Outline

1. Principle of Virtual Work for a Particle
2. Principle of Virtual Work for a System of N Particles
3. Hamilton’s Principle for Conservative Systems and Lagrange Equations
4. Lagrange Equations in the General Case
Principle of Virtual Work for a Particle

- Particle mass m
- Particle force
 - force vector $\mathbf{f} = [f_1 \quad f_2 \quad f_3]^T$
 - force component $f_i, \ i = 1, \cdots, 3$
- Particle displacement
 - displacement vector $\mathbf{u} = [u_1 \quad u_2 \quad u_3]^T$
 - displacement component $u_i, \ i = 1, \cdots, 3$
 - motion trajectory $\mathbf{u}(t)$ where t denotes time
Principle of Virtual Work for a Particle

- Particle virtual displacement
 - arbitrary displacement u^* (can be zero)
 - virtual displacement $\delta u = u^* - u \Rightarrow$ arbitrary by definition
 - family of arbitrary virtual displacements defined in a time-interval $[t_1, t_2]$ and satisfying the variational constraints

$$ \delta u(t_1) = \delta u(t_2) = 0 $$

- Important property

$$ \frac{d}{dt}(\delta u_i) = \frac{d}{dt}(u_i^* - u_i) = \frac{du_i^*}{dt} - \frac{du_i}{dt} = \dot{u}_i^* - \dot{u}_i = \delta \dot{u}_i $$

$$ \Rightarrow \frac{d}{dt}(\delta) = \delta\left(\frac{d}{dt}\right) \quad \text{(commutativity)} $$
Principle of Virtual Work for a Particle

- **Equilibrium**
 - strong form
 \[
m\ddot{u} - f = 0 \Rightarrow m\ddot{u}_i - f_i = 0, \quad i = 1, \ldots, 3
\]
 - weak form
 \[
 \forall \delta u, \quad (\delta u^T)(m\ddot{u} - f) = 0 \Rightarrow \sum_{i=1}^{3} (m\ddot{u}_i - f_i)\delta u_i = 0
 \]
 \[
 \Rightarrow (m\ddot{u}_i - f_i)\delta u_i = 0, \quad i = 1, \ldots, 3
 \]
- \(\delta u^T(m\ddot{u} - f) = (m\ddot{u} - f)^T\delta u\) is homogeneous to a work
 \[
 \Rightarrow \text{virtual work} \ (\delta W)
 \]
- **Virtual work principle**

 The virtual work produced by the effective forces acting on a particle during a virtual displacement is equal to zero
Principle of Virtual Work for a System of \(N \) Particles

- \(N \) particles: \(k = 1, \cdots, N \)
- Equilibrium
 \[
 m\ddot{u}_k - f_k = 0, \quad k = 1, \cdots, N
 \]
- Family of virtual displacements \(\delta u_k = u_k^* - u_k \) satisfying the variational constraints
 \[
 \delta u_k(t_1) = \delta u_k(t_2) = 0
 \quad (1)
 \]
- Virtual work
 \[
 m\ddot{u}_k - f_k = 0 \Rightarrow \sum_{k=1}^{N} \delta u_k^T (m\ddot{u}_k - f_k) = \sum_{k=1}^{N} (m\ddot{u}_k - f_k)^T \delta u_k = 0
 \]
Conversely, $\forall \delta \mathbf{u}_k$ compatible with the variational constraints (1)

$$
\sum_{k=1}^{N} \delta \mathbf{u}_k^T (m\ddot{\mathbf{u}}_k - \mathbf{f}_k) = 0 \Rightarrow \sum_{k=1}^{N} \sum_{i=1}^{3} (m_k \dddot{u}_{ik} - f_{ik}) \delta u_{ik} = 0 \quad (2)
$$

If (2) is true $\forall \delta \mathbf{u}_k$ compatible with (1) \Rightarrow (2) is true for

$\delta \mathbf{u}_k = [1 \ 0 \ 0]^T$, $\delta \mathbf{u}_k = [0 \ 1 \ 0]^T$, and $\delta \mathbf{u}_k = [0 \ 0 \ 1]^T$, $t \in]t_1, t_2[

$$
\Rightarrow \sum_{k=1}^{N} m_k \dddot{u}_{ik} - f_{ik} = 0, \quad i = 1, \ldots, 3
$$

If the virtual work equation is satisfied for any displacement compatible with the variational constraints, the system (of particles) is in dynamic equilibrium.
Major result

dynamic equilibrium \Leftrightarrow virtual work principle
Principle of Virtual Work for a System of \(N \) Particles

