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AA242B: MECHANICAL VIBRATIONS

Analytical Dynamics of Discrete Systems

These slides are based on the recommended textbook: M. Géradin and D. Rixen, “Mechanical
Vibrations: Theory and Applications to Structural Dynamics,” Second Edition, Wiley, John &
Sons, Incorporated, ISBN-13:9780471975465

e

/8



AA242B: MECHANICAL VIBRATIONS 2/41

Outline

Principle of Virtual Work for a Particle
Principle of Virtual Work for a System of N Particles
Hamilton's Principle for Conservative Systems and Lagrange Equations

B Lagrange Equations in the General Case
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|—Principle of Virtual Work for a Particle

X3 m it

X4

m Particle mass m
m Particle force

m force vector f=[fi £ £]"
m force component f;, i=1,---,3

m Particle displacement

m displacement vector u = [u1 > u3]’
m displacement component u;, i =1,--- 3
m motion trajectory u(t) where t denotes time é -
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|—Principle of Virtual Work for a Particle

m Particle virtual displacement
m arbitrary displacement u* (can be zero)
m virtual displacement du = u* —u = arbitrary by definition
m family of arbitrary virtual displacements defined in a time-interval
[t1, t2] and satisfying the variational constraints

’6u(t1) = ou(t) = o\

m Important property

du*  du;
) — )= — — L — g — 0 =0u:
dt(5u0 dt(m i) de  dr Y Oui

= | —(0) =0(=) (commutativity)
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|—Principle of Virtual Work for a Particle

m Equilibrium

m strong form
mi—f=0= mi - =0, i=1---,3

m weak form
3
Vou, (6u”)(mii—f) =0= > (mii; — £)ou; =0
i=1
:>(m[i,-ff,-)6u,-:0, I':].,---,3
m Su’ (mii — f) = (mii — f) T Su is homogeneous to a work
= virtual work (6 W)
m Virtual work principle

The virtual work produced by the effective forces acting
on a particle during a virtual displacement is equal to zero
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I—Principle of Virtual Work for a System of N Particles

m N particles: k=1,--- N
m Equilibrium
miik—szo, k:].,-”,N

m Family of virtual displacements du, = uj — uy satisfying the
variational constraints

5uk(t1) = 5uk(t2) =0 (1)
m Virtual work
N N
mu, —f,=0= Zéu[(mﬁk — fk) = Z(mijk — fk)Téuk =0
k=1 k=1

e
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I—Principle of Virtual Work for a System of N Particles

m Conversely, Vouy, compatible with the variational constraints (1)

m If (2) is true Vdu, compatible with (1) = (2) is true for
Suj=[1 0 0]T (bux=[0 0 0] for k #j), Su;=[0 1 0]"
(buy=1[0 0 0]7 for k#j),and ou; =[0 0 1]7
(5uk = [0 0 O]T for k #J), t €]t1, l'g[

:>mji1',-/.—ﬁ-j:0, i=1,---,3, j=1,--- /N

<:>kau,k— . =0, i_1,--~,3>

If the virtual work equation is satisfied for any displacement
compatible with the variational constraints, the system (of partic/es)"é -
is in dynamic equilibrium
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I—Principle of Virtual Work for a System of N Particles

m Major result

dynamic equilibrium < virtual work principle
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I—Principle of Virtual Work for a System of N Particles

LKinematic Constraints

m In the absence of (kinematic) constraints, the state of a system of N
particles can be defined by 3/ displacement components

v, i=1---.3 k=1---N
m Instantaneous configuration
&, = X, + uj (x, t) = 3N dofs

m However, most mechanical systems incorporate some sort of
constraints

m holonomic constraints
m non-holonomic constraints
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|—Principle of Virtual Work for a System of N Particles

LKinematic Constraints

m Holonomic constraints
m two types
m rheonomic constraints: defined by c(&,,t) = 0 (no explicit
dependence on any velocity)
m scleronomic constraints: defined by c(&;, ) = 0 (no explicit
dependence on any velocity or time)
m a holonomic constraint reduces by 1 the number of dofs of a
mechanical system
m example

rigid bar m, (&)

m, (&)

e
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3
m rigidity = conservation of length = > (&;, — &;,)% = I
i=1
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I—Principle of Virtual Work for a System of N Particles

