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AA242B: MECHANICAL VIBRATIONS
Analytical Dynamics of Discrete Systems

These slides are based on the recommended textbook: M. Géradin and D. Rixen, “Mechanical
Vibrations: Theory and Applications to Structural Dynamics,” Second Edition, Wiley, John &

Sons, Incorporated, ISBN-13:9780471975465
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Outline

1 Principle of Virtual Work for a Particle

2 Principle of Virtual Work for a System of N Particles

3 Hamilton’s Principle for Conservative Systems and Lagrange Equations

4 Lagrange Equations in the General Case
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Principle of Virtual Work for a Particle

Particle mass m

Particle force

force vector f = [f1 f2 f3]T

force component fi , i = 1, · · · , 3
Particle displacement

displacement vector u = [u1 u2 u3]T

displacement component ui , i = 1, · · · , 3
motion trajectory u(t) where t denotes time
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Principle of Virtual Work for a Particle

Particle virtual displacement
arbitrary displacement u? (can be zero)
virtual displacement δu = u? − u ⇒ arbitrary by definition
family of arbitrary virtual displacements defined in a time-interval
[t1, t2] and satisfying the variational constraints

δu(t1) = δu(t2) = 0

Important property

d

dt
(δui ) =

d

dt
(u?i − ui ) =

du?i
dt
− dui

dt
= u̇i

? − u̇i = δu̇i

=⇒ d

dt
(δ) = δ(

d

dt
) (commutativity)
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Principle of Virtual Work for a Particle

Equilibrium

strong form

mü− f = 0⇒ müi − fi = 0, i = 1, · · · , 3

weak form

∀δu, (δuT )(mü− f) = 0⇒
3∑

i=1

(müi − fi )δui = 0

=⇒ (müi − fi )δui = 0, i = 1, · · · , 3

δuT (mü− f) = (mü− f)T δu is homogeneous to a work
=⇒ virtual work (δW )

Virtual work principle

The virtual work produced by the effective forces acting
on a particle during a virtual displacement is equal to zero
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Principle of Virtual Work for a System of N Particles

N particles: k = 1, · · · ,N
Equilibrium

mük − fk = 0, k = 1, · · · ,N

Family of virtual displacements δuk = u?k − uk satisfying the
variational constraints

δuk(t1) = δuk(t2) = 0 (1)

Virtual work

mük − fk = 0⇒
N∑

k=1

δuT
k (mük − fk) =

N∑
k=1

(mük − fk)T δuk = 0
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Principle of Virtual Work for a System of N Particles

Conversely, ∀δuk compatible with the variational constraints (1)

N∑
k=1

δuT
k (mük − fk) = 0⇒

N∑
k=1

3∑
i=1

(mk üik − fik )δuik = 0 (2)

If (2) is true ∀δuk compatible with (1) ⇒ (2) is true for
δuj = [1 0 0]T (δuk = [0 0 0]T for k 6= j), δuj = [0 1 0]T

(δuk = [0 0 0]T for k 6= j), and δuj = [0 0 1]T

(δuk = [0 0 0]T for k 6= j), t ∈]t1, t2[

=⇒ mj üij − fij = 0, i = 1, · · · , 3, j = 1, · · · ,N(
=⇒

N∑
k=1

mk üik − fik = 0, i = 1, · · · , 3

)
If the virtual work equation is satisfied for any displacement

compatible with the variational constraints, the system (of particles)
is in dynamic equilibrium
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Principle of Virtual Work for a System of N Particles

Major result

dynamic equilibrium⇔ virtual work principle

8 / 41



AA242B: MECHANICAL VIBRATIONS 9 / 41

Principle of Virtual Work for a System of N Particles

Kinematic Constraints

In the absence of (kinematic) constraints, the state of a system of N
particles can be defined by 3N displacement components

uik , i = 1, · · · , 3, k = 1, · · ·N

Instantaneous configuration

ξik = xik + uik (x, t)⇒ 3N dofs

However, most mechanical systems incorporate some sort of
constraints

holonomic constraints
non-holonomic constraints
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Principle of Virtual Work for a System of N Particles

Kinematic Constraints

Holonomic constraints
two types

rheonomic constraints: defined by c(ξik , t) = 0 (no explicit
dependence on any velocity)
scleronomic constraints: defined by c(ξik ) = 0 (no explicit
dependence on any velocity or time)

a holonomic constraint reduces by 1 the number of dofs of a
mechanical system
example

rigidity ⇒ conservation of length ⇒
3∑

i=1
(ξi2 − ξi1 )2 = l2
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Principle of Virtual Work for a System of N Particles