Kinematic Constraints

- In the absence of (kinematic) constraints, the state of a system of \(N \) particles can be defined by \(3N \) displacement components

\[
 u_{ik}, \quad i = 1, \ldots, 3, \quad k = 1, \ldots, N
\]

- Instantaneous configuration

\[
 \xi_{ik} = x_{ik} + u_{ik}(x, t) \Rightarrow 3N \ \text{dofs}
\]

- However, most mechanical systems incorporate some sort of constraints
 - holonomic constraints
 - non-holonomic constraints
Principle of Virtual Work for a System of N Particles

Kinematic Constraints

- Holonomic constraints
 - two types
 - rheonomic constraints: defined by $f(\xi_{ik}, t) = 0$ (no explicit dependence on any velocity)
 - scleronomic constraints: defined by $f(\xi_{ik}) = 0$

- a holonomic constraint reduces by 1 the number of dofs of a mechanical system
- example

![Diagram of a rigid bar with masses](image)

- rigidity \Rightarrow conservation of length $\Rightarrow \sum_{i=1}^{3}(\xi_{i2} - \xi_{i1})^2 = l^2$
Non-holonomic constraints

- defined by \(f(\dot{\xi}_i, \xi_i, t) = 0 \)
- example

- no slip \(\Rightarrow\) speed of point \(P = 0\)

\[
\begin{align*}
\dot{x}_1 &= 0 - r \dot{\phi} \cos \theta \quad \Rightarrow \quad \dot{x}_1 + r \dot{\phi} \cos \theta = 0 \\
\dot{y}_1 &= 0 + r \dot{\phi} \sin \theta \quad \Rightarrow \quad \dot{y}_1 - r \dot{\phi} \sin \theta = 0
\end{align*}
\]

- in addition

\[
\begin{align*}
x_2 - x_1 &= r \sin \phi \cos \theta \\
y_2 - y_1 &= -r \sin \phi \sin \theta \\
z_2 - z_1 &= -r \cos \phi \\
z_1 &= r
\end{align*}
\]
example (continue)
- hence, this system has
 - 8 variables: \(x_1, y_1, z_1, x_2, y_2, z_2, \theta, \phi \)
 - 4 holonomic constraints
 - 2 non-holonomic constraints

in general, \(f(\dot{\xi}_i, \xi_i, t) = 0 \) is not integrable and therefore non-holonomic constraints do not reduce the number of dofs of a mechanical system.

therefore, the mechanical system in the above example (wheel) has \(8 - 4 = 4 \) dofs
- 2 translations in the rolling plane
- 2 rotations
Let n denote the number of dofs of a mechanical system: for example, for a system with N material points and R holonomic constraints, $n = 3N - R$

The generalized coordinates of this system are defined as the n configuration parameters (q_1, q_2, \cdots, q_n) in terms of which the displacements can be expressed as

$$u_{ik}(x, t) = U_{ik}(q_1, q_2, \cdots, q_n, t)$$

If the system is not constrained by any non-holonomic constraint, then the generalized coordinates (q_1, q_2, \cdots, q_n) are independent: they can vary arbitrarily without violating the kinematic constraints.
- Principle of Virtual Work for a System of N Particles

- Generalized Displacements

Example

- holonomic constraint HC1: $\xi_{11}^2 + \xi_{21}^2 = l_1^2$
- holonomic constraint HC2: $(\xi_{12} - \xi_{11})^2 + (\xi_{22} - \xi_{21})^2 = l_2^2$

$$\implies 4 - 2 = 2\text{ dofs}$$

- one possible choice of (q_1, q_2) is (θ_1, θ_2)

$$\implies \begin{cases}
\xi_{11} = l_1 \cos \theta_1 \\
\xi_{12} = l_1 \cos \theta_1 + l_2 \cos(\theta_1 + \theta_2) \\
\xi_{21} = l_1 \sin \theta_1 \\
\xi_{22} = l_1 \sin \theta_1 + l_2 \sin(\theta_1 + \theta_2)
\end{cases}$$
Principle of Virtual Work for a System of \(N \) Particles

Generalized Displacements

- **Virtual displacements**

\[
u_{ik}(x, t) = U_{ik}(q_1, q_2, \ldots, q_n, t) \Rightarrow \delta u_{ik} = \sum_{s=1}^{n} \frac{\partial U_{ik}}{\partial q_s} \delta q_s
\]