LKinematic Constraints

m Non-holonomic constraints
m defined by c(&;,,&;,,t) =0
m example

B no slip = speed of point P =0
{)'q:O—rq:ScosG = >'<1+r<1:5c050:0
yvi=0+r¢sind = y1 —r¢sind=0
® in addition - é_/
{XQ—xlzrsin:;Scosﬁ Yo —y1=—rsin¢gsin@ z —z; = —rcos¢
zZ1 = r
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I—Principle of Virtual Work for a System of N Particles

LKinematic Constraints

m example (continue)
m hence, this system has

m 8 variables: xi,y1,2z1,x2,¥2,22,0,¢
B 4 holonomic constraints
® 2 non-holonomic constraints

® in general, c(f,-k,f,-k, t) = 0 is not integrable and therefore
non-holonomic constraints do not reduce the number of dofs of a
mechanical system

m therefore, the mechanical system in the above example (wheel) has 8
- 4 = 4 dofs

m 2 translations in the rolling plane
m 2 rotations

e
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I—Principle of Virtual Work for a System of N Particles

LGeneralized Displacements

m Let n denote the number of dofs of a mechanical system: for
example, for a system with N material points and R holonomic
constraints, n = 3N — R

m The generalized coordinates of this system are defined as the n

configuration parameters (g1, g2, -, qn) in terms of which the
displacements can be expressed as

uik(x7 t) = Uik(ql’ q2,- - ,dn, t)

m If the system is not constrained by any non-holonomic constraint,
then the generalized coordinates (g1, ¢, - - , g,) are independent:
they can vary arbitrarily without violating the kinematic constraints

e
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I—Principle of Virtual Work for a System of N Particles

LGeneralized Displacements

m Example

m holonomic constraint HC1: ¢ + &3, = 2
m holonomic constraint HC2: (§12 — 511)2 + (€2 — 521)2 =2

= 4 — 2 = 2dofs
m one possible choice of (g1, g2) is (61, 62)

— 511 = /1 CcOos 91 521 = /1 sin 01
€10 = hcosbr + hcos(61 + 02) &2 = hsinby + hbsin(61 + 62)

e
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I—Principle of Virtual Work for a System of N Particles

LGeneralized Displacements
m Virtual displacements

" oU;,
0qs

Uik(xa t) = Uik(q17 g2, qn, t) = 5Uik = 5qs

s=1

m Virtual work equation

. ou;
Z ZZ(mkUik - f,-k)aiq’k 5gs =0

n

m Second term in above equation can be written as Y Qs0¢gs where
s=1

is the generalized force conjugate to gs
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I—Hamilton’s Principle for Conservative Systems and Lagrange Equations

m Sir William Rowan Hamilton (4 August 1805 - 2 September 1865)

m lrish physicist, astronomer, and mathematician

m contributions: classical mechanics, optics, and algebra (inventor of
quaternions), and most importantly, reformulation of Newtonian
mechanics (now called Hamiltonian mechanics)

® impact: modern study of electromagnetism, development of é -
quantum mechanics e
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I—Hamilton’s Principle for Conservative Systems and Lagrange Equations

tr
m Hamilton's principle: —/ virtual work principle = 0!
t1

n[ N 3
—/ ZZ my iz — £, )u;, | dt =0

t k=1 i=1

where duj, are arbitrary but compatible with eventual constraints
and verify the end conditions (previously referred to as variational
constraints)

e
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I—Hamilton’s Principle for Conservative Systems and Lagrange Equations

m First, assume that f derives from a potential V(§;) — that is,
f, is a conservative force

