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AA214: NUMERICAL METHODS FOR
COMPRESSIBLE FLOWS

The Finite Volume Method

These slides are partially based on the recommended textbook: Culbert B. Laney.
“Computational Gas Dynamics,” CAMBRIDGE UNIVERSITY PRESS, ISBN 0-521-62558-0
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Outline
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3 First-Order Upwind Reconstruction-Evolution Methods

4 Introduction to Second- & Higher-Order Reconstruction-Evolution
Methods

5 The MUSCL/TVD Method

6 The Steger-Warming Flux Vector Splitting Method for The Euler
Equations

7 Multidimensional Extensions
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Note: The material covered in this chapter equally applies to scalar
conservation laws and the Euler equations, in one and multiple
dimensions. To keep matters as simple as possible however, this material
is presented primarily in one dimension then briefly extended to multiple
dimensions.
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Conservative Finite Volume Methods in One Dimension

Recall that the integral form of a conservation law can be written as∫ xi+1/2

xi−1/2

[u(x , tn+1)−u(x , tn)] dx = −
∫ tn+1

tn
[f
(
u(xi+1/2, t)

)
− f
(
u(xi−1/2, t)

)
] dt

This leads to the following numerical conservation form

∆t

(̂
∂ū

∂t

)n

i

= −λ(f̂ ni+1/2 − f̂ ni−1/2) (1)

where

ūni ≈ 1

∆x

∫ xi+1/2

xi−1/2

u(x , tn)dx , f̂ ni+1/2 ≈
1

∆t

∫ tn+1

tn
f
(
u(xi+1/2, t)

)
dt

(2)
and the rest of the notation is the same as in the previous Chapter

4 / 62



AA214: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS 4 / 62

Conservative Finite Volume Methods in One Dimension

Recall that the integral form of a conservation law can be written as∫ xi+1/2

xi−1/2

[u(x , tn+1)−u(x , tn)] dx = −
∫ tn+1

tn
[f
(
u(xi+1/2, t)

)
− f
(
u(xi−1/2, t)

)
] dt

This leads to the following numerical conservation form

∆t

(̂
∂ū
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Conservative Finite Volume Methods in One Dimension

ūn
i is the spatial cell-integral average value of u at time tn – that is, the average value of u

in the cell (or control volume) [xi−1/2, xi+1/2] at time tn

f̂ ni+1/2 is the time-integral average of f at the point xi+1/2

Note that for a uniform spatial discretization,
xi+1/2 − xi−1/2 = (xi+1 + xi )/2 − (xi + xi−1)/2 = (xi+1 − xi−1)/2 = ∆x is constant,
xi±1/2 = xi ± ∆x/2, and therefore

1

∆x

∫ xi+1/2

xi−1/2

g(x)dx = g(xi ) + O(∆x2) (3)

From (1)–(3), it follows that

if un
i is replaced by ūn

i , ALL concepts and results presented in the previous Chapter –
that is, for the finite difference method – equally apply for the finite volume method
presented in this Chapter
on a uniform spatial discretization, ūn

i = un
i + O(∆x2) ⇒ first-order accuracy and

second-order accuracy in space are not affected by identifying ūn
i with un

i and
vice-versa ⇒ there is no need to distinguish between finite volume and finite
difference when the order of spatial accuracy is less or equal to 2

the “bar” notation is often dropped in the remainder of this chapter, particularly

when this should not create any confusion
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Introduction to Reconstruction-Evolution Methods

∫ xi+1/2

xi−1/2

[u(x , tn+1)−u(x , tn)] dx = −
∫ tn+1

tn
[f
(
u(xi+1/2, t)

)
−f
(
u(xi−1/2, t)

)
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∆t

(̂
∂ū

∂t

)n

i
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Introduction to Reconstruction-Evolution Methods

Two-step finite volume design approach
spatial reconstruction

reconstruct u(x , tn) in each cell without necessarily accounting for
the upwind direction
this step differentiates the finite volume method which forms u then
f (u), from the finite difference method which forms directly f (u)

temporal evolution

approximate u(xi+1/2, t) for tn ≤ t ≤ tn+1 ⇒ ũ(xi+1/2, t), then
evaluate

f̂ ni+1/2 =
1

∆t

∫ tn+1

tn
f
(
ũ(xi+1/2, t)

)
dt

any reasonable approximation based on waves and characteristics
naturally introduces the minimal amount of upwinding required by
the CFL condition

Reconstruction-evolution methods are sometimes called
Godunov-type methods or MUSCL-type methods
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Introduction to Reconstruction-Evolution Methods
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Introduction to Reconstruction-Evolution Methods

Example: first-order reconstruction-evolution method for the linear
advection equation

piecewise constant reconstruction in the cell [xi−1/2, xi+1/2]:
u(x , tn) ≈ pr (x) = ūn

i

for the linear advection equation, u(x , t) = u(x − a(t − tn), tn) and
therefore

u(xi+1/2, t) ≈ ũ(xi+1/2, t)

= pe,i+1/2(t) = pr
(
xi+1/2 − a(t − tn)

)
; −1 ≤ λa ≤ 1

=

{
ūn
i for 0 ≤ λa ≤ 1

ūn
i+1 for −1 ≤ λa ≤ 0

then

f̂ ni+1/2 =
1

∆t

∫ tn+1

tn
f
(
pe,i+1/2(t)

)
dt =

1

∆t

∫ tn+1

tn
ape,i+1/2(t)dt

=

{
aūn

i for 0 ≤ λa ≤ 1
aūn

i+1 for −1 ≤ λa ≤ 0
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Introduction to Reconstruction-Evolution Methods

What if the previous example was about a nonlinear conservation
law instead of the linear advection equation?

piecewise constant reconstruction

gives rise to a Riemann problem at each cell edge, and the Riemann
problem has an exact solution at x/t = 0
an approximate Riemann solver can be used instead of the true
Riemann solver without changing the numerical solution (surprisingly)

higher-order reconstruction

the jump at each cell edge in the higher-order piecewise polynomial
reconstruction gives rise to a problem that lacks a known exact
solution
the exact solution can be approximated using Riemann solvers
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Introduction to Reconstruction-Evolution Methods
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First-Order Upwind Reconstruction-Evolution Methods

Scalar Conservation Laws

Suppose that the reconstruction is piecewise constant: Then, each
cell edge gives rise to a Riemann problem
The exact evolution of the piecewise constant reconstruction yields

un+1
i = uni − λ(f̂ ni+1/2 − f̂ ni−1/2)

where

f̂ ni+1/2 =
1

∆t

∫ tn+1

tn
f
(
uRiemann(xi+1/2, t)

)
dt

Since the solution of the Riemann problem is self-similar
(
a function

of (x − xi+1/2)/t
)
, uRiemann(xi+1/2, t) = u

(
(xi+1/2 − xi+1/2)/t)