- **Virtual work equation**

\[
\sum_{s=1}^{n} \left[\sum_{k=1}^{N} \sum_{i=1}^{3} (m_k \ddot{u}_{ik} - f_{ik}) \frac{\partial U_{ik}}{\partial q_s} \right] \delta q_s = 0
\]

- **Second term in above equation can be written as**

\[
\sum_{s=1}^{n} Q_s \delta q_s \quad \text{where}
\]

\[
Q_s = \sum_{k=1}^{N} \sum_{i=1}^{3} f_{ik} \frac{\partial U_{ik}}{\partial q_s}
\]

is the generalized force conjugate to \(q_s \)
Sir William Rowan Hamilton (4 August 1805 - 2 September 1865)

- Irish physicist, astronomer, and mathematician
- contributions: classical mechanics, optics, and algebra (inventor of quaternions), and most importantly, reformulation of Newtonian mechanics (now called Hamiltonian mechanics)
- impact: modern study of electromagnetism, development of quantum mechanics
Hamilton’s principle is a statement that the action of a system is stationary. The action is given by the integral of the virtual work principle:

$$\int_{t_1}^{t_2} \left[\sum_{k=1}^{N} \sum_{i=1}^{3} (-m_k \ddot{u}_{ik} + f_{ik}) \delta u_{ik} \right] dt = 0$$

where δu_{ik} are arbitrary but compatible with eventual constraints and verify the end conditions (previously referred to as variational constraints).
First, assume that f_k derives from a potential V — that is, $(f_k$ is a conservative force) $\Rightarrow \exists \ V / f_k = -\nabla V$

Virtual work

$$\delta W = \sum_{k=1}^{N} \sum_{i=1}^{3} f_{ik} \delta u_{ik} = - \sum_{k=1}^{N} \sum_{i=1}^{3} \frac{\partial V}{\partial \xi_i} \delta u_{ik} = - \sum_{k=1}^{N} \sum_{i=1}^{3} \frac{\partial V}{\partial \xi_i} \delta \xi_{ik} = -\delta V$$

$\delta W = -\delta V$ and $\delta W = \sum_{s=1}^{n} Q_s \delta q_s$

$$\Rightarrow Q_s = - \frac{\partial V}{\partial q_s}$$

What about the term associated with the inertia forces?
Note that

\[
\frac{d}{dt}(m_k \delta u_{ik}) = m_k \ddot{u}_{ik} \delta u_{ik} + m_k \dot{u}_{ik} \dot{\delta u}_{ik}
\]

\[
= m_k \ddot{u}_{ik} \delta u_{ik} + \delta \left(\frac{1}{2} m_k \dot{u}_{ik}^2 \right)
\]

\[
\implies m_k \ddot{u}_{ik} \delta u_{ik} = \frac{d}{dt}(m_k \dot{u}_{ik} \delta u_{ik}) - \delta \left(\frac{1}{2} m_k \dot{u}_{ik}^2 \right)
\]

The kinetic energy of a system of \(N \) particles can be defined as

\[
\mathcal{T} = \frac{1}{2} \sum_{k=1}^{N} \sum_{i=1}^{3} m_k \dot{u}_{ik}^2
\]
Hence, Hamilton’s principle for a conservative system can be written as

\[
- \int_{t_1}^{t_2} \left[\sum_{k=1}^{N} \sum_{i=1}^{3} (m_k \ddot{u}_{ik} - f_{ik}) \delta u_{ik} \right] dt = 0
\]

\[
\Rightarrow - \int_{t_1}^{t_2} \left[\sum_{k=1}^{N} \sum_{i=1}^{3} \frac{d}{dt} \left(m_k \dot{u}_{ik} \delta u_{ik} \right) - \delta \left(\frac{1}{2} m_k \dot{u}_{ik}^2 \right) \right] dt + \int_{t_1}^{t_2} (-\delta \mathcal{V}) dt = 0
\]

\[
\Rightarrow - \sum_{k=1}^{N} \sum_{i=1}^{3} m_k \dot{u}_{ik} \delta u_{ik} \bigg|_{t_1}^{t_2} + \delta \int_{t_1}^{t_2} (\mathcal{T} - \mathcal{V}) dt = 0
\]

