduces %
the minimal amount of upwinding required by the CFL condition y

18/62
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I—First-Order Upwind Reconstruction-Evolution Methods
LEuler Equations

m Most properties of first-order upwind methods for scalar conservation
laws carry over to first-order upwind methods for the Euler equations

m The reverse is not necessarily true:

m for example, the Riemann problem for the Euler equations is not
monotonicity preserving but that for scalar conservation laws is
monotonicity preserving = first-order upwind methods for the Euler
equations based on reconstruction-evolution sometimes produce
spurious oscillations, especially at steady and slowly moving shocks

19/62
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I—First-Order Upwind Reconstruction-Evolution Methods
LRoe's First-Order Upwind Method for the Euler Equations

m Recall Roe’s approximate Riemann solver for the Euler equations

Fo(W(0) = 2 (FWR) + Fo(W0)) — 5 |Am|(Wa — W)

20/62
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I—First-Order Upwind Reconstruction-Evolution Methods
LRoe's First-Order Upwind Method for the Euler Equations

m Recall Roe’s approximate Riemann solver for the Euler equations

Fo(W(0) = 2 (FWR) + Fo(W0)) — 5 |Am|(Wa — W)

m replace W, and Wg by W;" and W/, respectively, and replace Ag,
by AI+1/2

m replace also t =0 by t =t" and x = 0 by x = x;;1/2

m then, Roe's first-order upwind method for the Euler equations can be
described by

f'" = 1 (f (Wn)-i-]:( ,+1)) |AI+1/2|( l+1 Wn)

Xiy1/2 5

20/62
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I—First-Order Upwind Reconstruction-Evolution Methods
LRoe's First-Order Upwind Method for the Euler Equations

m Recall Roe’s approximate Riemann solver for the Euler equations

Fo(W(0) = 2 (FWR) + Fo(W0)) — 5 |Am|(Wa — W)

m replace W, and Wg by W;" and W/, respectively, and replace Ag,
by AI+1/2

m replace also t =0 by t =t" and x = 0 by x = x;;1/2

m then, Roe's first-order upwind method for the Euler equations can be
described by

An 1 n n
Xit1/2 = 5 (f (W )+'F ( l+1)) |AI+1/2|( l+1 W )
n 1 n n 1 n n

Fr =5 (F(Wy) + F(W)) — S A2 (W = WiLy)

[
centered dissipation :
upwinding(due to approximate \)
Riemann solver)

20/62
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L First-Order Upwind Reconstruction-Evolution Methods
LRoe's First-Order Upwind Method for the Euler Equations
m Recall also that the Roe-average matrix must satisfy

Fr(Wiy) = F(W) = Al12(W = W)

i

n+ n— n
and that Al , + Al\;, = Al ), and Ar+1/2 A:+1/2 |AT1/2]

[
s
3Recall that a method in flux split form is conservative if and only if

a2 =& +Af+1/2 and £7, ), = & 1+Af*1/2 21/62



AA214: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS 21/62
L First-Order Upwind Reconstruction-Evolution Methods
LRoe's First-Order Upwind Method for the Euler Equations
m Recall also that the Roe-average matrix must satisfy

Fr(Wiy) = F(W) = Al12(W = W)

n+ n— n
and that Al , + Al\;, = Al ), and Ar+1/2 A:+1/2 |AT1/2]

FoWiy) = FeW) = (Al + AL o) (Wi — W)

[
s
3Recall that a method in flux split form is conservative if and only if

a2 =& +Af+1/2 and £7, ), = & 1+Af*1/2 21/62
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I—First-Order Upwind Reconstruction-Evolution Methods
LRoe's First-Order Upwind Method for the Euler Equations

m Recall also that the Roe-average matrix must satisfy
fx(\/\/,ll) - ]:X(Vvin) - :+1/2( :+1 - VV:H)

n+ n— n
and that Al , + Al\;, = Al ), and Ar+1/2 A:+1/2 |AT1/2]

Fe(Wi) — (W) = ( i+1/2 + A:+1/2) (Wi, — W)
~ 1 1 .+ 1
f:,-H/z = 5 (]: ( )+'T'( /+1)) - §A7+1/2(Vvill - W )+ 2A/+1/2( /+1 - VV/N)
= & Af:+1/2
= 1 1 .+ . 1
-7::,.71/2 = 5 (}-X(vail) + ]:x(Win)) - EAI'"—I/Z(VVI'n - Wf—l’n)"' EA,'71/2(W,' - WLl]
51 L
[
R
3Recall that a method in flux split form is conservative if and only if
n _
tlip =8 +Af+1/2 and f —1/2 = +Af —1/2"