Kinematic Constraints

Non-holonomic constraints
defined by c(ξ̇ik , ξik , t) = 0
example

no slip ⇒ speed of point P = 0

=⇒
{

ẋ1 = 0− r φ̇ cos θ ⇒ ẋ1 + r φ̇ cos θ = 0

ẏ1 = 0 + r φ̇ sin θ ⇒ ẏ1 − r φ̇ sin θ = 0

in addition{
x2 − x1 = r sinφ cos θ y2 − y1 = −r sinφ sin θ z2 − z1 = −r cosφ
z1 = r
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Principle of Virtual Work for a System of N Particles

Kinematic Constraints

example (continue)
hence, this system has

8 variables: x1, y1, z1, x2, y2, z2, θ, φ
4 holonomic constraints
2 non-holonomic constraints

in general, c(ξ̇ik , ξik , t) = 0 is not integrable and therefore
non-holonomic constraints do not reduce the number of dofs of a
mechanical system

therefore, the mechanical system in the above example (wheel) has 8
- 4 = 4 dofs

2 translations in the rolling plane
2 rotations
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Principle of Virtual Work for a System of N Particles

Generalized Displacements

Let n denote the number of dofs of a mechanical system: for
example, for a system with N material points and R holonomic
constraints, n = 3N − R

The generalized coordinates of this system are defined as the n
configuration parameters (q1, q2, · · · , qn) in terms of which the
displacements can be expressed as

uik (x, t) = Uik (q1, q2, · · · , qn, t)

If the system is not constrained by any non-holonomic constraint,
then the generalized coordinates (q1, q2, · · · , qn) are independent:
they can vary arbitrarily without violating the kinematic constraints
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Principle of Virtual Work for a System of N Particles

Generalized Displacements

Example

holonomic constraint HC1: ξ2
11 + ξ2

21 = l2
1

holonomic constraint HC2: (ξ12 − ξ11)2 + (ξ22 − ξ21)2 = l2
2

=⇒ 4− 2 = 2dofs

one possible choice of (q1, q2) is (θ1, θ2)

=⇒
{
ξ11 = l1 cos θ1 ξ21 = l1 sin θ1

ξ12 = l1 cos θ1 + l2 cos(θ1 + θ2) ξ22 = l1 sin θ1 + l2 sin(θ1 + θ2)
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Principle of Virtual Work for a System of N Particles

Generalized Displacements

Virtual displacements

uik (x, t) = Uik (q1, q2, · · · , qn, t)⇒ δuik =
n∑

s=1

∂Uik

∂qs
δqs

Virtual work equation

n∑
s=1

[
N∑

k=1

3∑
i=1

(mk üi k − fik )
∂Uik

∂qs

]
δqs = 0

Second term in above equation can be written as
n∑

s=1
Qsδqs where

Qs =
N∑

k=1

3∑
i=1

fik
∂Uik

∂qs

is the generalized force conjugate to qs

15 / 41



AA242B: MECHANICAL VIBRATIONS 16 / 41

Hamilton’s Principle for Conservative Systems and Lagrange Equations

Sir William Rowan Hamilton (4 August 1805 - 2 September 1865)

Irish physicist, astronomer, and mathematician
contributions: classical mechanics, optics, and algebra (inventor of
quaternions), and most importantly, reformulation of Newtonian
mechanics (now called Hamiltonian mechanics)
impact: modern study of electromagnetism, development of
quantum mechanics
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Hamilton’s Principle for Conservative Systems and Lagrange Equations

Hamilton’s principle: −
∫ t2

t1

virtual work principle = 0!

−
∫ t2

t1

[
N∑

k=1

3∑
i=1

(mk üi k − fik )δuik

]
dt = 0

where δuik are arbitrary but compatible with eventual constraints
and verify the end conditions (previously referred to as variational
constraints)
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Hamilton’s Principle for Conservative Systems and Lagrange Equations

First, assume that fk derives from a potential V(ξi ) — that is,
fk is a conservative force

⇒ ∃ V(ξ1k
, ξ2k

, ξ3k
) / fk = −∇V(ξ1k

, ξ2k
, ξ3k

)