Recall the generalized displacements

\[
\{q_s\} \Rightarrow u_{ik}(x, t) = U_{ik}(q_s, t) \Rightarrow \dot{u}_{ik} = h(q_s, \dot{q}_s, t)
\]

\[
\Rightarrow \mathcal{T} = \mathcal{T}(q, \dot{q}, t) \quad \text{and} \quad \mathcal{V} = \mathcal{V}(q, t)
\]
Recall the end conditions

\[\delta u_{ik}(t_1) = 0 \Rightarrow \delta q_s(t_1) = 0 \quad \text{and} \quad \delta u_{ik}(t_2) = 0 \Rightarrow \delta q_s(t_2) = 0 \]

Therefore, Hamilton’s principle (HP) can be written as

\[
\delta \int_{t_1}^{t_2} \left[T(q, \dot{q}, t) - V(q, t) \right] dt = 0 \quad \forall \ \delta q / \delta q(t_1) = \delta q(t_2) = 0
\]

where

\[q = [q_1 \quad q_2 \quad \cdots \quad q_s \quad \cdots \quad q_n]^T \]
Hamilton’s Principle for Conservative Systems and Lagrange Equations

- Equations of motion

\[\delta T = \sum_{s=1}^{n} \left(\frac{\partial T}{\partial q_s} \delta q_s + \frac{\partial T}{\partial \dot{q}_s} \delta \dot{q}_s \right) \]

\[\delta V = -\sum_{s=1}^{n} Q_s \delta q_s \]

HP \rightarrow \int_{t_1}^{t_2} \left[\sum_{s=1}^{n} \frac{\partial T}{\partial \dot{q}_s} \delta \dot{q}_s + \left(\frac{\partial T}{\partial q_s} + Q_s \right) \delta q_s \right] dt = 0

- Integrate by parts and apply the end conditions

\[\sum_{s=1}^{n} \frac{\partial T}{\partial \dot{q}_s} \delta q_s \bigg|_{t_1}^{t_2} - \int_{t_1}^{t_2} \sum_{s=1}^{n} \frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}_s} \right) \delta q_s dt \]

\[+ \int_{t_1}^{t_2} \sum_{s=1}^{n} \left(\frac{\partial T}{\partial q_s} + Q_s \right) \delta q_s dt = 0 \]

\[\Rightarrow \int_{t_1}^{t_2} \sum_{s=1}^{n} \left[-\frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}_s} \right) + \frac{\partial T}{\partial q_s} + Q_s \right] \delta q_s dt = 0 \]
Hamilton’s Principle for Conservative Systems and Lagrange Equations

The Lagrange equations of motion

\[\int_{t_1}^{t_2} \sum_{s=1}^{n} \left[-\frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}_s} \right) + \frac{\partial T}{\partial q_s} + Q_s \right] \delta q_s \, dt = 0 \]

\[\forall \delta q / \delta q(t_1) = \delta q(t_2) = 0 \]

\[\Rightarrow -\frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}_s} \right) + \frac{\partial T}{\partial q_s} + Q_s = 0 \]

- \(-\frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}_s} \right) + \frac{\partial T}{\partial q_s} \): generalized inertia forces
- \(Q_s \): generalized internal and external forces
Joseph-Louis (Giuseppe Lodovico), comte de Lagrange (25 January 1736 - 10 April 1813)

- Italian-born mathematician and astronomer
- Contributions: analysis, number theory, and classical and celestial mechanics
- Succeeded Euler in 1766 as the director of mathematics at the Prussian Academy of Sciences in Berlin
- Impact: his treatise on analytical mechanics written in Berlin and first published in 1788 formed a basis for the development of mathematical physics in the 19th century
- Moved to France in 1787 and became a member of the French Academy
- Survived the French Revolution and became the first professor of analysis at the École Polytechnique upon its opening in 1794
Hamilton’s Principle for Conservative Systems and Lagrange Equations

- Equations of equilibrium $\sum_{k=1}^{N} m_k \ddot{u}_{ik} - f_{ik} = 0, \quad i = 1, \cdots, 3$: simple, but can be difficult to formulate analytically for complex systems

- Lagrange’s equations of motion $-\frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}_s} \right) + \frac{\partial T}{\partial q_s} + Q_s = 0$: more complex, but can simplify the analytical solution of complex dynamic problems
Recall \(u_{ik} = U_{ik}(q, t) \) \(\Rightarrow \) \(\dot{u}_{ik} = \sum_{s=1}^{n} \frac{\partial U_{ik}}{\partial q_s} \dot{q}_s + \frac{\partial U_{ik}}{\partial t} \)

