AA242B: MECHANICAL VIBRATIONS

Undamped Vibrations of n-DOF Systems

Outline

1. Linear Vibrations
2. Natural Vibration Modes
3. Orthogonality of Natural Vibration Modes
4. Modal Superposition Analysis
5. Spectral Expansions
6. Forced Harmonic Response
7. Response to External Loading
8. Mechanical Systems Excited Through Support Motion
Linear Vibrations

- Equilibrium configuration
 \[q_s(t) = q_s(0), \quad \dot{q}_s(t) = 0, \quad s = 1, \ldots, n \]
 (1)

- Recall the Lagrange equations of motion
 \[-\frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}_s} \right) + \frac{\partial T}{\partial q_s} - \frac{\partial V}{\partial q_s} - \frac{\partial D}{\partial \dot{q}_s} + Q_s(t) = 0 \]
 where \(T = T_0 + T_1 + T_2 \)

- Recall the generalized gyroscopic forces
 \[F_s = -\sum_{r=1}^{n} \frac{\partial^2 T_1}{\partial \dot{q}_s \partial q_r} \dot{q}_r + \frac{\partial T_1}{\partial q_s} = \sum_{r=1}^{n} \left(\frac{\partial^2 T_1}{\partial q_s \partial \dot{q}_r} - \frac{\partial^2 T_1}{\partial q_r \partial \dot{q}_s} \right) \dot{q}_r, \quad s = 1, \ldots, n \]

- **Definition**: the effective potential energy is defined as
 \[V^* = V - T_0 = V^*(q, t) \]

- The Lagrange equations of motion can be re-written as
 \[\frac{d}{dt} \left(\frac{\partial T_2}{\partial \dot{q}_s} \right) - \frac{\partial T_2}{\partial q_s} = Q_s(t) - \frac{\partial V^*}{\partial q_s} - \frac{\partial D}{\partial \dot{q}_s} + F_s - \frac{\partial}{\partial t} \left(\frac{\partial T_1}{\partial \dot{q}_s} \right) \]
Recall that
\[T_0(q, t) = \frac{1}{2} \sum_{k=1}^{N} \sum_{i=1}^{3} m_k \left(\frac{\partial U_{ik}}{\partial t} (q, t) \right)^2 \] (transport kinetic energy)

\[D = \sum_{k=1}^{N} \int_0^{v_k(q)} C_k f_k(\gamma) d\gamma \] (dissipation function)

From the Lagrange equations of motion
\[
\frac{d}{dt} \left(\frac{\partial T_2}{\partial \dot{q}_s} \right) - \frac{\partial T_2}{\partial q_s} = Q_s(t) - \frac{\partial V^*}{\partial q_s} (q, t) - \frac{\partial D}{\partial \dot{q}_s} + F_s - \frac{\partial}{\partial t} \left(\frac{\partial T_1}{\partial \dot{q}_s} \right)
\]
it follows that an equilibrium configuration exists if and only if
\[0 = Q_s(t) - \frac{\partial V^*}{\partial q_s} (q, t) ! \]

Hence, at equilibrium
\[Q_s(t) = 0 \quad \text{and} \quad \frac{\partial V^*}{\partial q_s} = \frac{\partial (V - T_0)}{\partial q_s} = 0, \quad s = 1, \ldots, n \]
Consider *first* a system that does not undergo a transport or overall motion ⇒ $T = T_2(q)$

- The equilibrium position is then given by

\[
Q_s(t) = 0 \quad \text{and} \quad \frac{\partial V}{\partial q_s} = 0, \quad s = 1, \ldots, n
\]

Assume next that this system is conservative ⇒ $E = T + V = \text{cst}$

- Shift the origin of the generalized coordinates so that at equilibrium, $q_s = 0, \quad s = 1, \ldots, n$ (in which case the q_s represent the deviation from equilibrium)

- Since the potential energy is defined only up to a constant, choose this constant so that $V(q_s = 0) = 0$

- Now, suppose that a certain energy $E(0)$ is initially given to the system in equilibrium
Linear Vibrations

Free-Vibrations About a Stable Equilibrium Position

Definition: the equilibrium position \((q_s = 0, s = 1, \cdots, n)\) is said to be **stable** if

\[\exists \mathcal{E}^* \ / \ \forall \mathcal{E}(0) < \mathcal{E}^*, \mathcal{T}(t) \leq \mathcal{E}(0) \]

Consequences

- \(\mathcal{T} + \mathcal{V} = \mathcal{E} = \text{cst} = \mathcal{E}(0) \Rightarrow \mathcal{V}(t) = \mathcal{E}(0) - \mathcal{T}(t) \geq 0\)
- at a stable equilibrium position, the potential energy is at a relative minimum
- if \(\mathcal{E}(0)\) is small enough, \(\mathcal{V}(t)\) will be small enough \(\Rightarrow\) and therefore deviations from the equilibrium position will be small enough
"Linearization" of T and V around an equilibrium position

