
AA214: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS 1 / 44

AA214: NUMERICAL METHODS FOR
COMPRESSIBLE FLOWS
Treatment of Boundary Conditions

These slides are partially based on the recommended textbook: Culbert B. Laney.
“Computational Gas Dynamics,” CAMBRIDGE UNIVERSITY PRESS, ISBN 0-521-62558-0
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Note: This chapter considers only formally zero-, first-, and second-order
accurate boundary treatments so that there is no need to distinguish
between finite difference and finite volume schemes. For the sake of
simplicity, it also focuses on one-dimensional flows and explicit
time-integration methods. The generalizations of the presented material
to multidimensional flows and implicit time-integration methods are
straightforward.

3 / 44



AA214: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS 4 / 44

Two Types of Boundaries

Solid (surface, wall, or impermeable) boundaries

rigid stationary
rigid moving (not covered in this chapter)
flexible (or deformable) stationary (not covered in this chapter)
flexible (or deformable) dynamic (not covered in this chapter)

Solid boundaries reflect existing waves
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Two Types of Boundaries

Far-field (open, artificial, absorbing, permeable, or remote)
boundaries

inflow boundaries
outflow boundaries

Far-field boundaries absorb existing waves and emit new ones
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Two Types of Boundaries

Other types of boundaries not covered in this chapter
permeable or porous boundaries

Brinkman-Forchheimer-extended Darcy model for radiator flows
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Two Types of Grids

Cell-centered type of grid (primal cells are shown)

most common type of grid for the finite volume method
the numerical flux is the focus entity in this case
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Two Types of Grids

Vertex-based type of grid (dual cells are shown)

most common type of grid for the finite difference method
the flow variable is the focus entity in this case
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General Results

Boundary treatments are usually an issue when/if the chosen spatial
approximation requires the value of the solution at non-existing
points

Typical boundary treatments

change the computational domain → ghost cells → ghost flow and
reflection method
change the approximation method → one-sided approximations
enforce explicitly the appropriate boundary condition ⇒ weak and
strong enforcements
combine some of the above approaches

Boundary treatments affect the accuracy, order of accuracy, and
stability of the chosen numerical method on the boundaries and in
the interior of the computational domain

Gustafsson (1975): The formal order of accuracy on the boundaries
may be lower than that in the interior (this is not surprising,
considering that the order of accuracy can drop near shocks)
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General Results

An (m− 1)-th order scheme on the boundaries is compatible with an
m-th order scheme in the interior

(
justification: The information

passing through the mesh along the characteristic path is updated or
solved for N times at interior points, with
N ≈ L/ (∆t (|v |+ c)) ≈ L/(CFL ∆x) but only once at a “thin set”
of (boundary, shock, etc.) points

)
However, accuracy on some boundaries can be crucial (for example,
wall boundaries where lift and drag are computed)
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General Results

Wind tunnel and wind tunnel analogy

in the wind tunnel, the test model and supporting instruments
remain sationary while air moves relative to them
wind tunnel analogy: formulating the CFD problem in an inertial
frame of reference attached to a body cruising the constant speed
V∞ is equivalent to solving the corresponding wind tunnel problem,
as illustrated below
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General Results

Recall that the von Neumann analysis of linear stability applies only
at periodic boundaries

Recall that the linear matrix stability analysis accounts for boundary
treatments and therefore can determine their effects on numerical
stability

Recall that the CFL condition is necessary for nonlinear stability

At solid boundaries, the true domain of dependence is

entirely to the right of a left-hand wall
entirely to the left of a right-hand wall

At solid boundaries, the numerical domain of dependence must be

entirely to the right of a left-hand wall
entirely to the left of a right-hand wall

Hence, the CFL condition is automatically satisfied at solid
boundaries
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General Results

If any waves enter the far-field boundaries, the true domain of
dependence is partly or fully outside the computational domain

By definition, the numerical domain of dependence is always
completely contained within the computational domain