Substitute in the expression of the kinetic energy

\(\Rightarrow \mathcal{T} = \mathcal{T}_0(q, t) + \mathcal{T}_1(q, \dot{q}, t) + \mathcal{T}_2(q, \dot{q}, t) \) where \(\mathcal{T}_0, \mathcal{T}_1, \) and \(\mathcal{T}_2 \) are homogeneous forms \(^1\) of degree 0, 1, and 2 in \(\dot{q}_s \), respectively, and are given by

\[
\begin{align*}
\mathcal{T}_0(q, t) &= \frac{1}{2} \sum_{k=1}^{N} \sum_{i=1}^{3} m_k \left(\frac{\partial U_{ik}}{\partial t} \right)^2 \quad \text{(transport kinetic energy)} \\
\mathcal{T}_1(q, \dot{q}, t) &= \sum_{s=1}^{n} \sum_{k=1}^{N} \sum_{i=1}^{3} \frac{\partial U_{ik}}{\partial t} m_k \frac{\partial U_{ik}}{\partial q_s} \dot{q}_s \quad \text{(mutual kinetic energy)} \\
\mathcal{T}_2(q, \dot{q}, t) &= \frac{1}{2} \sum_{s=1}^{n} \sum_{r=1}^{n} \sum_{k=1}^{N} \sum_{i=1}^{3} m_k \frac{\partial U_{ik}}{\partial q_s} \frac{\partial U_{ik}}{\partial q_r} \dot{q}_s \dot{q}_r \quad \text{(relative kinetic energy)}
\end{align*}
\]

\(^1\) \(G(q_1, \cdots, q_n) \) is said to be a homogeneous function of degree \(p \), where \(p \) is an integer, if \(\forall \alpha \neq 0, \quad G(\alpha q_1, \cdots, \alpha q_n) = \alpha^p G(q_1, \cdots, q_n) \)
Hamilton’s Principle for Conservative Systems and Lagrange Equations

Classification of Inertia Forces

- From Euler’s theorem on homogeneous functions of degree p
 \[\left(\sum_{i=1}^{n} q_i \frac{\partial G(q)}{\partial q_i} = pG(q) \right) \]
 it follows that
 \[T_1 = \sum_{s=1}^{n} \dot{q}_s \frac{\partial T_1}{\partial \dot{q}_s} \quad \text{and} \quad T_2 = \frac{1}{2} \sum_{s=1}^{n} \dot{q}_s \frac{\partial T_2}{\partial \dot{q}_s} \]

- Interpretation of the first two terms of the Lagrange equations

 \[
 - \frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}_s} \right) + \frac{\partial T}{\partial q_s} = - \frac{d}{dt} \left(\frac{\partial T_1}{\partial \dot{q}_s} + \frac{\partial T_2}{\partial \dot{q}_s} \right) + \frac{\partial}{\partial q_s} (T_0 + T_1 + T_2)
 \]

 \[
 = - \frac{\partial}{\partial t} \left(\frac{\partial T_1}{\partial \dot{q}_s} \right) - \sum_{r=1}^{n} \frac{\partial^2 T_1}{\partial \dot{q}_s \partial q_r} \dot{q}_r - \frac{d}{dt} \left(\frac{\partial T_2}{\partial \dot{q}_s} \right) + \frac{\partial}{\partial q_s} (T_0 + T_1 + T_2)
 \]

 \[
 = \left(- \frac{\partial}{\partial t} \left(\frac{\partial T_1}{\partial \dot{q}_s} \right) + \frac{\partial T_0}{\partial q_s} \right) + \left(- \frac{d}{dt} \left(\frac{\partial T_2}{\partial \dot{q}_s} \right) + \frac{\partial T_2}{\partial q_s} \right) \text{ (transport)} + \left(- \sum_{r=1}^{n} \frac{\partial^2 T_1}{\partial \dot{q}_s \partial q_r} \dot{q}_r + \frac{\partial T_1}{\partial q_s} \right) \text{ (complementary)}
 \]
The transport inertia forces are those obtained by setting $\dot{q}_r = 0$

$$\Rightarrow - \frac{\partial}{\partial t} \left(\frac{\partial T_1}{\partial \dot{q}_s} \right) + \frac{\partial T_0}{\partial q_s}$$

The relative inertia forces are those obtained by assuming $\frac{\partial U_{ik}}{\partial t} = 0$

$$\Rightarrow - \frac{d}{dt} \left(\frac{\partial T_2}{\partial \dot{q}_s} \right) + \frac{\partial T_2}{\partial q_s}$$