21/62
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L First-Order Upwind Reconstruction-Evolution Methods
LRoe's First-Order Upwind Method for the Euler Equations
m Recall also that the Roe-average matrix must satisfy

i

Fx(Wi) = F(W) = Al (Wi — W)

n+ n— n
and that Al , + Al p = Ay, and Ar+1/2 A1 sa = 1AL ol

Fe(Wi) — (W) = ( i+1/2 + A:+1/2) (Wit = W)
~ 1 .+ 1
f:,-H/z = 5 (]: ( )+'T'( /+1)) - §A7+1/2(Vvill - W )+ 2A/+1/2( /+1 - VV/N)
= & Af:+1/2
= 1 1 .+ . 1
-7::,.71/2 = 5 (}-X(vail) +]:x(Win)) - EAI'"—I/Z(VVI'n - Wf—l’n)"' EA,'71/2(W,' - WLl]
51 L

m For this reason, Roe’s first-order upwind method is sometimes called a flux difference
splitting method 3

n n Il+ n n n— n n
(]:X(VVH—I) — Fx(W, )) = Ai+1/2(VVi+1 - W)+ Ai+1/2(Wi+1 - W)

[
s
3Recall that a method in flux split form is conservative if and only if

tlipe =8 +Af+1/2 and f —1/2 = +Af*1/2 /o
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L Introduction to Second- & Higher-Order Reconstruction-Evolution Methods

m Higher-order accurate methods based on the exact Riemann solver

B the spatial reconstruction is straightforward: Use any piecewise-linear,
piecewise-quadratic, or higher-order piecewise polynomial reconstruction

B the temporal evolution is more elaborate, as explained below

m Recall that the temporal evolution is given by
el

=~ 1
A E/ Fre (W(is1/2, 8)) dt

n

22/62
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L Introduction to Second- & Higher-Order Reconstruction-Evolution Methods

m Higher-order accurate methods based on the exact Riemann solver

B the spatial reconstruction is straightforward: Use any piecewise-linear,
piecewise-quadratic, or higher-order piecewise polynomial reconstruction

B the temporal evolution is more elaborate, as explained below

m Recall that the temporal evolution is given by

. 1 et
-FXM/Z ~ E/ Fr (W(xiy1y2, 1)) dt

n

m Step 1: Compute a second- or even higher-order approximation of the above integral
B for example, use the midpoint rule

1 ¢+l
AL / Fue (Wxisa/2, 1)) dt = Fe (W(xiaayo, "7/%)) + 0(AF)
t

B or the trapezoidal rule

¢+l

1 1
~ /t Fo (Wixiajart) dt 2F (Wl ) i
1 n 2 = \)
+  ZFx (W(xis1/2,t")) + O(At%)

2

22/62
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L Introduction to Second- & Higher-Order Reconstruction-Evolution Methods

m Step 2: Perform a Taylor series expansion about t = t" — for example

Fe (Wlaont)) = ]-_X(W(x,-“/z,t"))+%(W(x;+1/z,t"))(t7t")

+ 0 ((t - t")2)

23/62
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L Introduction to Second- & Higher-Order Reconstruction-Evolution Methods

m Step 2: Perform a Taylor series expansion about t = t" — for example

Fe (Wlaont)) = ]-_X(W(x,-“/z,t"))+%(W(x;+1/z,t"))(t7t")

+ 0 ((t - t")2)

m Step 3: Express time derivatives in the Taylor series in terms of space derivatives
(Cauchy-Kowalewski) — for example, the time derivative of the momentum flux can be
obtained from the conservation of momentum

8( )= Ovy o (ovs) op
ot PVx) = —PVx Ox Vx Ox PVx ox

23/62
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L Introduction to Second- & Higher-Order Reconstruction-Evolution Methods

_V%_VE(V)_@
pxax anIJx ax

e}
E(PVX)

i)

o

1021w el e

i3

m Step 4: Differentiate the spatial reconstruction at time level n to approximate the spatial

derivative at (xj;1/2,t")