)
= u(0) is constant for all time

=⇒ f̂ ni+1/2 = f
(
uRiemann(xi+1/2, t)

)
= f (uRiemann(0)) (4)

where f
(
uRiemann(xi+1/2, t)

)
is computed using any exact or

approximate Riemann solver and t is any arbitrary time t > tn

Many first-order upwind methods for scalar conservation laws are
based on (4)
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First-Order Upwind Reconstruction-Evolution Methods

Scalar Conservation Laws

Upwind methods based on f̂ ni+1/2 = f
(
uRiemann(xi+1/2, t)

)

f̂ ni+1/2 = f
(
uRiemann(xi+1/2, t)

)
= f (uRiemann(0))

above equation assumes that the waves from different cell edges do
not interact (or at least that any interaction does not affect the
solution at the cell edges)

|λa(u)| ≤ 1/2 ⇒ waves originating at one cell edge cannot interact
with those originating from any other cell edge
|λa(u)| ≤ 1 ⇒ they can, but the interactions cannot reach the cell
edges in one time-step
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First-Order Upwind Reconstruction-Evolution Methods

Scalar Conservation Laws

Upwind methods based on f̂ ni+1/2 = f
(
uRiemann(xi+1/2, t)

)

CFL condition: |λa(u)| ≤ 1
conservative, consistent, converge when ∆x → 0 and ∆t → 0 and
the CFL condition is satisfied
explicit, finite volume
linearly stable provided the CFL condition is satisfied
satisfy all nonlinear stability conditions of previous Chapter
formally 1st -order accurate in space and time (except possibly at
sonic points)
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First-Order Upwind Reconstruction-Evolution Methods

Scalar Conservation Laws

Upwind methods based on f̂ n
i+1/2

= f
(
uRiemann(xi+1/2, t)

)
(continue)

if |λa(u)| ≤ 1, waves can interact only if there is a compressive sonic (sonic
⇒ a(u) = 0, compressive ⇒ wave direction switches from right to left)
point inside the cell1

waves at the left cell edge are right-running, counterparts at the right cell
edge are left-running
if the wave speeds are always positive, all waves originating from xi+1/2 are

right-running ⇒ f̂ n
i+1/2

= f
(
uRiemann(xi+1/2, t)

)
= f (uni ) ⇒ FTBS

if the wave speeds are always negative, all waves originating from xi+1/2

are left-running ⇒ f̂ n
i+1/2

= f
(
uRiemann(xi+1/2, t)

)
= f (uni+1) ⇒ FTFS

the above is true for the exact Riemann solver or any reasonable

approximate Riemann solver ⇒ all first-order upwind methods based on

f̂ n
i+1/2

= f
(
uRiemann(xi+1/2, t)

)
are FTBS or FTFS except near sonic points

where the wave speeds change sign

1 Compressive sonic points typically occur inside stationary or slowly moving shocks.
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First-Order Upwind Reconstruction-Evolution Methods

Euler Equations

Assuming that the reconstruction is piecewise constant, each cell
gives rise to a Riemann problem and the exact evolution of the
piecewise constant reconstruction yields

F̂n
xi+1/2

=
1

∆t

∫ tn+1

tn
Fx

(
WRiemann(xi+1/2, t)

)
dt

Again, the solution of the Riemann problem being self-similar,
WRiemann(xi+1/2, t) is constant for all time

=⇒ F̂n
xi+1/2

= Fx

(
WRiemann(xi+1/2, t)

)
= Fx (WRiemann(0)) (5)

where Fx

(
WRiemann(xi+1/2, t)

)
is computed using any exact or

approximate Riemann solver and t is any arbitrary time t > tn

Many first-order upwind methods for the Euler equations are based
on (5)
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First-Order Upwind Reconstruction-Evolution Methods

Euler Equations

F̂n
xi+1/2

= Fx

(
WRiemann(xi+1/2, t)

)
Again, equation (5) assumes that the waves from different cell edges
do not interact (or at least that any interaction does not affect the
solution at the cell edges)

If λρ(A) ≤ 1, waves travel at most one grid cell per time-step: They
can interact, but the interactions cannot reach the cell edges during
a single time-step

Unlike in the case of scalar conservation laws where a compressive
point inside the cell must be present for waves to interact when
|λa(u)| ≤ 1, waves in the subsonic Euler equations interact routinely
for 1/2 ≤ λρ(A) ≤ 1 (since there are always right- and left-running
waves in subsonic flows)

λρ(A) ≤ 1 is also the CFL condition for all first-order upwind
methods
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First-Order Upwind Reconstruction-Evolution Methods

Euler Equations

Upwind methods based on F̂n
xi+1/2

= Fx

(
WRiemann(xi+1/2, t)

)
if the wave speeds are always positive (as in some supersonic flows),
all waves originating from xi+1/2 are right-running

⇒ F̂n
xi+1/2

= Fx

(
WRiemann(xi+1/2, t)

)
= Fx(W

n
i ) ⇒ FTBS

if the wave speeds are always negative (as in some supersonic flows),
all waves originating from xi+1/2 are left-running

⇒ F̂n
xi+1/2

= Fx

(
WRiemann(xi+1/2, t)

)
= Fx(W

n
i+1) ⇒ FTFS

the above is true for the exact Riemann solver or any reasonable
approximate Riemann solver2 ⇒ all first-order upwind methods based
on F̂n

xi+1/2
= Fx

(
WRiemann(xi+1/2, t)

)
are FTBS or FTFS for

supersonic flows
2Recall that for Roe’s approximate Riemann solver:

F̂x (W (0)) = Fx (WL) + A−
RL(WR − WL)

(
∂̂Fx

∂W

∣∣∣∣
WL

)

F̂x (W (0)) = Fx (WR ) − A+
RL(WR − WL)

(
∂̂Fx

∂W

∣∣∣∣
WR

)
=⇒ also shows that the temporal evolution introduces

the minimal amount of upwinding required by the CFL condition
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First-Order Upwind Reconstruction-Evolution Methods

Euler Equations

Most properties of first-order upwind methods for scalar conservation
laws carry over to first-order upwind methods for the Euler equations

The reverse is not necessarily true:

for example, the Riemann problem for the Euler equations is not
monotonicity preserving but that for scalar conservation laws is
monotonicity preserving ⇒ first-order upwind methods for the Euler
equations based on reconstruction-evolution sometimes produce
spurious oscillations, especially at steady and slowly moving shocks
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First-Order Upwind Reconstruction-Evolution Methods