The complementary inertia forces are given by the remainder

$$\Rightarrow F_s = - \sum_{r=1}^{n} \frac{\partial^2 T_1}{\partial \dot{q}_s \partial q_r} \dot{q}_r + \frac{\partial T_1}{\partial q_s}$$
Hamilton’s Principle for Conservative Systems and Lagrange Equations

Classification of Inertia Forces

- Note that since $T_1 = \sum_{r=1}^{n} \dot{q}_r \frac{\partial T_1}{\partial \dot{q}_r}$

$$F_s = - \sum_{r=1}^{n} \frac{\partial^2 T_1}{\partial \dot{q}_s \partial q_r} \dot{q}_r + \frac{\partial T_1}{\partial q_s} = - \sum_{r=1}^{n} \frac{\partial^2 T_1}{\partial \dot{q}_s \partial q_r} \dot{q}_r + \sum_{r=1}^{n} \frac{\partial^2 T_1}{\partial q_s \partial \dot{q}_r} \dot{q}_r$$

$$= \sum_{r=1}^{n} \left(\frac{\partial^2 T_1}{\partial q_s \partial \dot{q}_r} - \frac{\partial^2 T_1}{\partial q_r \partial \dot{q}_s} \right) \dot{q}_r = \sum_{r=1}^{n} g_{rs} \dot{q}_r$$

where the coefficients $g_{rs} = -g_{sr}$ do not depend on the velocities \dot{q}_s, but only on the generalized displacements and time.

- The complementary inertia forces have the nature of gyroscopic forces. Because of the skew-symmetry of the coefficients g_{rs}, it follows that

$$\sum_{s=1}^{n} F_s \dot{q}_s = \sum_{s=1}^{n} \sum_{r=1}^{n} g_{rs} \dot{q}_r \dot{q}_s = 0$$
Leonhard Euler (15 April 1707 - 18 September 1783)

- Swiss mathematician and physicist
- contributions: infinitesimal calculus and graph theory
- impact: mechanics, fluid dynamics, optics, and astronomy
- the asteroid 2002 Euler was named in his honor
Assume here, **until otherwise stated**, that the generalized displacements U_{ik} are independent of time

$$T = T_2 = \frac{1}{2} \sum_{s=1}^{n} \sum_{r=1}^{n} \sum_{k=1}^{N} \sum_{i=1}^{3} m_k \frac{\partial U_{ik}}{\partial q_s} \frac{\partial U_{ik}}{\partial q_r} \dot{q}_s \dot{q}_r = \frac{1}{2} \sum_{s=1}^{n} \dot{q}_s \frac{\partial T_2}{\partial \dot{q}_s}$$

Differentiation with respect to time of the above expression leads to

$$2 \frac{dT}{dt} = \sum_{s=1}^{n} \ddot{q}_s \frac{\partial T}{\partial \dot{q}_s} + \sum_{s=1}^{n} \dot{q}_s \frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}_s} \right) \quad (3)$$

From $T = T(q, \dot{q})$ it follows that

$$\frac{dT}{dt} = \sum_{s=1}^{n} \ddot{q}_s \frac{\partial T}{\partial \dot{q}_s} + \sum_{s=1}^{n} \dot{q}_s \frac{\partial T}{\partial q_s} \quad (4)$$

$$(3) - (4) \Rightarrow \frac{dT}{dt} = \sum_{s=1}^{n} \dot{q}_s \left[\frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}_s} \right) - \frac{\partial T}{\partial q_s} \right]$$
Hamilton’s Principle for Conservative Systems and Lagrange Equations

Energy Conservation in a System with Scleronomic Constraints

\[
\frac{dT}{dt} = \sum_{s=1}^{n} \dot{q}_s \left[\frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}_s} \right) - \frac{\partial T}{\partial q_s} \right]
\]

- From the Lagrange equations of motion \((-\frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}_s} \right) + \frac{\partial T}{\partial q_s} + Q_s = 0\), it follow that

\[
\frac{dT}{dt} = \sum_{s=1}^{n} Q_s \dot{q}_s
\]

- For a system with scleronomic constraints, \(V = V(q)\)

- Since for conservative forces \(Q_s = -\frac{\partial V}{\partial q_s}\), it follows that

\[
\frac{dT}{dt} = \sum_{s=1}^{n} Q_s \dot{q}_s = -\sum_{s=1}^{n} \frac{\partial V}{\partial q_s} \dot{q}_s = -\frac{dV}{dt}
\]

and therefore

\[
\frac{d}{dt}(T + V) = 0 \iff E = T + V = \text{cst}
\]
Hamilton’s Principle for Conservative Systems and Lagrange Equations