24/62
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L Introduction to Second- & Higher-Order Reconstruction-Evolution Methods

dp

_V%_VE(V)_i
pxax anIJx ax

2]
E(PVX) =

i)

o

W2 1 e 1+l e

m Step 4: Differentiate the spatial reconstruction at time level n to approximate the spatial
derivative at (xj;1/2,t")
B note that in general, the reconstruction and/or its derivatives contain jump

discontinuities at the cell edges at xj 1,2
m Step 5: “Average” the left and right limits, W12 1 (t) and Wi 1,5 r(t), of the

approximation of W(X,'+1/2, t)
24/62

B the Riemann solver average is the only average that yields the exact solution in the
case of piecewise constant reconstruction
B for this purpose, use Wi 1,5 (t) and Wiy1/5 r(t) as the left and right states in the

exact solution of the Riemann problem
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L Introduction to Second- & Higher-Order Reconstruction-Evolution Methods

m Because the above four-step procedure is based on Taylor series and
differential forms, it does not apply at shocks

m At shocks, all higher-order terms of the approximation should be
eliminated and a return to first-order piecewise constant
reconstruction becomes essential

25/62
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L The MUSCL/TVD Method

m MUSCL: Monotonic Upwind Scheme for Conservation Laws

m More specifically, this section describes the method proposed in 1986
by Anderson, Thomas, and Van Leer who called it “the MUSCL"
method, and not the original MUSCL method designed in 1979 by
Van Leer using the approach summarized in the previous section

m Both of this method and the original MUSCL method are
reconstruction-evolution methods

26 /62
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L The MUSCL/TVD Method
L The Method of Lines

m Two-step approximation procedure
m Spatial Discretization

B time is frozen and space is discretized

9Fx (xi,t) ~ ‘FXSJH/Q(t) B ‘Fxs,i—1/2(t)
x Ax

m the above equation is called the semi-discrete finite volume/difference
approximation

m F,, is called the semi-discrete conservative numerical flux

B the semi-discrete approximation comprises a system of ordinary
differential equations

B in many cases, it is needed only at discrete time levels, in which case
it can be written as

An An
n F! _
dVV,' ~ Xs,i+1/2 Xs,i—1/2

~ 6
dt Ax (6)

where W = W;(t") and j:—;s‘i-#l/z = ﬁxs,i+1/2(tn) &

27 /62
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L The MUSCL/TVD Method
L The Method of Lines

m Two-step approximation procedure (continue)

An An
n J—
dVV, ]:Xs,/+1/2 sz,i—l/Z

~ _
~

dt Ax

m Temporal Discretization
m any ordinary differential equation solver (time-integration algorithm)
can be used to solve Eq. (6)
m in other words, space is frozen and time is discretized
B the resulting approximation — for example using FT

1 Tn _ Tn
VV,-n+ - VV,-" _ ]:XH—l/Z ‘7:><i—1/2

At Ax

X=Xj t=t"

is called the fully discrete finite difference approximation, and Fyis
called the fully discrete conservative numerical flux

m The two-stage approximation procedure described above is B »
sometimes called the method of lines, where the lines are the M

coordinate lines x = ¢st and t = cst
28/62
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L The MUSCL/TVD Method
L Flux Splitting

m In the context of the (explicit) finite volume method

1 tn+1
n
e = Pt >< )

m Using flux vector splitting — that is, assuming

Fx (W(xig1/2:t)) df) = Fx (W(xiy1/2,t"))

F(W) = FA(W) + Fo (W)
m Leads to
]?xs i F (W(xigay2,t") + F (W(xisay2,t"))

m Therefore, one needs to approximate F,* (W(x,-+1/2, t”)) - or
equivalently, W(xj;1/2,t") — with a leftward bias, and

Fio (W(xiy1/2,t")) — or equivalently, W(x;;12,t") — with a .
rightward bias %
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L The MUSCL/TVD Method
L Second-Order Approximation

m First, W(xj;1/2,t") is approximated with a leftward bias, for use in
].‘;r (W(X,'+1/27 tn))

m a first-order accurate reconstruction of the primitive variables u of
which W is made leads to

u(Xi1/2,t") = 07

30/62
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L The MUSCL/TVD Method
L Second-Order Approximation

m First, W(xj;1/2,t") is approximated with a leftward bias, for use in
].‘;r (W(X,'+1/27 tn))
m a first-order accurate reconstruction of the primitive variables u of
which W is made leads to

u(Xi1/2,t") = 07

m a second-order accurate linear reconstruction of the primitive
variables u of which W is made leads to the following extrapolation

T _ 1, _ _
i i 1(X,'+1/2_Xf): u;]+§(u,{7—u;7_1)

U(Xi+1/27 tn) ~ L_I;7 + Ax
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L The MUSCL/TVD Method
L Second-Order Approximation

m First, W(xj;1/2,t") is approximated with a leftward bias, for use in
FE(W(Xig1/2, ")
m a first-order accurate reconstruction of the primitive variables u of
which W is made leads to

u(Xi1/2,t") = 07

m a second-order accurate linear reconstruction of the primitive
variables u of which W is made leads to the following extrapolation
=n =n