Hence, if any waves enter the far-field boundaries, the CFL condition
is automatically violated at far-field boundaries, unless the numerical
method is equipped to know something about any waves entering
through the far-field boundaries
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Solid Boundaries

At solid boundaries, inviscid flows are characterized by the
no-penetration boundary condition: vx = 0 (in mutliple dimensions,
~v · ~ν = 0, where ~ν is the normal to the wall)

In a numerical method, a solid boundary treatment should enforce
the no-penetration condition without otherwise restricting the flow

For simplicity, only left-hand solid surfaces positioned at x = xL are
treated next (the case of right-hand solid surfaces is treated in a
similar manner)
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Solid Boundaries

Ghost flow and reflection method

treat the solid surface as a mirror

ρ(xL − x , t) = ρ(xL + x , t)

vx(xL − x , t) = −vx(xL + x , t)

p(xL − x , t) = p(xL + x , t)

vx(xL − x , t) = −vx(xL + x , t)⇒ vx(xL, t) = 0 (assuming only that
the velocity is continuous)
same reasoning can be performed using the conservative variables to
obtain the same conclusion
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Solid Boundaries

The flow properties are continuous across the real/ghost boundaries,
but their first derivatives are not ⇒ cusped flows at solid
boundaries, in theory
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Solid Boundaries

An explicit numerical method with K1 points to the left requires at
least K1 ghost cells

For example, for K1 = 2, the numerical approximation in the
required ghost cells goes as follows

case of a cell-centered grid

ρn0 = ρn1, ρn−1 = ρn2

vn
x0

= −vn
x1
, vn

x−1
= −vn

x2

pn
0 = pn

1 , pn
−1 = pn

2

case of a vertex-based grid

ρn0 = ρn2, ρn−1 = ρn3

vn
x0

= −vn
x2
, vn

x−1
= −vn

x3

pn
0 = pn

2 , pn
−1 = pn

3
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Solid Boundaries

The true derivatives of the flow properties may be non-zero near
solid walls, but certain numerical approximations might predict them
to be vanishing at solid walls

For example, on cell-centered grids, an FS approximation says

∂ρ

∂x
≈ ρn1 − ρn0

∆x
= 0

For the Euler equations, from the conservation of momentum in

primitive variable form
∂vx
∂t

+ vx
∂vx
∂x

+
1

ρ

∂p

∂x
= 0 and the

non-penetration condition at solid walls, it follows that
∂p/∂x(xL, t) = 0
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Solid Boundaries

If the numerical method senses the cusp at the boundary, it may
produce spurious oscillations

Such oscillations can be combatted in exactly the same way as
oscillations and instabilities caused by shocks are combatted
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Solid Boundaries

Note: If the numerical method accurately enforces the
no-penetration condition, it should ensure at solid boundaries

case of a cell-centered grid

F̂n
x1/2

= [0, pn
1/2, 0]T

case of a vertex-based grid

W n
1 = [ρn1, 0, E n

1 ]T
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Solid Boundaries

Alternatives to the method of ghost flow and reflection

change the approximation method → one-sided approximations ⇒
may not effectively enforce the no-penetration boundary condition
explicit enforcement of the no-penetration boundary condition ⇒
comes in two flavors: weak and strong enforcements
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Solid Boundaries

Weak enforcement of the no-penetration boundary condition

example: finite volume method and cell-centered grid

F̂n
xi+1/2

≈ 1

∆t

∫ tn+1

tn
Fx

(
W (xi+1/2, t)

)
dt

vx (x1/2, t) = 0⇒ set Fx
(
W (x1/2, t)

)
= [0, p(x1/2, t) , 0]T

=⇒ F̂n
x1/2
≈

1

∆t

∫ tn+1

tn
[0, p(x1/2, t) , 0]Tdt

extrapolate p(x1/2, t), for example, as

p(x1/2, t) = pn1 + O (∆x2) + O (t − tn) (constant extrapolation)

or as

p(x1/2, t) =
3

2
pn1−

1

2
pn2 +O (∆x2)+O (t−tn) (linear extrapolation)

for the usual reason, the constant extrapolation may become superior
to the linear one as a shock nears the solid boundary
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Solid Boundaries