Roe’s First-Order Upwind Method for the Euler Equations

Recall Roe’s approximate Riemann solver for the Euler equations

F̂x (W (0)) =
1

2
(Fx(WR) + Fx(WL))−

1

2
|ARL|(WR −WL)

replace WL and WR by W n
i and W n

i+1, respectively, and replace ARL

by An
i+1/2

replace also t = 0 by t = tn and x = 0 by x = xi+1/2

then, Roe’s first-order upwind method for the Euler equations can be
described by

F̂n
xi+1/2

=
1

2

(
Fx(W

n
i ) + Fx(W

n
i+1)

)
− 1

2
|Ai+1/2|(W n

i+1 −W n
i )

F̂n
xi−1/2

=
1

2

(
Fx(W

n
i−1) + Fx(W

n
i )
)

︸ ︷︷ ︸
centered

− 1

2
|Ai−1/2|(W n

i −W n
i−1)︸ ︷︷ ︸

dissipation
upwinding(due to approximate

Riemann solver)
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First-Order Upwind Reconstruction-Evolution Methods

Roe’s First-Order Upwind Method for the Euler Equations

Recall also that the Roe-average matrix must satisfy

Fx (W
n
i+1) − Fx (W

n
i ) = An

i+1/2(W
n
i+1 − W n

i )

and that An+

i+1/2 + An−
i+1/2 = An

i+1/2 and An+

i+1/2 − An−
i+1/2 = |An

i+1/2|

=⇒



Fx (W
n
i+1) − Fx (W

n
i ) =

(
An+

i+1/2 + An−
i+1/2

)
(W n

i+1 − W n
i )

F̂n
xi+1/2

=
1

2

(
Fx (W

n
i ) + Fx (W

n
i+1)
)
−

1

2
An+

i+1/2(W
n
i+1 − W n

i )︸ ︷︷ ︸
gn
i

+
1

2
An−
i+1/2(W

n
i+1 − W n

i )︸ ︷︷ ︸
∆f̂

−n

i+1/2

F̂n
xi−1/2

=
1

2

(
Fx (W

n
i−1) + Fx (W

n
i )
)
−

1

2
An+

i−1/2(W
n
i − Wi−1i

n)︸ ︷︷ ︸
gn
i−1

+
1

2
An−
i−1/2(W

n
i − W n

i−1)︸ ︷︷ ︸
∆f̂

−n

i−1/2

For this reason, Roe’s first-order upwind method is sometimes called a flux difference
splitting method 3

(
Fx (W

n
i+1) − Fx (W

n
i )
)
= An+

i+1/2(W
n
i+1 − W n

i ) + An−
i+1/2(W

n
i+1 − W n

i )

3Recall that a method in flux split form is conservative if and only if

f̂ n
i+1/2

= gn
i +∆f̂ −

n

i+1/2
and f̂ n

i−1/2
= gn

i−1 +∆f̂ −
n

i−1/2
.
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First-Order Upwind Reconstruction-Evolution Methods
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splitting method 3

(
Fx (W

n
i+1) − Fx (W

n
i )
)
= An+

i+1/2(W
n
i+1 − W n

i ) + An−
i+1/2(W

n
i+1 − W n

i )

3Recall that a method in flux split form is conservative if and only if

f̂ n
i+1/2

= gn
i +∆f̂ −

n

i+1/2
and f̂ n

i−1/2
= gn

i−1 +∆f̂ −
n

i−1/2
.
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First-Order Upwind Reconstruction-Evolution Methods

Roe’s First-Order Upwind Method for the Euler Equations

Recall also that the Roe-average matrix must satisfy

Fx (W
n
i+1) − Fx (W

n
i ) = An

i+1/2(W
n
i+1 − W n

i )

and that An+

i+1/2 + An−
i+1/2 = An

i+1/2 and An+

i+1/2 − An−
i+1/2 = |An

i+1/2|

=⇒


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Introduction to Second- & Higher-Order Reconstruction-Evolution Methods

Higher-order accurate methods based on the exact Riemann solver

the spatial reconstruction is straightforward: Use any piecewise-linear,
piecewise-quadratic, or higher-order piecewise polynomial reconstruction

the temporal evolution is more elaborate, as explained below

Recall that the temporal evolution is given by

F̂n
xi+1/2

≈
1

∆t

∫ tn+1

tn
Fx

(
W (xi+1/2, t)

)
dt

Step 1: Compute a second- or even higher-order approximation of the above integral

for example, use the midpoint rule

1

∆t

∫ tn+1

tn
Fx

(
W (xi+1/2, t)

)
dt = Fx

(
W (xi+1/2, t

n+1/2)
)
+ O(∆t2)

or the trapezoidal rule

1

∆t

∫ tn+1

tn
Fx

(
W (xi+1/2, t)

)
dt =

1

2
Fx

(
W (xi+1/2, t

n+1)
)

+
1

2
Fx

(
W (xi+1/2, t

n)
)
+ O(∆t2)
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Introduction to Second- & Higher-Order Reconstruction-Evolution Methods

Step 2: Perform a Taylor series expansion about t = tn – for example

Fx

(
W (xi+1/2, t)

)
= Fx

(
W (xi+1/2, t

n)
)
+

∂Fx

∂t

(
W (xi+1/2, t

n)
)
(t − tn)

+ O
(
(t − tn)2

)

Step 3: Express time derivatives in the Taylor series in terms of space derivatives
(Cauchy-Kowalewski) – for example, the time derivative of the momentum flux can be
obtained from the conservation of momentum

∂

∂t
(ρvx ) = −ρvx

∂vx

∂x
− vx

∂

∂x
(ρvx ) −

∂p

∂x
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Introduction to Second- & Higher-Order Reconstruction-Evolution Methods

∂

∂t
(ρvx ) = −ρvx

∂vx

∂x
− vx

∂

∂x
(ρvx ) −

∂p

∂x

Step 4: Differentiate the spatial reconstruction at time level n to approximate the spatial

derivative at (xi+1/2, t
n)

note that in general, the reconstruction and/or its derivatives contain jump

discontinuities at the cell edges at xi+1/2

Step 5: “Average” the left and right limits, Wi+1/2,L(t) and Wi+1/2,R (t), of the

approximation of W (xi+1/2, t)

the Riemann solver average is the only average that yields the exact solution in the
case of piecewise constant reconstruction

for this purpose, use Wi+1/2,L(t) and Wi+1/2,R (t) as the left and right states in the

exact solution of the Riemann problem
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Introduction to Second- & Higher-Order Reconstruction-Evolution Methods

Because the above four-step procedure is based on Taylor series and
differential forms, it does not apply at shocks

At shocks, all higher-order terms of the approximation should be
eliminated and a return to first-order piecewise constant
reconstruction becomes essential
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The MUSCL/TVD Method