_ ol — o _ 1, _ _
u(Xip1y2, t") & 07 + Tl(xi+1/2 — X)) =0 + E(u,-" —0i—1)

m instead of a pure constant or pure linear reconstruction, the following
convex linear combination is considered (0 < § < 1)

T ”+(1—0"*)<a,-”+%(u, ar 1))

n+
Uit1/2

n 1 n -n -n n n
uj + §¢i+(ui - U,‘,l), where (]5,-+ =1- 0,-+ w
which limits the effect of the extrapolation and achieves second-order %

accurate reconstruction (¢ & 1) in the smooth regions of the flow
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L The MUSCL/TVD Method
L Second-Order Approximation

m Principle of a slope limiter

"
Uiy

L : M
i-1 i-1/2 i +1/2  i+1/2

W |
m What if the solution has an extremum in the vicinity of x;? !&
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L The MUSCL/TVD Method
L Second-Order Approximation

m Next, W(xi11/2,t") is approximated with a rightward bias, for use in
Fi (W(Xigay2,t"))

m a first-order accurate reconstruction of the primitive variables of
which W is made leads to

u(Xiy1/2,t") R Oiq

m a second-order accurate linear reconstruction of the primitive
variables of which W is made leads to the following extrapolation
a; 1
u(xiz1y2,t") = U,+1+%(Xf+1/2—xi+l) = i1 — = (02— 041)
X 2
m as for the approximation with a rightward bias, instead of a pure

constant or pure linear reconstruction, the following convex linear
combination is considered for limiting the effect of the extrapolation

1 _p
,+1/2 =0l — 5 ,+1(U:+2 i)

where the superscript n— refers to time t" and the rightward bias
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L The MUSCL/TVD Method
L Second-Order Approximation
m Applying the method of lines yields

33/62

Fn _ Fn
w12 Xs,i—1/2
dt Ax
where
2n _ + — n
B = 5 (welfy) e 7 (wdy)
1 1
_ + n n+.-n -n —n n—,_n _n
= 7 (W (“, + o9 (@ - “i—l))> + Fx (W (”f+1 — %l — “i+1)))
dw! 1 1 1
+ n n+,-n  -n - -n =
L (e e ) 5 (o (- Bt )
1 + Lo n - R n
+— (Fx (W1 + —b; (G — G_3) +F A\ WG - -9 (G4 — 0;)
Ax 2 2
L + =n 1 n+-n =n + -n n+ -n
= T | D WwlE e e @ — g ) = e (W ST (E g — 50
ALy
1 F7 w =n 1 n— -n =n .F7 w =n 1 n—,.-n =n
-— | Fx Giy1 — - (T — Bh1) ) ) — Fx g — ~¢p (G — 87)
Ax 2 2
an
Aft1/2
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L The MUSCL/TVD Method
L Second-Order Approximation

m Many variants of the MUSCL method exist today

m The most popular ones use flux difference splitting along the lines of
an approximate Riemann solver such as Roe's solver instead of flux
vector splitting: In this case, convex linear combinations of the
constant and linear reconstructions of Wi 1,5, (t) and W1/, r(t)
are used as the left and right states in the solution of the
approximate Riemann problem

m Many slope limiters have been proposed in the literature and
continue to be the subject of on-going research: One example is
presented next

m Since at shocks, all higher-order terms of an approximation should
be eliminated and a return to first-order piecewise constant
reconstruction is essential, the value of a slope limiter must, by
design, approach 1 away from shocks (and other discontinuities) and g
0 near shocks (and other discontinuities) %
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L The MUSCL/TVD Method
L Van Leer's Slope Limiter

m Ratios of solution differences

n n n n
o up —uj_y - ulpg —u 1
i = ,n _ ,n’ i~ ,n_ ,n —  _nt+
Uipr — 4j Up =ty 5
m Note that
= "t > 0 if the solution u is monotone increasing or monotone
decreasing