$(q_s = 0, \frac{\partial V}{\partial q_s} = 0)$

- actually, this means obtaining a quadratic form of T and V in q and \dot{q}, respectively, so that the corresponding generalized forces are linear
- since $q_s(t)$ represent deviations from equilibrium, V can be expanded as follows

$$V(q) = V(0) + \sum_{s=1}^{n} \frac{\partial V}{\partial q_s} \bigg|_{q=0} q_s + \frac{1}{2} \sum_{s=1}^{n} \sum_{r=1}^{n} \frac{\partial^2 V}{\partial q_s \partial q_r} \bigg|_{q=0} q_s q_r + O(q^3)$$

$$= V(0) + \frac{1}{2} \sum_{s=1}^{n} \sum_{r=1}^{n} \frac{\partial^2 V}{\partial q_s \partial q_r} \bigg|_{q=0} q_s q_r + O(q^3)$$

- since the potential energy is defined only up to a constant, if this constant is chosen so that $V(0) = 0$, then a second-order approximation of $V(q)$ is given by

$$V(q) = \frac{1}{2} \sum_{s=1}^{n} \sum_{r=1}^{n} \frac{\partial^2 V}{\partial q_s \partial q_r} \bigg|_{q=0} q_s q_r, \quad \text{for } q \neq 0$$
Stiffness matrix

- let $K = [k_{sr}]$ where $k_{sr} = k_{rs} = \frac{\partial^2 V}{\partial q_s \partial q_r} |_{q=0}$

$$\implies V(q) = \frac{1}{2} q^T K q > 0, \quad \text{for } q \neq 0 \implies K \text{ is symmetric positive definite}$$

- in the absence of sufficient boundary conditions – that is, in the presence of rigid body modes

$$\frac{1}{2} q^T K q \geq 0, \quad \text{for } q \neq 0 \implies K \text{ is symmetric positive semi-definite}$$
Recall that

\[T_2 = \frac{1}{2} \sum_{s=1}^{n} \sum_{r=1}^{n} \sum_{k=1}^{N} \sum_{i=1}^{3} m_k \frac{\partial U_{ik}}{\partial q_s} \frac{\partial U_{ik}}{\partial q_r} \dot{q}_s \dot{q}_r \]

(relative kinetic energy)

\[T_2(q, \dot{q}) = T_2(0, 0) + \sum_{s=1}^{n} \frac{\partial T_2}{\partial q_s} \bigg|_{q=0, \dot{q}=0} q_s + \sum_{s=1}^{n} \frac{\partial T_2}{\partial \dot{q}_s} \bigg|_{q=0, \dot{q}=0} \dot{q}_s \]

\[+ \frac{1}{2} \sum_{s=1}^{n} \sum_{r=1}^{n} \frac{\partial^2 T_2}{\partial q_s \partial q_r} \bigg|_{q=0, \dot{q}=0} q_s q_r + \sum_{s=1}^{n} \sum_{r=1}^{n} \frac{\partial^2 T_2}{\partial q_s \partial \dot{q}_r} \bigg|_{q=0, \dot{q}=0} \dot{q}_s \dot{q}_r \]

\[+ \frac{1}{2} \sum_{s=1}^{n} \sum_{r=1}^{n} \frac{\partial^2 T_2}{\partial \dot{q}_s \partial \dot{q}_r} \bigg|_{q=0, \dot{q}=0} \dot{q}_s \dot{q}_r + O(q^3, \dot{q}^3) \]

\[= \frac{1}{2} \sum_{s=1}^{n} \sum_{r=1}^{n} \frac{\partial^2 T_2}{\partial \dot{q}_s \partial \dot{q}_r} \bigg|_{q=0, \dot{q}=0} \dot{q}_s \dot{q}_r + O(q^3, \dot{q}^3) \]
Hence, a second-order approximation of $T_2(\dot{q})$ is given by

$$T_2(\dot{q}) = \frac{1}{2} \dot{q}^T M \dot{q} > 0, \quad \text{for } \dot{q} \neq 0$$

where

$$M = \begin{bmatrix} m_{sr} = m_{rs} = \frac{\partial^2 T_2}{\partial \dot{q}_s \partial \dot{q}_r} \bigg|_{q=0} = \sum_{k=1}^{N} m_k \sum_{i=1}^{3} \frac{\partial U_{ik}}{\partial q_s} \bigg|_{q=0} \frac{\partial U_{ik}}{\partial q_r} \bigg|_{q=0} \end{bmatrix}$$

is the mass matrix and is symmetric positive definite.
Free-vibrations about a stable equilibrium position of a conservative system that does not undergo a transport or overall motion ($T_0 = T_1 = 0$)