MUSCL: Monotonic Upwind Scheme for Conservation Laws

More specifically, this section describes the method proposed in 1986
by Anderson, Thomas, and Van Leer who called it “the MUSCL”
method, and not the original MUSCL method designed in 1979 by
Van Leer using the approach summarized in the previous section

Both of this method and the original MUSCL method are
reconstruction-evolution methods
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The MUSCL/TVD Method

The Method of Lines

Two-step approximation procedure
Spatial Discretization

time is frozen and space is discretized

∂Fx

∂x
(xi , t) ≈

F̂xs,i+1/2
(t)− F̂xs,i−1/2

(t)

∆x

the above equation is called the semi-discrete finite volume/difference
approximation
F̂xs is called the semi-discrete conservative numerical flux
the semi-discrete approximation comprises a system of ordinary
differential equations
in many cases, it is needed only at discrete time levels, in which case
it can be written as

dW n
i

dt
≈ −

F̂n
xs,i+1/2

− F̂n
xs,i−1/2

∆x
(6)

where W n
i = Wi (t

n) and F̂n
xs,i+1/2

= F̂xs,i+1/2
(tn)
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The MUSCL/TVD Method

The Method of Lines

Two-step approximation procedure (continue)

dW n
i

dt
≈ −

F̂n
xs,i+1/2

− F̂n
xs,i−1/2

∆x

Temporal Discretization
any ordinary differential equation solver (time-integration algorithm)
can be used to solve Eq. (6)
in other words, space is frozen and time is discretized
the resulting approximation – for example using FT

W n+1
i −W n

i

∆t︸ ︷︷ ︸
x=xi

= −
F̂n

xi+1/2
− F̂n

xi−1/2

∆x︸ ︷︷ ︸
t=tn

is called the fully discrete finite difference approximation, and F̂x is
called the fully discrete conservative numerical flux

The two-stage approximation procedure described above is
sometimes called the method of lines, where the lines are the
coordinate lines x = cst and t = cst
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The MUSCL/TVD Method

Flux Splitting

In the context of the (explicit) finite volume method

F̂n
xs,i+1/2

= F̂xs,i+1/2
(tn)

(
≈

1

∆t

∫ tn+1

tn
Fx
(
W (xi+1/2, t)

)
dt

)
= Fx

(
W (xi+1/2, t

n)
)

Using flux vector splitting – that is, assuming

Fx(W ) = F+
x (W ) + F−

x (W )

Leads to

F̂n
xs,i+1/2

≈ F+
x

(
W (xi+1/2, t

n)
)
+ F−

x

(
W (xi+1/2, t

n)
)

Therefore, one needs to approximate F+
x

(
W (xi+1/2, t

n)
)
– or

equivalently, W (xi+1/2, t
n) – with a leftward bias, and

F−
x

(
W (xi+1/2, t

n)
)
– or equivalently, W (xi+1/2, t

n) – with a
rightward bias
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The MUSCL/TVD Method

Second-Order Approximation

First, W (xi+1/2, t
n) is approximated with a leftward bias, for use in

F+
x

(
W (xi+1/2, t

n)
)

a first-order accurate reconstruction of the primitive variables u of
which W is made leads to

u(xi+1/2, t
n) ≈ ūn

i

a second-order accurate linear reconstruction of the primitive
variables u of which W is made leads to the following extrapolation

u(xi+1/2, t
n) ≈ ūn

i +
ūn
i − ūn

i−1

∆x
(xi+1/2 − xi ) = ūn

i +
1

2
(ūn

i − ūn
i−1)

instead of a pure constant or pure linear reconstruction, the following
convex linear combination is considered (0 ≤ θ ≤ 1)

un+
i+1/2 = θn+i ūn

i + (1− θn+i )

(
ūn
i +

1

2
(ūn

i − ūn
i−1)

)
= ūn

i +
1

2
ϕn+
i (ūn

i − ūn
i−1), where ϕn+

i = 1− θn+i

which limits the effect of the extrapolation and achieves second-order
accurate reconstruction (ϕ ≈ 1) in the smooth regions of the flow
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ūn
i − ūn
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The MUSCL/TVD Method

Second-Order Approximation

Principle of a slope limiter

What if the solution has an extremum in the vicinity of xi?

31 / 62



AA214: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS 32 / 62

The MUSCL/TVD Method

Second-Order Approximation

Next, W (xi+1/2, t
n) is approximated with a rightward bias, for use in

F−
x

(
W (xi+1/2, t

n)
)

a first-order accurate reconstruction of the primitive variables of
which W is made leads to

u(xi+1/2, t
n) ≈ ūn

i+1

a second-order accurate linear reconstruction of the primitive
variables of which W is made leads to the following extrapolation

u(xi+1/2, t
n) ≈ ūn

i+1+
ūn
i+2 − ūn

i+1

∆x
(xi+1/2−xi+1) = ūn

i+1−
1

2
(ūn

i+2−ūn
i+1)

as for the approximation with a rightward bias, instead of a pure
constant or pure linear reconstruction, the following convex linear
combination is considered for limiting the effect of the extrapolation

un−
i+1/2 = ūn

i+1 −
1

2
ϕn−
i+1(ū

n
i+2 − ūn

i+1)

where the superscript n− refers to time tn and the rightward bias
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The MUSCL/TVD Method

Second-Order Approximation

Applying the method of lines yields

dWn
i

dt
= −

F̂n
xs,i+1/2

− F̂n
xs,i−1/2

∆x

where

F̂n
xs,i+1/2

= F+
x

(
W (un+

i+1/2
)

)
+ F−

x

(
W (u

n−
i+1/2

)

)

= F+
x

(
W

(
ūni +

1

2
ϕ
n+
i (ūni − ūni−1)

))
+ F−

x

(
W

(
ūni+1 −

1

2
ϕ
n−
i+1

(ūni+2 − ūni+1)

))

⇒
dWn

i

dt
= −

1

∆x

(
F+
x

(
W

(
ūni +

1

2
ϕ
n+
i (ūni − ūni−1)

))
+ F−

x

(
W

(
ūni+1 −

1

2
ϕ
n−
i+1

(ūni+2 − ūni+1)

)))

+
1

∆x

(
F+
x

(
W

(
ūni−1 +

1

2
ϕ
n+
i−1(ū

n
i−1 − ūni−2)

))
+ F−

x

(
W

(
ūni −

1

2
ϕ
n−
i

(ūni+1 − ūni )

)))

= −
1

∆x


F+
x

(
W

(
ūni +

1

2
ϕ
n+
i (ūni − ūni−1)

))
− F+

x

(
W

(
ūni−1 +

1

2
ϕ
n+
i−1(ū

n
i−1 − ūni−2)

))
︸ ︷︷ ︸

∆f̂+
n

i−1/2



−
1

∆x


F−
x

(
W

(
ūni+1 −

1

2
ϕ
n−
i+1

(ūni+2 − ūni+1)