[ r,."i < 0 if the solution v has a maximum or a minimum around Xx;

m |r"| is large and |r""| is small if the solution differences decrease
dramatically from left to right or if ul; ~ uf

m |r"] is small and |r~| is large if the solution differences increase

dramatically from left to right or if u! ; ~ uf

%
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L The MUSCL/TVD Method
L Van Leer's Slope Limiter

m Very large or very small ratios |r"*| sometimes signal shocks, but
not always

m for example, if uf,; — uf =0 and uf — uf_; # 0, then |r/| = 00
regardless of whether the solution is smooth or shocked

m in general, because there is only limited information contained in
solution samples, no completely reliable way to distinguish shocks
from smooth regions exists

m consequently, slope-limited methods do not even attempt to identify
shocks: Instead, they regulate maxima and minima — whether or not
they are associated with shocks — using the nonlinear stability
conditions (for example, TVD)
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L The MUSCL/TVD Method
L Van Leer's Slope Limiter

m Van Leer’s slope limiter can be described as

37/62

2r
p(r)=q 1Fr
0

for r >0 limits the slope in monotone regions of the flow

for r <0 reverses to constant (first-order) reconstruction elsewhere

m Note that for a uniform mesh, ¢(1) =1 (r =1 = u; = (uji—1 + ui11)/2 = solution
behaves locally as an affine (linear) function = no slope limiting is needed)

m For a nonuniform mesh, a similar result is obtained for r equal to the ratio of two
consecutive space increments

m Note also that lim ¢(r) =2
r— oo

m Equipping the scheme described in the previous pages with

ot =0 ()

(explain why in this case it is ¢(rf"7/+) and not ¢(ri"i)) makes it:
B TVD and therefore nonlinearly stable
B second-order accurate in monotone regions (r > 0) of the flow (proof given in class

M in practice, between first-order and second-order accurate at extrema

"
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I—The Steger-Warming Flux Vector Splitting Method for The Euler Equations

m Recall that flux splitting is defined as

F(W) = FI(W)+F (W)
dF; dF; <

daw  — dW_0

0,

m Hence, the flux split form of the Euler equations is

oW OFF OF-
—+ =

—_— 0
ot Ox Ox
OFF . . . :
m Then, 3 can be discretized conservatively using at least one
X

X_ can be

point to the left — for example, using BS — and

X
discretized conservatively using at least one point to the right — for
example, using FS — thus obtaining conservation and satisfaction of 8
the CFL condition
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I—The Steger-Warming Flux Vector Splitting Method for The Euler Equations

m Recall the related concept of wave speed splitting

AW) = AY(W)+ A (W)
AN(W) > 0, A (W)<0

m Then, the vector conservation law can be written in wave speed split

form as W W oW
2 AL A () =
ot A )8x A )8)(

where the matrices AT (W) and A~ (W) are usually obtained by

splitting the eigenvalues of A(W) into positive and negative parts

0

A(W) = AT(W) + A7 (W), Af(W) =0, A7 (W) <0

— A(W) = AT (W) + A (W),  AT(W)>0, A~(W)<0 %
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I—The Steger-Warming Flux Vector Splitting Method for The Euler Equations

m For the 1D Euler equations written in conservation form

QIMAW)Q (W)
where A1

and

QW)

(W)

A(W)
AwW)*

AW) = AW) = QT (W)AW)Q(W)

Vi XM=V +cC A3=vx—cC

1 L _r
2c 2c
Vy £(vx+¢) — 4 (v —©)
v o (v 2 o (3 2
5 z<7+ﬁ+c"x) B G T
e v2 2 P P
c\l—2 t3= ¢ Vx s
= ! V2 (3% c
pc 2 T 321 Wt 33 1
= R R
AT(W)+ A= (W),  AT(W)>0, AT (W)<0
QI WINT(W)Q >0, A~ (W)= Q (WA~ (W)Q(W) <0
[
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I—The Steger-Warming Flux Vector Splitting Method for The Euler Equations

m For the Euler equations in conservation form and a perfect gas, Fx is
homogeneous function of W of degree 1
m Steger and Warming (1981)*

F(w) = (Z‘;E(W)) W =A(W)W (Euler’s theorem)
= FAW) = AFWW = [T WA W)W w (1)
-1 1
FE = Lp)\f: Vy
’VE
_ 1 -
+ 2ﬁ)\2i Ve + ¢
v L %V3+WC,1+CVX
_ 1 -
P+ _ ‘
+ £ Ve — C
2y &2 »

4Lerat (1983): dF¢/dW >0 and dFy /dW <0
41/62
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I—The Steger-Warming Flux Vector Splitting Method for The Euler Equations

m Practical implementation
m compute at each grid point (constant reconstruction) or each edge of
each computational cell (linear reconstruction)

Vzmmqm=%w+mu M:mMQM:%M—MD
(8)

m compute at each grid point (constant reconstruction) or each edge of
each computational cell (linear reconstruction) the Mach number