Virtual work of fk

δW =
N∑

k=1

3∑
i=1

fik δuik = −
N∑

k=1

3∑
i=1

∂V
∂ξik

δuik = −
N∑

k=1

3∑
i=1

∂V
∂ξik

δξik = −δV

δW = −δV and δW =
n∑

s=1
Qsδqs

=⇒ Qs = − ∂V
∂qs

What about the virtual work of the inertia forces?
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Hamilton’s Principle for Conservative Systems and Lagrange Equations

Note that

d

dt
(mk u̇i kδuik ) = mk üi kδuik + mk u̇i kδu̇i k

= mk üi kδuik + δ(
1

2
mk u̇i

2
k)

=⇒ δW = mk üi kδuik =
d

dt
(mk u̇i kδuik )− δ(

1

2
mk u̇i

2
k)

The kinetic energy of a system of N particles can be defined as

T =
1

2

N∑
k=1

3∑
i=1

mk u̇i
2
k
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Hamilton’s Principle for Conservative Systems and Lagrange Equations

Hence, Hamilton’s principle for a conservative system can be written
as

−
∫ t2

t1

[
N∑

k=1

3∑
i=1

(mk üi k − fik )δuik

]
dt = 0

=⇒ −
∫ t2

t1

[
N∑

k=1

3∑
i=1

d

dt
(mk u̇i kδuik )− δ(

1

2
mk u̇i

2
k)

]
dt +

∫ t2

t1

(−δV)dt = 0

=⇒ −
N∑

k=1

3∑
i=1

mk u̇i kδuik
∣∣t2
t1

+ δ

∫ t2

t1

(T − V)dt = 0

Recall the generalized displacements

{qs} ⇒ uik (x, t) = Uik (qs , t)⇒ u̇i k = h(qs , q̇s , t)

⇒ ξik = xik + uik (x, t) = xik + Uik (qs , t) = g(qs , t)

=⇒ T = T (q, q̇, t) and V = V(q, t)
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Hamilton’s Principle for Conservative Systems and Lagrange Equations

Note that uik (x, t) = Uik (qs , t)⇒ δuik =
n∑

s=1

∂Uik

∂qs
δqs

Now, recall the end conditions

δuik (t1) = 0⇒ δqs(t1) = 0 and δuik (t2) = 0⇒ δqs(t2) = 0

Therefore, Hamilton’s principle (HP) can be written as

δ

∫ t2

t1

[T (q, q̇, t)− V(q, t)] dt = 0 ∀ δq / δq(t1) = δq(t2) = 0

where
q = [q1 q2 · · · qs · · · qn]T
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Hamilton’s Principle for Conservative Systems and Lagrange Equations

Equations of motion

δT =
n∑

s=1

(
∂T
∂qs

δqs +
∂T
∂q̇s

δq̇s

)
δV = −

n∑
s=1

Qsδqs

HP →
∫ t2

t1

[
n∑

s=1

∂T
∂q̇s

δq̇s +

(
∂T
∂qs

+ Qs

)
δqs

]
dt = 0

integrate by parts and apply the end conditions

n∑
s=1

∂T
∂q̇s

δqs
∣∣t2
t1
−

∫ t2

t1

n∑
s=1

d

dt

(
∂T
∂q̇s

)
δqsdt

+

∫ t2

t1

n∑
s=1

(
∂T
∂qs

+ Qs

)
δqsdt = 0

=⇒
∫ t2

t1

n∑
s=1

[
− d

dt

(
∂T
∂q̇s

)
+
∂T
∂qs

+ Qs

]
δqsdt = 0
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Hamilton’s Principle for Conservative Systems and Lagrange Equations

The Lagrange equations of motion∫ t2

t1

n∑
s=1

[ − d

dt

(
∂T
∂q̇s

)
+
∂T
∂qs

+ Qs ] δqsdt = 0

∀ δq / δq(t1) = δq(t2) = 0

=⇒ − d

dt

(
∂T
∂q̇s

)
+
∂T
∂qs

+ Qs = 0

− d

dt

(
∂T
∂q̇s

)
+
∂T
∂qs

: generalized inertia forces

Qs : generalized internal and external forces
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Hamilton’s Principle for Conservative Systems and Lagrange Equations

Joseph-Louis (Giuseppe Lodovico), comte de Lagrange (25 January
1736 - 10 April 1813)