))
− F−

x

(
W

(
ūni −

1

2
ϕ
n−
i

(ūni+1 − ūni )

))
︸ ︷︷ ︸

∆f̂
−n

i+1/2


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The MUSCL/TVD Method

Second-Order Approximation

Many variants of the MUSCL method exist today

The most popular ones use flux difference splitting along the lines of
an approximate Riemann solver such as Roe’s solver instead of flux
vector splitting: In this case, convex linear combinations of the
constant and linear reconstructions of Wi+1/2,L(t) and Wi+1/2,R(t)
are used as the left and right states in the solution of the
approximate Riemann problem

Many slope limiters have been proposed in the literature and
continue to be the subject of on-going research: One example is
presented next

Since at shocks, all higher-order terms of an approximation should
be eliminated and a return to first-order piecewise constant
reconstruction is essential, the value of a slope limiter must, by
design, approach 1 away from shocks (and other discontinuities) and
0 near shocks (and other discontinuities)
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The MUSCL/TVD Method

Van Leer’s Slope Limiter

Ratios of solution differences

rn+i =
uni − uni−1

uni+1 − uni
, rn−i =

uni+1 − uni
uni − uni−1

=
1

rn+i

Note that

rn±i ≥ 0 if the solution u is monotone increasing or monotone
decreasing
rn±i ≤ 0 if the solution u has a maximum or a minimum around xi
|rn+i | is large and |rn−i | is small if the solution differences decrease
dramatically from left to right or if un

i+1 ≈ un
i

|rn+i | is small and |rn−i | is large if the solution differences increase
dramatically from left to right or if un

i−1 ≈ un
i
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The MUSCL/TVD Method

Van Leer’s Slope Limiter

Very large or very small ratios |rn±i | sometimes signal shocks, but
not always

for example, if un
i+1 − un

i = 0 and un
i − un

i−1 ̸= 0, then |rn+i | = ∞
regardless of whether the solution is smooth or shocked
in general, because there is only limited information contained in
solution samples, no completely reliable way to distinguish shocks
from smooth regions exists
consequently, slope-limited methods do not even attempt to identify
shocks: Instead, they regulate maxima and minima – whether or not
they are associated with shocks – using the nonlinear stability
conditions (for example, TVD)
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The MUSCL/TVD Method

Van Leer’s Slope Limiter

Van Leer’s slope limiter can be described as

ϕ(r) =


2r

1 + r
for r ≥ 0 limits the slope in monotone regions of the flow

0 for r < 0 reverses to constant (first-order) reconstruction elsewhere

Note that for a uniform mesh, ϕ(1) = 1 (r = 1 ⇒ ui = (ui−1 + ui+1)/2 ⇒ solution
behaves locally as an affine (linear) function ⇒ no slope limiting is needed)

For a nonuniform mesh, a similar result is obtained for r equal to the ratio of two
consecutive space increments

Note also that lim
r→∞

ϕ(r) = 2

Equipping the scheme described in the previous pages with

ϕ
n±
i = ϕ

(
r
n−/+
i

)

(explain why in this case it is ϕ(r
n−/+
i ) and not ϕ(rn±i )) makes it:

TVD and therefore nonlinearly stable
second-order accurate in monotone regions (r ≥ 0) of the flow (proof given in class)

in practice, between first-order and second-order accurate at extrema
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The Steger-Warming Flux Vector Splitting Method for The Euler Equations

Recall that flux splitting is defined as

Fx(W ) = F+
x (W ) + F−

x (W )

dF+
x

dW
≥ 0,

dF−
x

dW
≤ 0

Hence, the flux split form of the Euler equations is

∂W

∂t
+

∂F+
x

∂x
+

∂F−
x

∂x
= 0

Then,
∂F+

x

∂x
can be discretized conservatively using at least one

point to the left – for example, using BS – and
∂F−

x

∂x
can be

discretized conservatively using at least one point to the right – for
example, using FS – thus obtaining conservation and satisfaction of
the CFL condition
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The Steger-Warming Flux Vector Splitting Method for The Euler Equations

Recall the related concept of wave speed splitting

A(W ) = A+(W ) + A−(W )

A+(W ) ≥ 0, A−(W ) ≤ 0

Then, the vector conservation law can be written in wave speed split
form as

∂W

∂t
+ A+(W )

∂W

∂x
+ A−(W )

∂W

∂x
= 0

where the matrices A+(W ) and A−(W ) are usually obtained by
splitting the eigenvalues of A(W ) into positive and negative parts

λi (W ) = λ+
i (W ) + λ−

i (W ), λ+
i (W ) ≥ 0, λ−

i (W ) ≤ 0

=⇒ Λ(W ) = Λ+(W ) + Λ−(W ), Λ+(W ) ≥ 0, Λ−(W ) ≤ 0
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The Steger-Warming Flux Vector Splitting Method for The Euler Equations

For the 1D Euler equations written in conservation form

Q(W )A(W )Q−1(W ) = Λ(W ) ⇒ A(W ) = Q−1(W )Λ(W )Q(W )

where λ1 = vx λ2 = vx + c λ3 = vx − c

and

Q−1(W ) =


1 ρ

2c − ρ
2c

vx
ρ
2c (vx + c) − ρ

2c (vx − c)

v2x
2

ρ
2c

(
v2x
2 + c2

γ−1 + cvx

)
− ρ

2c

(
v2x
2 + c2

γ−1 − cvx

)


Q(W ) =
γ − 1

ρc


ρ
c

(
− v2x

2 + c2

γ−1

)
ρ
c vx − ρ

c

v2x
2 − cvx

γ−1 −vx + c
γ−1 1

− v2x
2 − cvx

γ−1 vx + c
γ−1 −1


A(W ) = A+(W ) + A−(W ), A+(W ) ≥ 0, A−(W ) ≤ 0

A(W )+ = Q−1(W )Λ+(W )Q ≥ 0, A−(W ) = Q−1(W )Λ−(W )Q(W ) ≤ 0
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The Steger-Warming Flux Vector Splitting Method for The Euler Equations

For the Euler equations in conservation form and a perfect gas, Fx is
homogeneous function of W of degree 1

Steger and Warming (1981)4

Fx(W ) =

(
dFx

dW
(W )

)
W = A(W )W (Euler’s theorem)

⇒ F±
x (W ) = A±(W )W =

[
Q−1(W )Λ±(W )Q(W )

]
W (7)

F±
x =

γ − 1

γ
ρλ±

1

 1
vx
1
2
v 2
x


+

ρ

2γ
λ±
2

 1
vx + c

1
2
v 2
x + c2

γ−1
+ cvx


+

ρ

2γ
λ±
3

 1
vx − c

1
2
v 2
x + c2

γ−1
− cvx


4Lerat (1983): dF+

x /dW ≥ 0 and dF−
x /dW ≤ 0
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The Steger-Warming Flux Vector Splitting Method for The Euler Equations