M:%Q—mﬁHMJNwmﬂuﬂm[
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I—The Steger-Warming Flux Vector Splitting Method for The Euler Equations

m Practical implementation
m compute at each grid point (constant reconstruction) or each edge of
each computational cell (linear reconstruction)

Vzmmqm=%w+mu M:mMQM:%M—MD
(8)

m compute at each grid point (constant reconstruction) or each edge of
each computational cell (linear reconstruction) the Mach number

M:%Q—mﬁHMJNwmﬂuﬂm[
BifM<—1(=A <0, <0, A3 <0)
Fi=0, Fi=F
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L The Steger-Warming Flux Vector Splitting Method for The Euler Equations

m Practical implementation
m compute at each grid point (constant reconstruction) or each edge of

each computational cell (linear reconstruction)
1
Vzmmqm=%w+mu A7 = min(0,A) = 2 (0~ A
(8)

m compute at each grid point (constant reconstruction) or each edge of
each computational cell (linear reconstruction) the Mach number

M:%Q—mﬁHMJNwmﬂuﬂm[

BifM<—1(= A\ <0, A <0, A3 <0)
Ff=0, Fi=F

Bif—1<M<O0(=A <0, >0, A3 <0)

1
Fro= Lw+o vt e
2y Ly24 < 1o
2°x ~y—1 X
1 L ! e
Fe = 7 pvx | v | + ZL(VX — <) Vx ¢ <
R e B
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I—The Steger-Warming Flux Vector Splitting Method for The Euler Equations

m Practical implementation (continue)

m continue
m continue

BifO<M<1(=A1>0, X >0,23<0)

1 1
-1

i PVx Vx +£(vx+c) Vx + ¢
1y 2y 124 @ 4y
2Vx 2Vx T 571 x

1

P _

Z*(VX_C) 1 e

v v+ 76—1 — cvx
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I—The Steger-Warming Flux Vector Splitting Method for The Euler Equations

m Practical implementation (continue)

m continue
m continue

BifO<M<1(=A1>0, X >0,23<0)

1
o= 7_1pvx v |+ 2 (wto) e
v %vxz 2y %vf + ,Yc_l + cvx
1
5V —i—ﬂ/_l—cv)<

BifM>1(= A >0\ >0, A3 >0)
Ff=F, Fi=0

43/62



AA214: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS 44 /62
I—The Steger-Warming Flux Vector Splitting Method for The Euler Equations

m Problem: At the sonic points (M = 0 for the entropy waves and
M = £1 for the acoustic waves), the wave speed splitting (8) is not
differentiable — the first derivative of the split wave speeds is
discontinuous at the sonic points because the function “absolute
value” is discontinuous at zero

m Consequently, the wave speed splitting (8) may experience numerical
difficulties at these sonic points — for example, when an implicit
scheme is used; and the Jacobian of (7) is evaluated and thus |X;] is
differentiated

m Solution: Regularization (or “entropy fix", or “rounding the corner")

A%_;(A,i'mﬂ@)

B
where € is a small user-adjustable parameter %
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L Multidimensional Extensions

m The extension to multiple dimensions of the material covered in this
chapter is straightforward

m The expressions of the Euler equations in 2D and 3D can be
obtained from Chapter 2 (as particular cases of the expression of the
Navier-Stokes equations in 3D)

m Furthermore, given that Chapter 6 discusses the extension of the
finite difference method to multiple dimensions on structured grids,
this chapter discusses — for the sake of variety — the extension of the
finite volume method to multiple dimensions on unstructured grids

m For simplicity, the focus is set here on the 2D Euler equations

ow o,

O 05
ot Ox

dy
] v
and on unstructured triangular meshes %

W)+ —=(W)=0 (9)
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|—Multidimensional Extensions

m 2D unstructured triangular mesh

m Euler-Poincaré theorem: Asymptotically, there are about two times
more triangles than nodes in a 2D triangular mesh

46 /62
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L Multidimensional Extensions

m 2D cell-centered grid

m n

m simple implementation: each triangle is at the same time a control
volume and a primal cell
m three numerical fluxes per triangle only, but more flow variables than

necessary (recall the Euler-Poincaré theorem) [
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L Multidimensional Extensions

m 2D vertex-based grid

m n

m deemed more accurate than the cell-centered approach for
stretched /skewed grids

m more memory efficient than comparable cell-centered techniques
(recall the Euler-Poincaré theorem)

m requires however the construction of an associated control volume or ¥
dual cell M