Classification of Generalized Forces

- **Internal forces**
 - linking forces
 - elastic forces
 - dissipation forces (may have external origins too)

- **External forces**
 - conservative forces
 - non-conservative forces
Linking forces

\[f_{i_1} + f_{i_2} = 0, \quad i = 1, \ldots, 3 \]

- virtual work: \(\delta W = \sum_{i=1}^{3} f_{i_1} \delta u_{i_1} + f_{i_2} \delta u_{i_2} = \sum_{i=1}^{3} f_{i_1} (\delta u_{i_1} - \delta u_{i_2}) \)

- for admissible virtual displacements (compatible with the real displacements) \(\Leftrightarrow 2 \sum_{i=1}^{3} (\xi_{i_1} - \xi_{i_2})(\delta u_{i_1} - \delta u_{i_2}) = 0 \),

\[\delta u_{i_1} = \delta u_{i_2} \Rightarrow \delta W = 0 \]

Linking forces do NOT contribute to the generalized forces acting on the global system

- the above result is a nice aspect of Lagrangian mechanics
Hamilton’s Principle for Conservative Systems and Lagrange Equations

Classification of Generalized Forces

Elastic forces

- produced work is storable in a recoverable form
- internal energy \(\mathcal{V}_{int}(\mu_{ik}) \)

\[
\delta T = -\delta \mathcal{V}_{int} = - \sum_{k=1}^{N} \sum_{i=1}^{3} \frac{\partial \mathcal{V}_{int}}{\partial u_{ik}} \delta u_{ik}
\]

\[
\mathcal{V}_{int} = \mathcal{V}_{int}(q) \Rightarrow \delta T = -\delta \mathcal{V}_{int} = - \sum_{s=1}^{n} \frac{\partial \mathcal{V}_{int}}{\partial q_{s}} \delta q_{s} = \sum_{s=1}^{n} Q_{s} \delta q_{s}
\]

\[
\implies Q_{s} = - \frac{\partial \mathcal{V}_{int}}{\partial q_{s}}
\]
Dissipative forces
- remain parallel in opposite direction to the velocity vector \mathbf{v} and are function of its modulus $v_k = \sqrt{\sum_{i=1}^{3} \dot{u}_{ik}^2}$

$$f_k = -C_k f_k(v_k) \frac{v_k}{v_k}$$

virtual work

$$u = u(q, t) \Rightarrow \delta W = \sum_{k=1}^{N} \sum_{i=1}^{3} f_{ik} \delta u_{ik} = - \sum_{s=1}^{n} \sum_{k=1}^{N} \sum_{i=1}^{3} C_k f_k(v_k) \frac{v_k}{v_k} \frac{\partial u_{ik}}{\partial q_s} \delta q_s = \sum_{s=1}^{n} Q_s \delta q_s$$

$$\Rightarrow Q_s = - \sum_{k=1}^{N} \sum_{i=1}^{3} C_k f_k(v_k) \frac{v_k}{v_k} \frac{\partial u_{ik}}{\partial q_s}$$

since $v_{ik} = \frac{du_{ik}}{dt} = \frac{\partial u_{ik}}{\partial t} + \sum_{s=1}^{n} \frac{\partial u_{ik}}{\partial q_s} \dot{q}_s$ and therefore $\frac{\partial v_{ik}}{\partial \dot{q}_s} = \frac{\partial u_{ik}}{\partial q_r}$, it follows that

$$Q_s = - \sum_{k=1}^{N} \sum_{i=1}^{3} C_k f_k(v_k) \frac{v_k}{v_k} \frac{\partial v_{ik}}{\partial \dot{q}_s} = - \sum_{k=1}^{N} C_k \frac{f_k(v_k)}{v_k} \frac{\partial}{\partial \dot{q}_s} \left(\frac{1}{2} \sum_{i=1}^{3} v_{ik}^2 \right)$$

$$\Rightarrow Q_s = - \sum_{k=1}^{N} C_k f_k(v_k) \frac{\partial v_k}{\partial \dot{q}_s}$$
Hamilton’s Principle for Conservative Systems and Lagrange Equations

Classification of Generalized Forces

\[Q_s = - \sum_{k=1}^{N} C_k f_k (v_k) \frac{\partial v_k}{\partial \dot{q}_s} \]