Practical implementation
compute at each grid point (constant reconstruction) or each edge of
each computational cell (linear reconstruction)

λ+
i = max(0, λi ) =

1

2
(λi + |λi |), λ−

i = min(0, λi ) =
1

2
(λi − |λi |)

(8)
compute at each grid point (constant reconstruction) or each edge of
each computational cell (linear reconstruction) the Mach number

M =
vx
c

∈]−∞,−1] ∪ [−1, 0] ∪ [0, 1] ∪ [1,∞[

if M ≤ −1 (⇒ λ1 < 0, λ2 ≤ 0, λ3 < 0)

F+
x = 0, F−

x = Fx

if −1 < M ≤ 0 (⇒ λ1 ≤ 0, λ2 > 0, λ3 < 0)

F+
x =

ρ

2γ
(vx + c)

 1
vx + c

1
2
v2
x + c2

γ−1
+ cvx


F−

x =
γ − 1

γ
ρvx

 1
vx
1
2
v2
x

+
ρ

2γ
(vx − c)

 1
vx − c

1
2
v2
x + c2

γ−1
− cvx


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The Steger-Warming Flux Vector Splitting Method for The Euler Equations

Practical implementation
compute at each grid point (constant reconstruction) or each edge of
each computational cell (linear reconstruction)

λ+
i = max(0, λi ) =

1

2
(λi + |λi |), λ−

i = min(0, λi ) =
1

2
(λi − |λi |)

(8)
compute at each grid point (constant reconstruction) or each edge of
each computational cell (linear reconstruction) the Mach number

M =
vx
c

∈]−∞,−1] ∪ [−1, 0] ∪ [0, 1] ∪ [1,∞[

if M ≤ −1 (⇒ λ1 < 0, λ2 ≤ 0, λ3 < 0)

F+
x = 0, F−

x = Fx

if −1 < M ≤ 0 (⇒ λ1 ≤ 0, λ2 > 0, λ3 < 0)

F+
x =

ρ

2γ
(vx + c)

 1
vx + c

1
2
v2
x + c2

γ−1
+ cvx


F−

x =
γ − 1

γ
ρvx

 1
vx
1
2
v2
x

+
ρ

2γ
(vx − c)

 1
vx − c

1
2
v2
x + c2

γ−1
− cvx


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The Steger-Warming Flux Vector Splitting Method for The Euler Equations

Practical implementation
compute at each grid point (constant reconstruction) or each edge of
each computational cell (linear reconstruction)

λ+
i = max(0, λi ) =

1

2
(λi + |λi |), λ−

i = min(0, λi ) =
1

2
(λi − |λi |)

(8)
compute at each grid point (constant reconstruction) or each edge of
each computational cell (linear reconstruction) the Mach number

M =
vx
c

∈]−∞,−1] ∪ [−1, 0] ∪ [0, 1] ∪ [1,∞[

if M ≤ −1 (⇒ λ1 < 0, λ2 ≤ 0, λ3 < 0)

F+
x = 0, F−

x = Fx

if −1 < M ≤ 0 (⇒ λ1 ≤ 0, λ2 > 0, λ3 < 0)

F+
x =

ρ

2γ
(vx + c)

 1
vx + c

1
2
v2
x + c2

γ−1
+ cvx


F−

x =
γ − 1

γ
ρvx

 1
vx
1
2
v2
x

+
ρ

2γ
(vx − c)

 1
vx − c

1
2
v2
x + c2

γ−1
− cvx


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The Steger-Warming Flux Vector Splitting Method for The Euler Equations

Practical implementation (continue)

continue
continue

if 0 < M < 1 (⇒ λ1 > 0, λ2 > 0, λ3 < 0)

F+
x =

γ − 1

γ
ρvx

 1
vx
1
2
v2
x

+
ρ

2γ
(vx + c)

 1
vx + c

1
2
v2
x + c2

γ−1
+ cvx


F−

x =
ρ

2γ
(vx − c)

 1
vx − c

1
2
v2
x + c2

γ−1
− cvx



if M ≥ 1 (⇒ λ1 > 0, λ2 > 0, λ3 ≥ 0)

F+
x = Fx , F−

x = 0
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The Steger-Warming Flux Vector Splitting Method for The Euler Equations

Practical implementation (continue)

continue
continue

if 0 < M < 1 (⇒ λ1 > 0, λ2 > 0, λ3 < 0)

F+
x =
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γ
ρvx

 1
vx
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+
ρ

2γ
(vx + c)

 1
vx + c

1
2
v2
x + c2

γ−1
+ cvx


F−

x =
ρ

2γ
(vx − c)

 1
vx − c

1
2
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γ−1
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43 / 62



AA214: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS 44 / 62

The Steger-Warming Flux Vector Splitting Method for The Euler Equations

Problem: At the sonic points (M = 0 for the entropy waves and
M = ±1 for the acoustic waves), the wave speed splitting (8) is not
differentiable – the first derivative of the split wave speeds is
discontinuous at the sonic points because the function “absolute
value” is discontinuous at zero

Consequently, the wave speed splitting (8) may experience numerical
difficulties at these sonic points – for example, when an implicit
scheme is used; and the Jacobian of (7) is evaluated and thus |λi | is
differentiated

Solution: Regularization (or “entropy fix”, or “rounding the corner”)

λ±
i =

1

2

(
λi ±

∣∣∣∣√λ2
i + ϵ2

∣∣∣∣)
where ϵ is a small user-adjustable parameter
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Multidimensional Extensions

The extension to multiple dimensions of the material covered in this
chapter is straightforward

The expressions of the Euler equations in 2D and 3D can be
obtained from Chapter 2 (as particular cases of the expression of the
Navier-Stokes equations in 3D)

Furthermore, given that Chapter 6 discusses the extension of the
finite difference method to multiple dimensions on structured grids,
this chapter discusses – for the sake of variety – the extension of the
finite volume method to multiple dimensions on unstructured grids

For simplicity, the focus is set here on the 2D Euler equations

∂W

∂t
+

∂Fx

∂x
(W ) +

∂Fy

∂y
(W ) = 0 (9)

and on unstructured triangular meshes
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Multidimensional Extensions

2D unstructured triangular mesh

Euler-Poincaré theorem: Asymptotically, there are about two times
more triangles than nodes in a 2D triangular mesh

46 / 62



AA214: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS 47 / 62

Multidimensional Extensions

2D cell-centered grid

simple implementation: each triangle is at the same time a control
volume and a primal cell
three numerical fluxes per triangle only, but more flow variables than
necessary (recall the Euler-Poincaré theorem)
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Multidimensional Extensions