48/62



AA214: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS 49 / 62

L Multidimensional Extensions

m 2D control volume or dual cell for the vertex-based approach
k

m n

m Sample algorithm for constructing a dual cell C; attached to vertex i
m for each triangle 7j connected to i:

B determine the point of intersection of the three medians, Gy <
B connect the point Gy to the midpoints M;; and M of the edges il &
and ik, respectively
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L Multidimensional Extensions

m 2D control volume or dual cell for the vertex-based approach
(continue)

m at the wall boundaries and at the far-field boundaries, one obtains
“half” dual cells
m the union of all full and half dual cells covers exactly the union of all

triangles Ti and therefore covers exactly the given triangular mesh g
ﬂ;vi
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L Multidimensional Extensions

m 2D cell edge for the vertex-based approach

m the boundary 0C; of each dual cell C; attached to vertex i is the
union of cell edges 0Cix

0C = 8CU UaoCikUoCyuUoCimVUaoC

™
m the cell edge OCj;, which is attached to the edge ij, is itself the union %
of two segments Mj;Gjix and M;; G, |
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L Multidimensional Extensions

m Consider again the 2D Euler equations (9): From the results of
Chapter 3, it follows that the integration over the dual cell C; of
these equations can be written (after scaling by 1/||C;|| and usage of
the divergence theorem) as

OW; 1 _ 1 B
—_—t — ?~ﬁ,~df,~:0, where W,-:—/ W:dQ h
ot |Gl Jac 1Gill Je ( )%
10
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L Multidimensional Extensions

m Integrating Eq. (10) between t” and t"*! and re-arranging gives

(|1 7. 17,-d|',-> dt

tn+1
|Gill

/n+1 aW B _/
w0t "
n+1 &
[ (eg ) 7 o) aean e
1Gill Jac. i
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L Multidimensional Extensions

m Eq. (11) can be re-written as
tn+1

[ Gra--s i ()

which leads to

tn+1

( . ﬁ,-*dr;) dt)
aci*

ow At ~
At(E) =S 2 12
(ar>,- 2 el (12)

where

n+1
a1 / ~ 1 ”(
" Wi(x,y, t")d9, ]—',-"x—/ F il ) dt
TG Jg, Vibey- ) Facte e T
(13) g

13)
m Eq. (12) is the 2D extension of Eq. (1); and definitions (13) are the %
2D extensions of definitions (2)
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L Multidimensional Extensions

1

= 1
m Hence, 7/, ~ E/
tn

( Fw). ﬁf*dr,) dt
9C;,

55 /62
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L Multidimensional Extensions

N 1 fn+1
® Hence, 7/, ~ —/ F(W) - 5 dr; | dt
At Jin ac,
m A popular approximation of [ is | & F (W(Mi,, t)) - / Ui dlj (1 quadrature point)
ac;
rn-ﬁ—l *

= 1
= F, = —/ ? (W(Mjy, t)) - / Uindl; | dt is constructed in 2D similarly -
At Jin aci,

i+l

~ 1
to how ]::i+1/2 ~ A /r" Fyx (W(xit12, t)) dt in constructed in 1D
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L Multidimensional Extensions

m In particular, upwind methods based on

FP (Whiemann(0))

7 (Whiemann(Mix, t)) - / Uik drl;

9Ci,

? (WRiemann(Mi*u t)) . (1(1)17/‘(1) + /(2)17:'(2))

* *

are the 2D extensions of 1D upwind methods based on

Fr = Fx (WRfemann(Xi+1/27 t)) = Fx (WRiemann(O))

Xi+1/2 [
o _ Py ek
u 175112

56 /62
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L Multidimensional Extensions

m Recall that in three dimensions

(r-&)7

(r-&)7

(r-&)T"
(r-V+rVT)T

ET=001), 0"=(000) g
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L Multidimensional Extensions

m Method #1 for computing j':u (Whiemann(0)) using Roe’s flux: extension of Roe's
one-dimensional (1D) approximate Riemann solver to 3D
W consider the multidimensional flux in the direction of 53
2 pvyve + le?ypvzvn + pD;Z (E+ p)vn)T

50 ~

Fzo = F . Ui = (pva pVxVa + P

i N~ x
SN s5x3
5x1 x

- 50 =0 0 =0
where v, = V- Uiy = Wy + vy Vi, + v vy,
B Roe's averages are based in this case on the secant approximation defined by

(14)