Strong enforcement of the no-penetration boundary condition
example: finite volume method and vertex-based grid

vx (x1, t) = 0⇒ set W n
1 = [ρn1, 0,En

1 ]T

focus on the second component of the advanced fluid state vector

(W n+1
1 )2 = (W n

1 )2 − λ[(F̂x3/2
)2 − (F̂x1/2

)2]

(W n+1
1 )2 = (W n

1 )2 = 0⇒ (F̂x1/2
)2 = (F̂x3/2

)2

=⇒ trivial task, at least in 1D
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Far-Field Boundaries

Should allow waves to travel freely “in” and “out” of the
computational domain ⇒ corresponding boundary treatment should
specify incoming waves and prevent reflection of outgoing waves

Incoming waves carry information from the exterior ⇒ boundary
treatment should know “something” about the exterior (truly
complete information about the exterior could require explicitly
modeling the exterior, which is typically not desirable)

24 / 44
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Far-Field Boundaries

Major steps in designing a far-field boundary treatment

determine how many flow variables must be specified (0, 1, 2, or 3)
choose which flow variables to specify
assign values to them (most difficult step), which completes the
boundary treatment

Design of boundary treatment is typically guided by characteristic
theory
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Far-Field Boundaries

How Many Flow Variables to Specify

Example: Free-stream boundaries (more details later)

subsonic inflow: two quantities associated with ξ0 and ξ+ must be
specified
subsonic outflow: one quantity associated with ξ− must be specified

26 / 44
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Far-Field Boundaries

How Many Flow Variables to Specify

Distinguish between inflow and outflow boundaries

Distinguish between subsonic and supersonic boundaries

Inflow boundary

subsonic: 2 flow variables must be specified
supersonic: 3 flow variables must be specified

Outflow boundary

subsonic: 1 flow variable must be specified
supersonic: 0 flow variable must be specified

Ignoring the above analysis leads to duplicative information at best,
and contradictory information at worst, and is bound in general to
generate ill-conditioning and/or numerical instability

27 / 44
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Far-Field Boundaries

Which Flow Variables to Specify

Primitive, characteristic, or conservative variables can be specified,
as well as combinations of such variables

characteristic variables are the most natural candidates, but involve
the solution of differential equations for which analytic solutions may
or may not be available
primitive variables are the most practical candidates because: (a)
they are the easiest to measure when experimental data is involved,
and (b) when they can be obtained, characteristic variables can be
expressed in terms of primitive variables

Hence, primitive variables are usually specified with special care to
avoid

overconstraining the problem at a given far-field boundary (specified
variables determine outgoing characteristic variables)
underconstraining the problem at a given far-field boundary (specified
variables do not specify the incoming characteristic variables)
introducing redundancy between what is specified at the inflow
boundary and what is specified at the outflow boundary

Conflicts cannot arise when 0 or 3 quantities must be specified ⇒
subsonic flow is the main case where special care is required

28 / 44
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Far-Field Boundaries

Which Flow Variables to Specify

Example: Subsonic far-field boundaries — Part I: inflow boundary

recall that 2 quantities must be specified at a subsonic inflow
far-field boundary (ξ0 and ξ+)
the characteristic variables are

dξ0 = dρ− dp

c2
, dξ+ = dvx +

dp

ρc
, dξ− = dvx −

dp

ρc

round 1: candidate pairs of primitive variables
(dρ, dp): fully specifies dξ0 and partially specifies dξ+ and dξ− ⇒ to
be considered
(dρ, dvx ): partially specifies dξ0, dξ+ and dξ− ⇒ to be considered
(dp, dvx ): partially specifies dξ0 and completely specifies dξ+ and
dξ− ⇒ bad candidate as it specifies dξ− which is already specified
by the interior domain, and therefore overconstrains the system

round 2: elimination
((dρ, dp), dξ−): dp and dξ− ⇒ dvx ⇒ (dρ, dp, dvx ) ⇒ admissible
((dρ, dvx ), dξ−): dvx and dξ− ⇒ dp ⇒ (dρ, dp, dvx ) ⇒ admissible

result: at a subsonic inflow boundary, one can specify (ρ, p) or
(ρ, vx) but not (p, vx) — for example, at a free-stream subsonic
inflow boundary (more details later) one can specify
(ρ = ρ∞, p = p∞) or (ρ = ρ∞, vx = vx∞)