2D vertex-based grid

deemed more accurate than the cell-centered approach for
stretched/skewed grids
more memory efficient than comparable cell-centered techniques
(recall the Euler-Poincaré theorem)
requires however the construction of an associated control volume or
dual cell
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Multidimensional Extensions

2D control volume or dual cell for the vertex-based approach

Sample algorithm for constructing a dual cell Ci attached to vertex i
for each triangle τikl connected to i :

determine the point of intersection of the three medians, Gikl

connect the point Gikl to the midpoints Mil and Mik of the edges il
and ik, respectively
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Multidimensional Extensions

2D control volume or dual cell for the vertex-based approach
(continue)

at the wall boundaries and at the far-field boundaries, one obtains
“half” dual cells
the union of all full and half dual cells covers exactly the union of all
triangles τikl and therefore covers exactly the given triangular mesh
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Multidimensional Extensions

2D cell edge for the vertex-based approach

the boundary ∂Ci of each dual cell Ci attached to vertex i is the
union of cell edges ∂Ci⋆

∂Ci = ∂Cij ∪ ∂Cik ∪ ∂Cil ∪ ∂Cim ∪ ∂Cin

the cell edge ∂Cij , which is attached to the edge ij , is itself the union
of two segments MijGijk and MijGijn
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Multidimensional Extensions

Consider again the 2D Euler equations (9): From the results of
Chapter 3, it follows that the integration over the dual cell Ci of
these equations can be written (after scaling by 1/||Ci || and usage of
the divergence theorem) as

∂W i

∂t
+

1

∥Ci∥

∫
∂Ci

−→
F · ν⃗idΓi = 0, where W i =

1

∥Ci∥

∫
Ci

WidΩ

(10)
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Multidimensional Extensions

Integrating Eq. (10) between tn and tn+1 and re-arranging gives∫ tn+1

tn

∂W i

∂t
dt = −

∫ tn+1

tn

(
1

∥Ci∥

∫
∂Ci

−→
F · ν⃗idΓi

)
dt

= −
∑
⋆

∫ tn+1

tn

(
1

∥Ci∥

∫
∂Ci⋆

−→
F · ν⃗i⋆dΓi

)
dt(11)
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Multidimensional Extensions

Eq. (11) can be re-written as∫ tn+1

tn

∂W i

∂t
dt = −

∑
⋆

∆t

∥Ci∥

(
1

∆t

∫ tn+1

tn

(∫
∂Ci⋆

−→
F · ν⃗i⋆dΓi

)
dt

)

which leads to

∆t

(̂
∂W

∂t

)n

i

= −
∑
⋆

∆t

∥Ci∥
F̂n

i⋆ (12)

where

W
n

i ≈ 1

∥Ci∥

∫
Ci

Wi (x , y , t
n)dΩ, F̂n

i⋆ ≈ 1

∆t

∫ tn+1

tn

(∫
∂Ci⋆

−→
F · ν⃗i⋆dΓi

)
dt

(13)

Eq. (12) is the 2D extension of Eq. (1); and definitions (13) are the
2D extensions of definitions (2)
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Multidimensional Extensions

Hence, F̂n
i⋆ ≈

1

∆t

∫ tn+1

tn

I︷ ︸︸ ︷(∫
∂Ci⋆

−→
F (W ) · ν⃗i⋆dΓi

)
dt

A popular approximation of I is I ≈
−→
F (W (Mi⋆, t)) ·

∫
∂Ci⋆

ν⃗i⋆dΓi (1 quadrature point)

=⇒ F̂n
i⋆ ≈

1

∆t

∫ tn+1

tn

(
−→
F (W (Mi⋆, t)) ·

∫
∂Ci⋆

ν⃗i⋆dΓi

)
dt is constructed in 2D similarly

to how F̂n
xi+1/2

≈
1

∆t

∫ tn+1

tn
Fx

(
W (xi+1/2, t)

)
dt in constructed in 1D
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Multidimensional Extensions
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Multidimensional Extensions

In particular, upwind methods based on

F̂n
i⋆ (WRiemann(0)) =

−→
F (WRiemann(Mi⋆, t)) ·

∫
∂Ci⋆

ν⃗i⋆dΓi

=
−→
F (WRiemann(Mi⋆, t)) ·

(
l (1)ν⃗

(1)
i⋆ + l (2)ν⃗

(2)
i⋆

)
are the 2D extensions of 1D upwind methods based on

F̂n
xi+1/2

= Fx

(
WRiemann(xi+1/2, t)

)
= Fx (WRiemann(0))

Let ˜⃗ν i⋆ =
(
l (1)ν⃗

(1)
i⋆ + l (2)ν⃗

(2)
i⋆

)
and ˜⃗ν

◦
ij =

˜⃗νij

∥ ˜⃗νij∥2
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Multidimensional Extensions

Recall that in three dimensions

(Fx(W ) Fy (W ) Fz(W )) =


ρv⃗ T

ρvx v⃗
T + pe⃗ T

x

ρvy v⃗
T + pe⃗ T

y

ρvz v⃗
T + pe⃗ T

z

(E + p)v⃗ T



(Rx(W ) Ry (W ) Rz(W )) =


0⃗T

(τ · e⃗x)T
(τ · e⃗y )T
(τ · e⃗z)T

(τ · v⃗ + κ∇T )T


e⃗ T
x = (1 0 0), e⃗ T

y = (0 1 0), e⃗ T
z = (0 0 1), 0⃗T = (0 0 0)
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Multidimensional Extensions

Method #1 for computing F̂ij (WRiemann(0)) using Roe’s flux: extension of Roe’s

one-dimensional (1D) approximate Riemann solver to 3D

consider the multidimensional flux in the direction of ˜⃗ν
◦
ij

F ˜⃗ν◦
ij︸︷︷︸

5×1

=
−→
F︸︷︷︸
5×3

· ˜⃗ν
◦
ij︸︷︷︸

3×1

= (ρvn ρvxvn + pν̃◦
ijx

ρvy vn + pν̃◦
ijy

ρvzvn + pν̃◦
ijz

(E + p)vn)
T

where vn = v⃗ · ˜⃗ν◦
ij = vx ˜⃗ν

◦
ijx

+ vy ˜⃗ν
◦
ijy

+ vz ˜⃗ν
◦
ijz

Roe’s averages are based in this case on the secant approximation defined by

F ˜⃗ν◦
ij
(Wj ) − F ˜⃗ν◦

ij
(Wi ) = A ˜⃗ν◦

ij︸︷︷︸
5×5

(Wij )( Wj︸︷︷︸
5×1

− Wi︸︷︷︸
5×1

) (14)