Fao (W) = Fago (W) = Ago (W)(W; — W;)
ij ij i —  ~~

~~
5x1 5x1
5x5
i
where Azo = Jis given by
if ow
0 70 70
i, i,
(v = 0aPY — vy, — (v — )y, 7 W5 — (v — ) &0
(v — 1)qf7Uv — v, O = 2wy Vy’i,f - (v = 1)‘6"7,?
(v — 0P — vy, ; — (v — vy v — (v — 2w
WC — (v — vy, m?uc’ — (v — Dy, m:if — (v — Dy,

(v = D3 = 8y

q=|lv|3/2and h=H/p=e+q+p/p
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L Multidimensional Extensions

m From (14), it follows that

VPivxj + \/Pj Vi VPivy; + PjVy;
[ vy = Vo =
Y Vit /Pj g VPi + \/Pi ’
Hio Mt
VP /P /pihi + \/Bih
hy = = = — = iR
VPi+ /P VPi +/Pj
1
=g = \/('Y -1) <h,-j - E(Vf,.j vt VZZU.)> = W;

m the eigenvalues of Azo are: vzo &£ ¢, and vzo with multiplicity 3
if ij ij

_ VPivy + /Pjvy

NN
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L Multidimensional Extensions

m Method #1 for computing ]?u (Whiemann(0)) using Roe’s flux
B extension of Roe's 1D approximate Riemann solver to 3D (continue)
B formulate Roe's multidimensional approximate Riemann problem:

ow ow . . P . _

e + Azo (W) e = 0, where s is the abscissa along ij, with uniform initial
ij s

N N e N

5x1 5x5 5x1

conditions on an infinite spatial domain, except for a single jump discontinuity

B compute Roe's flux

- 1 1 -
Fi (WRiemann(0)) = 5 Fsg(w,-nfgg(wj) -5 Aﬁg(w,-j) (W, — w;) Humz
[ — ~ A ad
—_— —— ——
5x1 5x1  5x1
5x1 5x1 5X5
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|—Multidimensional Extensions

= Method #2 for computing Fj (WRjemann(0)) using Roe’s flux

1 T
B along the edge ij, “compress” the conservative fluid state vector to obtain weemp — (p pvn pe+ — pv%) .
N—— 2

3x1
where v, = 7 - {73 7 denotes the fluid velocity vector, and comp stands for “compressed”
B along the edge j, formulate Roe’s 1D approximate Riemann problem using W™ and WC""'P and solve this

1 T
_ comp _ 2
problem to obtain WP (Mj;, t) = WP = (gR,-ema,m (PVn)Riemann (pe + —pvn) )
2 Riemann

B now, given that the fluid velocity vector ¥ can be decomposed as ¥ = vn ;71]0' + (V- v,,uu) , it follows
~—— ——

normal direction  tangential direction
that the solution of (Roe’s) 1D approximate Riemann problem along the edge ij averages at Mij only the normal
component vy of the velocity vector ¥ along 1:/'?} = VnRiemann
B next, “expand” VRjemann a5

—exp

7 _y exp = exp
Riemann "R/emann

exp =
v & & + v & + v
*Riemann YRiemann Y

+ (7 = vaT§)average = ; &
’ i & ZRiemann

where exp stands for “expanded” and average designates a standard (non-Riemann solver) average
B then, compute the “expanded” vector WRjemann
———

5x1
exp = (R opi M d oRi e PRI V&P
Riemann Riemann Riemann Vxpiopann, P Riemann Vypioo oo P Riemann Vzpio 00
1 2
P Riemann €Riemann & ~ PR ger® INT
2

) PN = exp
B finally, compute F; (WRiemann(0)) as Fii | Wriemann(©
—_— | ———
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L Multidimensional Extensions

m Note that
Fp = F (Waiman(Mj, 1) - (107 + 1@7)

.f;r: = ? (WRiemann(MUv t)) : (/(1)1711(1) + /(2)17;(2))

m Since U = —J, it follows that f]’] = —]?,7 = ]?,7 + ]?J’,’ =0 B
- ]?,-j is a conservative numerical flux (explain using telescoping %
property)

62/62



	Conservative Finite Volume Methods in One Dimension
	Introduction to Reconstruction-Evolution Methods
	First-Order Upwind Reconstruction-Evolution Methods
	Scalar Conservation Laws
	Euler Equations
	Roe's First-Order Upwind Method for the Euler Equations

	Introduction to Second- & Higher-Order Reconstruction-Evolution Methods
	The MUSCL/TVD Method
	The Method of Lines
	Flux Splitting
	Second-Order Approximation
	Van Leer's Slope Limiter

	The Steger-Warming Flux Vector Splitting Method for The Euler Equations
	Multidimensional Extensions