=3 V(§1k> 5210 §3k) / f = _vv(flw §24 €3k)

m Virtual work of fj

N 3 N 3 9V
SW =" "fidu;, = ZZ P s, = =Y N 88, = =0V
k=1 i=1 k=1 i=1 i, k=1 i=1 O%i,
m SW = —5V and W = 3" Quqs
s=1
- Qs = 73:;
s ' ,,éif

m What about the virtual work of the inertia forces?
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I—Hamilton’s Principle for Conservative Systems and Lagrange Equations

m Note that
E(mkuikauik) = mylidu;, + Mgl
1
= mldu;, + (5( mku,k)
. d . 1 D)
:>6W:mku,-k5u,-k = E(mku;kéu;k)—é(imku;k)

m The kinetic energy of a system of N particles can be defined as

N
=322 mudik

k=1 i=1

NH—\
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I—Hamilton’s Principle for Conservative Systems and Lagrange Equations

m Hence, Hamilton's principle for a conservative system can be written

as
t N 3
7/ [Z > (micisye — f,-k)éu,-k] dt =0
o k=1 i=1
t, [ N 3 d 1 t>
= */E [szt(mm;kdu,-k)é(zmku,-i) dt+/t (*5V)dt:0
1 k=1 i=1 1
N 3 t
— —ZkaL};kéu;ka +4 (T—V)df:()
k=1 i=1 t

m Recall the generalized displacements

{qs} = u,'k(X, t) = Uik(an t) = Ui = h(q57 gs, t)
= &, = X, + Ui (x, t) = x;, + Ui, (gs, t) = g(3s, t) é

_——

—[T=T@at) ad V=V
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I—Hamilton’s Principle for Conservative Systems and Lagrange Equations

’k
9qs 06

m Note that u; (x,t) = U, (gs, t) = du;, = Z
m Now, recall the end conditions
oui (t1) =0=dqgs(t1) =0 and du () =0=0qgs(t2) =0

m Therefore, Hamilton's principle (HP) can be written as

s | “[T(@a0) V@, 0lde=0 v q/ da(t) = ba(t:) =0

where
a=[a @ - q - qi)
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I—Hamilton’s Principle for Conservative Systems and Lagrange Equations

m Equations of motion
oT ..
0T = 0qs —.5 s
£ =3 (G )
ZQs(sQS
oT
(] HP—)/ |:Z aqsaqs <7+Qs> 6q5:| dt =0

m integrate by parts and apply the end conditions

gTéqs / Zdt(aT> 5qsdt
- [
[ELAE) el

22/41

) 6gsdt =0
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I—Hamilton’s Principle for Conservative Systems and Lagrange Equations

m The Lagrange equations of motion

oT
/ Z (‘o‘qs>+aqs Qe ogedt =0

v éq / dq(t1) = dq(t2) =0

— -4 (T +3T+Qf0
dt \ 0¢s dgs °

n % (gl) + gz}; generalized inertia forces

m Qs: generalized internal and external forces

23/41
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L Hamilton’s Principle for Conservative Systems and Lagrange Equations

m Joseph-Louis (Giuseppe Lodovico), comte de Lagrange (25 January
1736 - 10 April 1813)

Italian-born mathematician and astronomer

contributions: analysis, number theory, and classical and celestial mechanics

B succeeded Euler in 1766 as the director of mathematics at the Prussian Academy of
Sciences in Berlin

B impact: his treatise on analytical mechanics written in Berlin and first published in
1788 formed a basis for the development of mathematical physics in the 19" century

B moved to France in 1787 and became a member of the French Academy

B survived the French Revolution and became the first professor of analysis at the Ecole
Polytechnique upon its opening in 1794
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I—Hamilton’s Principle for Conservative Systems and Lagrange Equations

N
m Equations of equilibrium Y myd; —f, =0, i=1,---,3: simple,

k=1
but can be difficult to formulate analytically for complex systems

, , , d (0T oT

m Lagrange's equations of motion —— — | + + Qs = 0: more
dt \ 0gs dqs

complex, but can simplify the analytical solution of complex dynamic

problems
6,

— II spring II
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I—Hamilton’s Principle for Conservative Systems and Lagrange Equations

L Classification of Inertia Forces

8U ou;

Ik

dqs ot

s=1
m Substitute in the expression of the kinetic energy
=T =To(q,t) + T1(q,9,t) + T2(q,q, t) where To, T1, and T are
homogeneous forms ! of degree 0, 1, and 2 in gs, respectively, and
are given by

m Recall v, = U, (q,t) = i =

TR oU- \ 2
To(a,t) = 5 Z Z my ( Btlk) (transport kinetic energy)
U

I

M=
S,.D (o5}
Q

Ti(q,9,t) “4s (mutual kinetic energy)
s=1 k=1 i=1
N 3
_ I o U, oU;
T2(9,9,t) = 5 Z Z my— L 9a % G4sq, (relative kinetic energy)
s=1 r=1 k=1 i=1 s 9ar A
1G(q1, ---, qn) is said to be a homogeneous function of degree p, where p is an

integer, if Ya #0, G(aqi, -~ , agn) = a”G(q1, -+, qn)