Italian-born mathematician and astronomer
contributions: analysis, number theory, and classical and celestial mechanics
succeeded Euler in 1766 as the director of mathematics at the Prussian Academy of
Sciences in Berlin
impact: his treatise on analytical mechanics written in Berlin and first published in
1788 formed a basis for the development of mathematical physics in the 19th century
moved to France in 1787 and became a member of the French Academy

survived the French Revolution and became the first professor of analysis at the École

Polytechnique upon its opening in 1794
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Hamilton’s Principle for Conservative Systems and Lagrange Equations

Equations of equilibrium
N∑

k=1

mk üi k − fik = 0, i = 1, · · · , 3: simple,

but can be difficult to formulate analytically for complex systems

Lagrange’s equations of motion − d

dt

(
∂T
∂q̇s

)
+
∂T
∂qs

+ Qs = 0: more

complex, but can simplify the analytical solution of complex dynamic
problems
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Hamilton’s Principle for Conservative Systems and Lagrange Equations

Classification of Inertia Forces

Recall uik = Uik (q, t)⇒ u̇i k =
n∑

s=1

∂Uik

∂qs
q̇s +

∂Uik

∂t

Substitute in the expression of the kinetic energy
⇒ T = T0(q, t) + T1(q, q̇, t) + T2(q, q̇, t) where T0, T1, and T2 are
homogeneous forms 1 of degree 0, 1, and 2 in q̇s , respectively, and
are given by

T0(q, t) =
1

2

N∑
k=1

3∑
i=1

mk

(
∂Uik

∂t

)2

(transport kinetic energy)

T1(q, q̇, t) =
n∑

s=1

N∑
k=1

3∑
i=1

∂Uik

∂t
mk

∂Uik

∂qs
q̇s (mutual kinetic energy)

T2(q, q̇, t) =
1

2

n∑
s=1

n∑
r=1

N∑
k=1

3∑
i=1

mk
∂Uik

∂qs

∂Uik

∂qr
q̇s q̇r (relative kinetic energy)

1G(q1, · · · , qn) is said to be a homogeneous function of degree p, where p is an
integer, if ∀α 6= 0, G(αq1, · · · , αqn) = αpG(q1, · · · , qn)
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Hamilton’s Principle for Conservative Systems and Lagrange Equations

Classification of Inertia Forces

From Euler’s theorem on homogeneous functions of degree p

(
n∑

s=1

qi
∂G(q)

∂qi
= pG(q)

)
it

follows that

T1 =
n∑

s=1

q̇s
∂T1

∂q̇s
and T2 =

1

2

n∑
s=1

q̇s
∂T2

∂q̇s

Interpretation of the first two terms of the Lagrange equations

−
d

dt

(
∂T
∂q̇s

)
+
∂T
∂qs

= −
d

dt

(
∂T1

∂q̇s
+
∂T2

∂q̇s

)
+

∂

∂qs
(T0 + T1 + T2)

= −
∂

∂t

(
∂T1

∂q̇s

)
−

n∑
r=1

∂2T1

∂q̇s∂qr
q̇r −

d

dt

(
∂T2

∂q̇s

)
+

∂

∂qs
(T0 + T1 + T2)

=

− ∂

∂t

(
∂T1

∂q̇s

)
+
∂T0

∂qs︸ ︷︷ ︸
transport

 +

− d

dt

(
∂T2

∂q̇s

)
+
∂T2

∂qs︸ ︷︷ ︸
relative



+

−
n∑

r=1

∂2T1

∂q̇s∂qr
q̇r +

∂T1

∂qs︸ ︷︷ ︸
complementary


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Hamilton’s Principle for Conservative Systems and Lagrange Equations

Classification of Inertia Forces

The transport inertia forces are those obtained by setting q̇r = 0

=⇒ − ∂

∂t

(
∂T1

∂q̇s

)
+
∂T0

∂qs

The relative inertia forces are those obtained by assuming
∂Uik

∂t
= 0

=⇒ − d

dt

(
∂T2

∂q̇s

)
+
∂T2

∂qs

The complementary inertia forces are given by the remainder

=⇒ Fs = −
n∑

r=1

∂2T1

∂q̇s∂qr
q̇r +

∂T1

∂qs
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Hamilton’s Principle for Conservative Systems and Lagrange Equations