where A ˜⃗ν◦
ij
=

∂F ˜⃗ν◦
ij

∂W
is given by


0 ˜⃗ν◦

ij
x

˜⃗ν◦
ij
y

˜⃗ν◦
ij
z

0

(γ − 1)q ˜⃗ν◦
ij
x

− vx vn vn − (γ − 2)vx
˜⃗ν◦

ij
x

vx
˜⃗ν◦

ij
y

− (γ − 1)vy
˜⃗ν◦

ij
x

vx
˜⃗ν◦

ij
z

− (γ − 1)vz
˜⃗ν◦

ij
x

(γ − 1) ˜⃗ν◦
ij
x

(γ − 1)q ˜⃗ν◦
ij
y

− vy vn vy
˜⃗ν◦

ij
x

− (γ − 1)vx
˜⃗ν◦

ij
y

vn − (γ − 2)vy
˜⃗ν◦

ij
y

vy
˜⃗ν◦

ij
z

− (γ − 1)vz
˜⃗ν◦

ij
y

(γ − 1) ˜⃗ν◦
ij
y

(γ − 1)q ˜⃗ν◦
ij
z

− vz vn vz
˜⃗ν◦

ij
x

− (γ − 1)vx
˜⃗ν◦

ij
z

vz
˜⃗ν◦

ij
y

− (γ − 1)vy
˜⃗ν◦

ij
z

vn − (γ − 2)vz
˜⃗ν◦

ij
z

(γ − 1) ˜⃗ν◦
ij
z(

(γ − 1)q − h
)
vn h ˜⃗ν◦

ij
x

− (γ − 1)vx vn h ˜⃗ν◦
ij
y

− (γ − 1)vy vn h ˜⃗ν◦
ij
z

− (γ − 1)vz vn γvn


q = ∥v⃗∥2

2/2 and h = H/ρ = e + q + p/ρ
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Multidimensional Extensions

From (14), it follows that

vxij =

√
ρivxi +

√
ρjvxj

√
ρi +

√
ρj

vyij =

√
ρivyi +

√
ρjvyj

√
ρi +

√
ρj

vzij =

√
ρivzi +

√
ρjvzj

√
ρi +

√
ρj

hij =

Hi√
ρi

+
Hj√
ρj

√
ρi +

√
ρj

=

√
ρihi +

√
ρjhj

√
ρi +

√
ρj

ρij =
√
ρiρj

=⇒ cij =

√
(γ − 1)

(
hij −

1

2
(v2

xij
+ v2

yij
+ v2

zij
)

)
⇒ Wij

the eigenvalues of A ˜⃗ν◦
ij

are: v ˜⃗ν◦
ij
± c, and v ˜⃗ν◦

ij
with multiplicity 3
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Multidimensional Extensions

Method #1 for computing F̂ij (WRiemann(0)) using Roe’s flux

extension of Roe’s 1D approximate Riemann solver to 3D (continue)

formulate Roe’s multidimensional approximate Riemann problem:
∂W

∂t︸︷︷︸
5×1

+A ˜⃗ν◦
ij
(Wij )︸ ︷︷ ︸

5×5

∂W

∂s︸︷︷︸
5×1

= 0, where s is the abscissa along i⃗j , with uniform initial

conditions on an infinite spatial domain, except for a single jump discontinuity

compute Roe’s flux

F̂ij
(
WRiemann(0)

)
︸ ︷︷ ︸

5×1

=


1

2

F ˜⃗ν◦
ij
(Wi )︸ ︷︷ ︸

5×1

+F ˜⃗ν◦
ij
(Wj )︸ ︷︷ ︸

5×1

 −
1

2

∣∣∣∣∣A ˜⃗ν◦
ij
(Wij )

∣∣∣∣∣︸ ︷︷ ︸
5×5

( Wj︸︷︷︸
5×1

− Wi︸︷︷︸
5×1

)

 ∥ ˜⃗νij∥2
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Multidimensional Extensions

Method #2 for computing F̂ij
(
WRiemann(0)

)
using Roe’s flux

along the edge ij , “compress” the conservative fluid state vector to obtain Wcomp︸ ︷︷ ︸
3×1

=

(
ρ ρvn ρe +

1

2
ρv2n

)T
,

where vn = v⃗ · ˜⃗ν◦
ij , v⃗ denotes the fluid velocity vector, and comp stands for “compressed”

along the edge ij , formulate Roe’s 1D approximate Riemann problem using W
comp
i

and W
comp
j

, and solve this

problem to obtain W
comp
Riemann

(Mij , t) = W
comp
Riemann

=

(
ρRiemann (ρvn)Riemann

(
ρe +

1

2
ρv2n

)
Riemann

)T

now, given that the fluid velocity vector v⃗ can be decomposed as v⃗ = vn ˜⃗ν◦
ij︸ ︷︷ ︸

normal direction

+ (⃗v − vn ˜⃗ν◦
ij )︸ ︷︷ ︸

tangential direction

, it follows

that the solution of (Roe’s) 1D approximate Riemann problem along the edge ij averages at Mij only the normal

component vn of the velocity vector v⃗ along ˜⃗ν◦
ij ⇒ vnRiemann

next, “expand” v⃗Riemann as

v⃗
exp
Riemann

= vnRiemann
˜⃗ν◦
ij + (⃗v − vn ˜⃗ν◦

ij )average = v exp
xRiemann

e⃗x + v exp
yRiemann

e⃗y + v exp
zRiemann

e⃗z

where exp stands for “expanded” and average designates a standard (non-Riemann solver) average
then, compute the “expanded” vector WRiemann︸ ︷︷ ︸

5×1

W
exp
Riemann

= (ρRiemann ρRiemann v exp
xRiemann

ρRiemann v exp
yRiemann

ρRiemann v exp
zRiemann

ρRiemann eRiemann +
1

2
ρRiemann

∥∥∥∥∥v⃗ exp 2

Riemann

∥∥∥∥∥)T

finally, compute F̂ij
(
WRiemann(0)

)
︸ ︷︷ ︸

5×1

as F̂ij︸︷︷︸
5×1

W
exp
Riemann

(0)︸ ︷︷ ︸
5×1


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Multidimensional Extensions

Note that

F̂n
ij =

−→
F (WRiemann(Mij , t)) ·

(
l (1)ν⃗

(1)
ij + l (2)ν⃗

(2)
ij

)
F̂n

ji =
−→
F (WRiemann(Mij , t)) ·

(
l (1)ν⃗

(1)
ji + l (2)ν⃗

(2)
ji

)
Since ν⃗ji = −ν⃗ij , it follows that F̂n

ji = −F̂n
ij ⇒ F̂n

ij + F̂n
ji = 0

=⇒ F̂ij is a conservative numerical flux (explain using telescoping
property)
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