26 /41
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I—Hamilton’s Principle for Conservative Systems and Lagrange Equations

LClassification of Inertia Forces

follows that

n 15
L
s=1

From Euler's theorem on homogeneous functions of degree p (Z i

and

n

aG(
=1

97>
945

qu

s=1

9q;

m Interpretation of the first two terms of the Lagrange equations
d [0T oT d (0T1 0T
- - —(To+T1+ T2
dr(am>'+a% dr(a¢ dq)'* (TotTit72)
o (0T 4 aZr d (0Tz 0
= —,*<.1>—Z,.1%—*(,.2>+
ot \ 94s —1 094¢59q, dt \ 94s 9qs
o (87’1>+87B 7d <87’2)+87’2
"ot 94 dgs t \ Ogs 9qs
transport relative
" 9T oTi
S D D et
‘= 04s0qr 0qs
complementary

27 /41

”:wm)n

(To+T1+ T2)
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I—Hamilton’s Principle for Conservative Systems and Lagrange Equations

L Classification of Inertia Forces

m The transport inertia forces are those obtained by setting g, =0
L0 (0T 9T,
ot \ 9gs 0qs
. . .0y,
m The relative inertia forces are those obtained by assuming 9 0
_d (9T, OT:
t \ 9Gs 0qs

m The complementary inertia forces are given by the remainder

T 8T1
Za%am ' aQS é
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I—Hamilton’s Principle for Conservative Systems and Lagrange Equations

L Classification of Inertia Forces

m Note that since 7; = Z qr 87.—1

r

n

8271. LT "82T1. ~ PT
B Zaqsaqr 8qs B Zaqsaqr Z:8(75

B PT PN ) . .
- ;(aqsam 99,04 ) " ;g“qf

where the coefficients g,s =

—gs do not depend on the velocities gs,
but only on the generalized displacements and time
m The complementary inertia forces have the nature of Coriolis or

gyroscopic forces: because of the skew-symmetry of the coefficients
&rs, it follows that

Z Fsds = Z Zgrsdrds =0 - ,,éi/
s=1

s=1 r=1
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|—Hamilton’s Principle for Conservative Systems and Lagrange Equations

|—Classification of Inertia Forces

m Leonhard Euler (15 April 1707 - 18 September 1783)

Swiss mathematician and physicist

contributions: infinitesimal calculus and graph theory

impact: mechanics, fluid dynamics, optics, and astronomy

the asteroid 2002 Euler was named in his honor - ’é*/

30/41



AA242B: MECHANICAL VIBRATIONS 31/41
I—Hamilton’s Principle for Conservative Systems and Lagrange Equations

LEnergy Conservation in a System with Scleronomic Constraints

m Assume here, until otherwise stated, that the generalized

displacements U are independent explicitly of time = 7o =71 =0
3

T T ZZZZ 8U 8U . quaTz

s=1 r=1 k=1 i=1
m Differentiation with respect to time of the above expression leads to

a7 <
2? B poet Tt <8q5) (3)

m From 7 = T(q,q) it follows that
o7
8 Z % B (4)

weTEE@E

04qs 0qs
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I—Hamilton’s Principle for Conservative Systems and Lagrange Equations

LEnergy Conservation in a System with Scleronomic Constraints

e[ (5 -5l

dT) + E + Qs = 0), it follow that
94s 9qs

m From the Lagrange equations of motion (—d— (

m For a system with scleronomic constraints, V = V(q)

oV
m Since for conservative forces Qs = s it follows that
gs

dT 4 . oV . dv
;:Zqus:*Z %27;
s=1 s=

1 ags

32/41

and therefore
d B ,,éi/

E(T+V):O<:>S:T+V:cst
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I—Hamilton’s Principle for Conservative Systems and Lagrange Equations