29 / 44
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Far-Field Boundaries

Which Flow Variables to Specify

Example: Subsonic far-field boundaries — Part I: inflow boundary
recall that 2 quantities must be specified at a subsonic inflow
far-field boundary (ξ0 and ξ+)
the characteristic variables are

dξ0 = dρ− dp

c2
, dξ+ = dvx +

dp

ρc
, dξ− = dvx −

dp

ρc

round 1: candidate pairs of primitive variables
(dρ, dp): fully specifies dξ0 and partially specifies dξ+ and dξ− ⇒ to
be considered
(dρ, dvx ): partially specifies dξ0, dξ+ and dξ− ⇒ to be considered
(dp, dvx ): partially specifies dξ0 and completely specifies dξ+ and
dξ− ⇒ bad candidate as it specifies dξ− which is already specified
by the interior domain, and therefore overconstrains the system

round 2: elimination
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Far-Field Boundaries

Which Flow Variables to Specify

Example: Subsonic far-field boundaries — Part II: outflow boundary

recall that at a subsonic inflow boundary, one can specify (ρ, p) or
(ρ, vx) but not (p, vx)
recall that at a subsonic outflow boundary, only one quantity must
be specified (ξ−)

hence, the main concern is to avoid redundancy with what is chosen
to be specified at the inflow boundary
since in this example both inflow and outflow boundaries are
assumed to be subsonic and dξ− = dvx − dp/ρc:

if (ρ, p) is specified at the inflow boundary ⇒ vx must be specified at
the outflow boundary
if (ρ, vx ) is specified at the inflow boundary ⇒ p must be specified at
the outflow boundary
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Far-Field Boundaries

Free-Stream Conditions

In aeronautics, the physical far-field is often a region of space known
as the free-stream, where the flow is steady and uniform, and its
properties are designated by the subscript ∞
For this reason, after the flow variables to be specified at far-field
inflow and outflow boundaries are chosen, one is tempted to set
their values to the free-stream conditions
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Far-Field Boundaries

Free-Stream Conditions

In practice

if the computational domain is sufficiently (and often prohibitively)
large — for example, when the artificial far-field boundaries
delimiting the computational domain associated with the flow past
an airfoil are located away from the wall boundaries at distances of
the order of 50 times the chord (in the case of a wing) — the above
temptation is reasonable, not necessarily because at these distances
the flow is at the free-stream conditions, but because the outgoing
waves will be heavily dissipated by discretization errors (artificial
viscosity) by the time they reach these artificial far-field boundaries
otherwise, the above temptation is unreasonable and will cause the
outgoing waves (especially shock waves) to partially reflect from
these artificial far-field boundaries and pollute the numerical solution
in the interior of the computational domain
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Far-Field Boundaries

Nonreflecting Boundary Conditions

Rather than relying on artificial viscosity, it is possible to construct
special wave-absorbing buffer zones to damp outgoing waves before
they can reach the far-field; or artificial far-field boundary conditions
— also known as nonreflecting, absorbing, silent, transparent, or
one-way boundary conditions — that absorb outgoing waves at the
far-field and therefore do not allow them to reflect back into the
interior of the computational domain

There are two approaches for achieving the above objective

setting the characteristic variables or their derivatives equal to
constants
modeling the outgoing waves to prevent their reflection using some
sort of asymptotic analysis