Classification of Inertia Forces

Note that since T1 =
n∑

r=1

q̇r
∂T1

∂q̇r

Fs = −
n∑

r=1

∂2T1

∂q̇s∂qr
q̇r +

∂T1

∂qs
= −

n∑
r=1

∂2T1

∂q̇s∂qr
q̇r +

n∑
r=1

∂2T1

∂qs∂q̇r
q̇r

=
n∑

r=1

(
∂2T1

∂qs∂q̇r
− ∂2T1

∂qr∂q̇s

)
q̇r =

n∑
r=1

grs q̇r

where the coefficients grs = −gsr do not depend on the velocities q̇s ,
but only on the generalized displacements and time

The complementary inertia forces have the nature of Coriolis or
gyroscopic forces: because of the skew-symmetry of the coefficients
grs , it follows that

n∑
s=1

Fs q̇s =
n∑

s=1

n∑
r=1

grs q̇r q̇s = 0
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Hamilton’s Principle for Conservative Systems and Lagrange Equations

Classification of Inertia Forces

Leonhard Euler (15 April 1707 - 18 September 1783)

Swiss mathematician and physicist
contributions: infinitesimal calculus and graph theory
impact: mechanics, fluid dynamics, optics, and astronomy
the asteroid 2002 Euler was named in his honor
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Hamilton’s Principle for Conservative Systems and Lagrange Equations

Energy Conservation in a System with Scleronomic Constraints

Assume here, until otherwise stated, that the generalized
displacements Uik are independent explicitly of time ⇒ T0 = T1 = 0

T = T2 =
1

2

n∑
s=1

n∑
r=1

N∑
k=1

3∑
i=1

mk
∂Uik

∂qs

∂Uik

∂qr
q̇s q̇r =

1

2

n∑
s=1

q̇s
∂T2

∂q̇s

Differentiation with respect to time of the above expression leads to

2
dT
dt

=
n∑

s=1

q̈s
∂T
∂q̇s

+
n∑

s=1

q̇s
d

dt

(
∂T
∂q̇s

)
(3)

From T = T (q, q̇) it follows that

dT
dt

=
n∑

s=1

q̈s
∂T
∂q̇s

+
n∑

s=1

q̇s
∂T
∂qs

(4)

(3) - (4) ⇒ dT
dt

=
n∑

s=1

q̇s

[
d

dt

(
∂T
∂q̇s

)
− ∂T
∂qs

]
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Hamilton’s Principle for Conservative Systems and Lagrange Equations

Energy Conservation in a System with Scleronomic Constraints

dT
dt

=
n∑

s=1

q̇s

[
d

dt

(
∂T
∂q̇s

)
−
∂T
∂qs

]

From the Lagrange equations of motion (−
d

dt

(
∂T
∂q̇s

)
+
∂T
∂qs

+ Qs = 0), it follow that

dT
dt

=
n∑

s=1

Qs q̇s

For a system with scleronomic constraints, V = V(q)

Since for conservative forces Qs = −
∂V
∂qs

, it follows that

dT
dt

=
n∑

s=1

Qs q̇s = −
n∑

s=1

∂V
∂qs

q̇s = −
dV
dt

and therefore

d

dt
(T + V) = 0⇔ E = T + V = cst
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Hamilton’s Principle for Conservative Systems and Lagrange Equations

Classification of Generalized Forces

Internal forces

linking forces
elastic forces
dissipation forces (may have external origins too)

External forces

conservative forces
non-conservative forces

Both types of forces are said to be conservative if the associated
virtual work is recoverable
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Hamilton’s Principle for Conservative Systems and Lagrange Equations

Classification of Generalized Forces

Linking forces

fi1 + fi2 = 0, i = 1, · · · , 3

virtual work: δW =
3∑

i=1

fi1δui1 + fi2δui2 =
3∑

i=1

fi1 (δui1 − δui2 )

for admissible virtual displacements – that is, virtual displacements
that are compatible with the real displacements –
δui1 = δui2 ⇒ δW = 0

Linking forces do NOT contribute to the generalized forces
acting on the global system

the above result is a nice aspect of Lagrangian mechanics
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Hamilton’s Principle for Conservative Systems and Lagrange Equations

Classification of Generalized Forces

Elastic forces

produced work is storable in a recoverable form
internal energy Vint(uik )

δT = −δVint = −
N∑

k=1

3∑
i=1

∂Vint
∂uik

δuik

Vint = Vint(q)⇒ δT = −δVint = −
n∑

s=1

∂Vint
∂qs

δqs =
n∑

s=1

Qsδqs

=⇒ Qs = −∂Vint
∂qs
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Hamilton’s Principle for Conservative Systems and Lagrange Equations