LClassification of Generalized Forces

m Internal forces
m linking forces
m elastic forces
m dissipation forces (may have external origins too)
m External forces
m conservative forces
m non-conservative forces
m Both types of forces are said to be conservative if the associated
virtual work is recoverable

33/41
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I—Hamilton’s Principle for Conservative Systems and Lagrange Equations

LClassification of Generalized Forces

m Linking forces

rigid connection

f}1+f;’2:07 ’:1733

3 3

m virtual work: W =" fi duj, + fi,0up, = > i, (Ouiy — duiy)

i=1 i=1

m for admissible virtual displacements — that is, virtual displacements
that are compatible with the real displacements —

5u,-1 = (5u,-2 =W =0

Linking forces do NOT contribute to the generalized forces
acting on the global system é -

m the above result is a nice aspect of Lagrangian mechanics
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I—Hamilton’s Principle for Conservative Systems and Lagrange Equations

LClassification of Generalized Forces

m Elastic forces

m produced work is storable in a recoverable form
m internal energy Vine(uj, )

N 3
B 0T = —6Vim = —ZZ Vint 5

B Vi = Vint(q) =0T = _(n}int = - avmt qs = Z Qs‘sqs
_ avint
Ead Qs = aqs
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I—Hamilton’s Principle for Conservative Systems and Lagrange Equations

LClassification of Generalized Forces

m Dissipative forces
B remain parallel in opposite direction to the velocity vector v and are function of its

modulus v, =

W virtual work

N 3
DD Cifi(we) ‘:k Out g Z Q545

k=1 i=1 s=1 k=1 j=1
N 3 Vi auk
= Qs = — ZZCkfk Vk) -
k=1 i=1 qu
du,- au,' n Bu,- 8v,- 8u,-
B since v, = —k = k4 Z —kqs and therefore _k = k it follows that
dt ot — 99s a4, aq,
N 3 N P 3
Vi, Ovik fi(vi) 1 2
Q = Cifie(vie) & === = — SST
| R woe =% w oa 2

e
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v,
= | Qs =— E Ckfk(Vk)T;
k=1 s
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I—Hamilton’s Principle for Conservative Systems and Lagrange Equations

LClassification of Generalized Forces

N
0

=— E Ckfk(Vk)ﬁ‘{k

—1 ds

N pw(a)
m Dissipation function: | D = Z/ Cufi(y)dy

m From Leibniz's integral rule

d [ [®® b1 f db da
dt(/am F(x, t)dx _/a O+ F(b(1). ) F(a(0), 0

it follows that

8qs —

m Dissipated power: P = Z QRsgs = Z qs
s=1 s=1
37/41
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I—Hamilton’s Principle for Conservative Systems and Lagrange Equations

LClassification of Generalized Forces

m If D is assumed to be a homogeneous function of order p in the
generalized velocities, then

d7T < . . aD dv
I:;qus: Z E_

d

m p = 1: dry friction
[
m p = 3: aerodynamic drag
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I—Hamilton’s Principle for Conservative Systems and Lagrange Equations

L Classification of Generalized Forces

m Conservative external forces: these derive from a potential

OVex
= El Vext / QS = - a(;st
= their virtual work during a cycle is zero
OVex
5WZstéqs:_ a;téqs:_j{(svextzo

m Non-conservative external forces

n

n N 3 N
oW =3 Qbgs =) > fidu, = ZZﬁ a“’ka
s=1

k=1 i=1 i=1 k=1 s=1
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I—Hamilton’s Principle for Conservative Systems and Lagrange Equations

L Classification of Generalized Forces

m Summary: taking into account the non-conservative external forces,
the power balance of a system solicited by internal and external
forces can be written as

d S
I(T“FV) = —PD+ Z qus

s=1
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I—Lagrange Equations in the General Case

a1/41

m In the general case of a non-conservative system with rheonomic constraints, the Lagrange

equations of motion can be written as

d (0T oT oV
(AT T
dt \ 9¢s 9qs  0qs
where
YV = Vext + Vi =  total potential
D = dissipation function
Qs(t) = non-conservative external generalized forces

m They can also be written in terms of the inertia forces as follows

@ (G) 5 00 5 P 5 (5)
where
V =V —-T, = potential modified by the tranport kinetic energy
Fs = i gsqr =  generalized gyroscopic forces
r=1
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