Both approaches are simpler to design and implement when the flow
is linearized about the free-stream conditions in the neighborhood of
the artificial far-field boundaries
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Far-Field Boundaries

Nonreflecting Boundary Conditions

Linearization About the Steady Uniform Free-Stream Conditions

If the artificial far-field boundaries are placed sufficiently far away so
that the far-field flow is nearly but not exactly equal to the steady,
uniform, free-stream flow, the Euler (or for that matter the
Navier-Stokes) equations can be linearized at the far-field boundaries
Let

ρ = ρ∞ + ρ′, vx = vx∞ + v ′x , p = p∞ + p′

Substituting the above equations into the Euler equations (primitive
variables) and neglecting all second-order terms yields

∂V

∂t
+ A∞

∂V

∂x
= 0 (1)

where

V =

 ρ′

v ′x
p′

 and A∞ =

 vx∞ ρ∞ 0
0 vx∞

1
ρ∞

0 ρ∞c2
∞ vx∞
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Far-Field Boundaries

Nonreflecting Boundary Conditions

Setting the Characteristic Variables

Consider now the characteristics of the linearized Euler equations (1)

dξ0 = dρ−
dp

c2
∞
, dξ+ = dvx +

dp

ρ∞c∞
, dξ− = dvx −

dp

ρ∞c∞

These differential equations have the following analytic solutions

ξ0 = ρ−
p

c2
∞
, ξ+ = vx +

p

ρ∞c∞
, ξ− = vx −

p

ρ∞c∞

Then, at a subsonic inflow, one can set

ξ0 = ρ−
p

c2
∞

= cst

(
= ρ∞ −

p∞

c2
∞

)
and ξ+ = vx+

p

ρ∞c∞
= cst′

(
= vx∞ +

p∞

ρ∞c∞

)
and obtain the third information from?

And at a subsonic outflow, one can set

ξ− = vx −
p

ρ∞c∞
= cst

(
= vx∞ −

p∞

ρ∞c∞

)
and obtain the second and third information from?
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Far-Field Boundaries

Nonreflecting Boundary Conditions

Setting the Characteristic Variables

This works well for 1D flows

Multidimensional flows require multidimensional characteristics but
otherwise a similar approach
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Far-Field Boundaries

Nonreflecting Boundary Conditions

Alternative Approach: Modeling the Outgoing Waves (Optional Material)

Besides the (linearized) Euler equations, the outgoing waves
typically satisfy a (linear) differential equation separate from that
satisfied by the incoming waves or the total combination of outgoing
and incoming waves

In many cases, this other differential equation has an analytic
solution that gives the outgoing waves a general functional form

Either the aforementioned differential equation or the
aforementioned general functional form can be used to model the
outgoing waves

A single wave equation or general functional form for pressure
suffices for subsonic inlets as they allow only a single outgoing family
of waves
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Far-Field Boundaries

Nonreflecting Boundary Conditions

Alternative Approach: Modeling the Outgoing Waves (Optional Material)

In the far-field, to a first approximation, outgoing waves are planar,
one-dimensional and satisfy the following linear advection equation

∂p

∂t
− c

∂p

∂x
= 0

At a left-hand far-field boundary, an equivalent model of the
outgoing pressure wave is in this case the general functional form

p = p(x + ct)
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Far-Field Boundaries

Nonreflecting Boundary Conditions

Alternative Approach: Modeling the Outgoing Waves (Optional Material)

Alternatively, the outgoing waves are approximately cylindrical in the
far-field and satisfy the following 2D differential equation

∂p

∂t
+ c

∂p

∂r
+

c

2r
p = 0

In this case, an equivalent model of the outgoing pressure wave is
the general functional form

p =
1√
r
p(r − ct)
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Far-Field Boundaries

Nonreflecting Boundary Conditions

Alternative Approach: Modeling the Outgoing Waves (Optional Material)

A 3D model can be built similarly assuming that the outgoing waves
are approximately spherical in the far-field