- Dissipation function:
 \[D = \sum_{k=1}^{N} \int_0^{v_k (\dot{q})} C_k f_k (\gamma) d\gamma \]

- From Leibniz’s integral rule
 \[\frac{d}{dt} \left(\int_{a(t)}^{b(t)} f(x, t) dx \right) = \int_{a(t)}^{b(t)} \frac{\partial f}{\partial t} dx + f(b(t), t) \frac{db}{dt} - f(a(t), t) \frac{da}{dt} \]

 it follows that
 \[\frac{\partial D}{\partial \dot{q}_s} = \sum_{k=1}^{N} C_k f_k (v_k) \frac{\partial v_k}{\partial \dot{q}_s} \Rightarrow Q_s = - \frac{\partial D}{\partial \dot{q}_s} \]

- Dissipated power:
 \[P = \sum_{s=1}^{n} Q_s \dot{q}_s = - \sum_{s=1}^{n} \dot{q}_s \frac{\partial D}{\partial \dot{q}_s} \]
If \mathcal{D} is assumed to be a homogeneous function of order p in the generalized velocities, then

$$\frac{d\mathcal{T}}{dt} = \sum_{s=1}^{n} Q_s \dot{q}_s = -\frac{d\mathcal{V}}{dt} - \sum_{s=1}^{n} \dot{q}_s \frac{\partial \mathcal{D}}{\partial \dot{q}_s} = -\frac{d\mathcal{V}}{dt} - p\mathcal{D}$$

$$\Rightarrow \frac{d}{dt} (\mathcal{T} + \mathcal{V}) = -p\mathcal{D}$$

- $p = 1$: dry friction
- $p = 2$: viscous damping
- $p = 3$: aerodynamic drag
Classification of Generalized Forces

- Conservative external forces: these derive from a potential

\[\exists \mathcal{V}_{\text{ext}} / Q_s = -\frac{\partial \mathcal{V}_{\text{ext}}}{\partial q_s} \]

\Rightarrow \text{their virtual work during a cycle is zero}

\[\delta W = \oint Q_s \delta q_s = -\oint \frac{\partial \mathcal{V}_{\text{ext}}}{\partial q_s} \delta q_s = -\oint \delta \mathcal{V}_{\text{ext}} = 0 \]

- Non-conservative external forces

\[\delta W = \sum_{s=1}^{n} Q_s \delta q_s = \sum_{k=1}^{N} \sum_{i=1}^{3} f_{ik} \delta u_{ik} = \sum_{i=1}^{3} \sum_{k=1}^{N} \sum_{s=1}^{n} \frac{\partial u_{ik}}{\partial q_s} \delta q_s \]

\[\Rightarrow Q_s = \sum_{k=1}^{N} \sum_{i=1}^{3} f_{ik} \frac{\partial u_{ik}}{\partial q_s} \]
Summary: taking into account the non-conservative external forces, the power balance of a system solicited by internal and external forces can be written as

\[
\frac{d}{dt}(T + V) = -pD + \sum_{s=1}^{n} Q_s \dot{q}_s
\]
Lagrange Equations in the General Case

In the general case of a non-conservative system with rheonomic constraints, the Lagrange equations of motion can be written as

$$\begin{align*}
- \frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}_s} \right) + \frac{\partial T}{\partial q_s} \frac{\partial V}{\partial q_s} - \frac{\partial V}{\partial \dot{q}_s} - \frac{\partial D}{\partial \dot{q}_s} + Q_s(t) &= 0
\end{align*}$$

where

$$V = V_{\text{ext}} + V_{\text{int}} = \text{total potential}$$

$$D = \text{dissipation function}$$

$$Q_s(t) = \text{non-conservative external generalized forces}$$

They can also be written in terms of the inertia forces as follows

$$\begin{align*}
\frac{d}{dt} \left(\frac{\partial T_2}{\partial \dot{q}_s} \right) - \frac{\partial T_2}{\partial q_s} &= Q_s(t) - \frac{\partial V^*}{\partial q_s} - \frac{\partial D}{\partial \dot{q}_s} + F_s - \frac{\partial}{\partial t} \left(\frac{\partial T_1}{\partial \dot{q}_s} \right)
\end{align*}$$

where

$$V^* = V - \mathcal{T}_0 = \text{potential modified by the transport kinetic energy}$$

$$F_s = \sum_{r=1}^{n} g_{rs} \dot{q}_r = \text{generalized gyroscopic forces}$$