Classification of Generalized Forces

Dissipative forces
remain parallel in opposite direction to the velocity vector v and are function of its

modulus vk =

√
3∑

i=1

u̇i 2
k

fk = −Ck fk (vk )
vk

vk
virtual work

u = u(q, t)⇒ δW =
N∑

k=1

3∑
i=1

fik δuik = −
n∑

s=1

N∑
k=1

3∑
i=1

Ck fk (vk )
vik
vk

∂uik

∂qs
δqs =

n∑
s=1

Qsδqs

=⇒ Qs = −
N∑

k=1

3∑
i=1

Ck fk (vk )
vik
vk

∂uik

∂qs

since vik =
duik
dt

=
∂uik
∂t

+
n∑

s=1

∂uik
∂qs

q̇s and therefore
∂vik
∂q̇r

=
∂uik
∂qr

, it follows that

Qs = −
N∑

k=1

3∑
i=1

Ck fk (vk )
vik
vk

∂vik

∂q̇s
= −

N∑
k=1

Ck
fk (vk )

vk

∂

∂q̇s

(
1

2

3∑
i=1

v2
ik

)

=⇒ Qs = −
N∑

k=1

Ck fk (vk )
∂vk

∂q̇s
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Hamilton’s Principle for Conservative Systems and Lagrange Equations

Classification of Generalized Forces

Qs = −
N∑

k=1

Ck fk(vk)
∂vk
∂q̇s

Dissipation function: D =
N∑

k=1

∫ vk (q̇)

0

Ck fk(γ)dγ

From Leibniz’s integral rule

d

dt

(∫ (b(t)

a(t)

f (x , t)dx

)
=

∫ b(t)

a(t)

∂f

∂t
dx + f (b(t), t)

db

dt
− f (a(t), t)

da

dt

it follows that

∂D
∂q̇s

=
N∑

k=1

Ck fk(vk)
∂vk
∂q̇s
⇒ Qs = − ∂D

∂q̇s

Dissipated power: P =
n∑

s=1

Qs q̇s = −
n∑

s=1

q̇s
∂D
∂q̇s
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Hamilton’s Principle for Conservative Systems and Lagrange Equations

Classification of Generalized Forces

If D is assumed to be a homogeneous function of order p in the
generalized velocities, then

dT
dt

=
n∑

s=1

Qs q̇s = −dV
dt
−

n∑
s=1

q̇s
∂D
∂q̇s

= −dV
dt
− pD

=⇒ d

dt
(T + V) = −pD

p = 1: dry friction
p = 2: viscous damping
p = 3: aerodynamic drag
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Hamilton’s Principle for Conservative Systems and Lagrange Equations

Classification of Generalized Forces

Conservative external forces: these derive from a potential

⇒ ∃ Vext / Qs = −∂Vext
∂qs

⇒ their virtual work during a cycle is zero

δW =

∮
Qsδqs = −

∮
∂Vext
∂qs

δqs = −
∮
δVext = 0

Non-conservative external forces

δW =
n∑

s=1

Qsδqs =
N∑

k=1

3∑
i=1

fik δuik =
3∑

i=1

N∑
k=1

n∑
s=1

fik
∂uik
∂qs

δqs

=⇒ Qs =
N∑

k=1

3∑
i=1

fik
∂uik
∂qs
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Hamilton’s Principle for Conservative Systems and Lagrange Equations

Classification of Generalized Forces

Summary: taking into account the non-conservative external forces,
the power balance of a system solicited by internal and external
forces can be written as

d

dt
(T + V) = −pD +

n∑
s=1

Qs q̇s
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Lagrange Equations in the General Case

In the general case of a non-conservative system with rheonomic constraints, the Lagrange
equations of motion can be written as

−
d

dt

(
∂T
∂q̇s

)
+
∂T
∂qs
−
∂V
∂qs
−
∂D
∂q̇s

+ Qs (t) = 0

where

V = Vext + Vint = total potential

D = dissipation function

Qs (t) = non-conservative external generalized forces

They can also be written in terms of the inertia forces as follows

d

dt

(
∂T2

∂q̇s

)
−
∂T2

∂qs
= Qs (t)−

∂V?

∂qs
−
∂D
∂q̇s

+ Fs −
∂

∂t

(
∂T1

∂q̇s

)

where

V? = V − T0 = potential modified by the tranport kinetic energy

Fs =
n∑

r=1

grs q̇r = generalized gyroscopic forces
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