Then, the chosen model — whether in differential equation or
general functional form — can be discretized to solve for the
outgoing pressure wave at the artificial far-field boundary

Note: In general, the waves in the far-field are neither exactly planar,
cylindrical, nor spherical, and therefore these characterizations are
just the first terms in a longer series approximating the outgoing
waves in the far-field
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Far-Field Boundaries

Steger-Warming Flux Vector Splitting Method for the Euler Equations

Problems (equations of state) for which the physical flux F(W) is a
homogeneous function of W of degree 1 — that is

∀i = 1,m
m∑
j=1

∂Fi

∂Wj
Wj = Fi (W1, · · · , Wm)⇒ F = A(W )W

Recall flux splitting

F(W ) = F+(W ) + F−(W )

∂F+

∂W
≥ 0,

∂F−

∂W
≤ 0

=⇒ F(W ) = A+W + A−W

=⇒ upwinding for A+W and downwinding for A−W

=⇒ for example, BS for A+W and FS for A−W

=⇒ F̂n
xi+1/2

= A+(Wi )Wi + A−(Wi+1)Wi+1

and F̂n
xi−1/2

= A+(Wi−1)Wi−1 + A−(Wi )Wi (2)
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Far-Field Boundaries

Steger-Warming Flux Vector Splitting Method for the Euler Equations

Recall also that F̂n
i? ≈

1

∆t

∫ tn+1

tn

(∫
∂Ci?

−→
F · ~νi?dΓi

)
dt is

constructed in 2D exactly like

F̂n
xi+1/2

≈ 1

∆t

∫ tn+1

tn
Fx

(
W (xi+1/2, t)

)
dt is constructed in 1D

However, the upwind method to be described here will not be based

on F̂n
ij =
−→
F (WRIEMANN(Mij , t)) · ~νij
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Far-Field Boundaries

Steger-Warming Flux Vector Splitting Method for the Euler Equations

Steger and Warming, 1981 (see (2) for 1D problems)

F̂n
ij = F̂n

ij (Wi ,Wj , ~νij) = A+ (Wi , ~νij)Wi + A− (Wj , ~νij)Wj

F̂n
ji = F̂n

ji (Wj ,Wi , ~νji ) = A+ (Wj , ~νji )Wj + A− (Wi , ~νji )Wi , ~νji = −~νij

Steger-Warming flux at the far-field boundaries (half cells and outward
normals)

F̂n
j∞ = F̂n

j∞ (Wj ,W∞, ~νj∞) = A+ (Wj , ~νj∞)Wj + A− (Wj , ~νj∞)W∞
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Far-Field Boundaries

Steger-Warming Flux Vector Splitting Method for the Euler Equations

Recall from Chapter 7 that the eigenvalues of A(~νj∞) = A~νj∞ are: v~νj∞ ± c, where

v~νj∞ = ~v · ~νj∞; and v~νj∞ with multiplicity 3

Hence, with the outward normal convention at a far-field boundary

at a subsonic inflow boundary, v~νj∞ − c < 0, v~νj∞ < 0, and v~νj∞ + c > 0

at a subsonic outflow boundary, v~νj∞ + c > 0, v~νj∞ > 0, and v~νj∞ − c < 0

Analysis: if the far-field boundaries are located sufficiently far from the flow obstacle, at
both subsonic inflow and outflow boundaries, the boundary treatment

F̂n
j∞ = F̂n

j∞ (Wj ,W∞, ~νj∞) = A+ (Wj , ~νj∞) Wj + A− (Wj , ~νj∞) W∞

specifies incoming waves
(
A− (Wj , ~νj∞) W∞

)
and prevents reflection of outgoing

waves
(
A+ (Wj , ~νj∞) Wj

)
⇒ allows waves to travel freely “in” and “out” of the

computational domain

the term A− (Wj , ~νj∞) W∞ determines the correct number and chooses the correct

combination of variables to specify, and assigns to them the correct values

=⇒ is a good example of a boundary treatment

guided by the characteristic theory

note the limit “j →∞”
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