\[
\frac{d}{dt} \left(\frac{\partial T_2}{\partial \dot{q}_s} \right) - \frac{\partial T_2}{\partial q_s} = -\frac{\partial V}{\partial q_s}
\]

\[\Rightarrow \frac{d}{dt} (M\ddot{q}) - 0 = -Kq\]

\[\Rightarrow M\ddot{q} + Kq = 0\]
Consider next the more general case of a system in steady motion (a transported system) whose equilibrium configuration defined by

$$\frac{\partial V^*}{\partial q_s} = \frac{\partial (V - T_0)}{\partial q_s} = 0, \quad s = 1, \ldots, n$$

corresponds to the balance of forces deriving from a potential \(\frac{\partial V}{\partial q_s}\) and centrifugal forces \(\frac{\partial T_0}{\partial q_s}\).

It is an equilibrium configuration in the sense that \(\dot{q}_s\) — which represent here the generalized velocities relative to a steady motion — are zero but the system is not idle.
Linear Vibrations

Free-Vibrations About an Equilibrium Configuration

- Linearizations
 - effective potential energy $\mathcal{V}^* \Rightarrow$ effective stiffness matrix K^*
 \[
 \mathcal{V}^*(\mathbf{q}) = \frac{1}{2} \mathbf{q}^T K^* \mathbf{q} > 0, \quad \text{for } \mathbf{q} \neq 0
 \]
 where $K^* = \left[k_{sr}^* = k_{sr} - \left(\frac{\partial^2 \mathcal{T}_0}{\partial q_s \partial q_r} \right) \big|_{\mathbf{q}=0} \right]$

- mutual kinetic energy

 \[
 \mathcal{T}_1 = \sum_{s=1}^{n} \sum_{k=1}^{N} \sum_{i=1}^{3} \frac{\partial U_{ik}}{\partial t} m_k \frac{\partial U_{ik}}{\partial q_s} \dot{q}_s = \sum_{s=1}^{n} \dot{q}_s \frac{\partial \mathcal{T}_1}{\partial \dot{q}_s} (\mathbf{q})
 \]

 \[
 \approx \sum_{s=1}^{n} \dot{q}_s \left(\frac{\partial \mathcal{T}_1}{\partial q_s} (0) + \sum_{r=1}^{n} \frac{\partial^2 \mathcal{T}_1}{\partial q_s \partial q_r} \big|_{\mathbf{q}=0} q_r + \mathcal{O}(\mathbf{q}^2) \right) q_r \Rightarrow \mathcal{T}_1(\mathbf{q}, \dot{\mathbf{q}}) = \dot{\mathbf{q}}^T \mathbf{F} \mathbf{q}
 \]

 where $\mathbf{F} = \left[f_{sr} = \frac{\partial^2 \mathcal{T}_1}{\partial \dot{q}_s \partial q_r} \big|_{\mathbf{q}=0} \right]$.

Equations of free-vibration around an equilibrium configuration

- the equilibrium configuration generated by a steady motion remains stable as long as $V^* = V - T_0 \geq 0$
- this corresponds to the fact that K^* remains positive definite
- in the neighborhood of such a configuration, the equations of motion (for a conservative system undergoing transport or overall motion) are

$$\frac{d}{dt} \left(\frac{\partial T_2}{\partial \dot{q}_s} \right) - \frac{\partial T_2}{\partial q_s} = Q_s(t) - \frac{\partial V^*}{\partial q_s} - \frac{\partial D}{\partial \dot{q}_s} + F_s - \frac{\partial}{\partial t} \left(\frac{\partial T_1}{\partial \dot{q}_s} \right)$$

where $F_s = \sum_{r=1}^{n} \left(\frac{\partial^2 T_1}{\partial q_s \partial \dot{q}_r} - \frac{\partial^2 T_1}{\partial q_r \partial \dot{q}_s} \right) \dot{q}_r = (F^T - F)\dot{q}$

$$\mathbf{M}\ddot{q} + \mathbf{G}\dot{q} + \mathbf{K}^*\mathbf{q} = 0$$

where $\mathbf{G} = \mathbf{F} - \mathbf{F}^T = -\mathbf{G}^T$ is the gyroscopic coupling matrix
Free-Vibrations About an Equilibrium Configuration

Example

\[q = x \quad X = (a + x) \cos \Omega t \quad Y = (a + x) \sin \Omega t \quad v^2 = \dot{X}^2 + \dot{Y}^2 = (a + x)^2 \Omega^2 + x^2 \]

\[\mathcal{V} = \frac{1}{2} kx^2 \quad T_0 = \frac{1}{2} \Omega^2 m(a + x)^2 \quad T_1 = 0 \quad T_2 = \frac{1}{2} mx^2 \quad \mathcal{V}^* = \frac{1}{2} kx^2 - \frac{1}{2} \Omega^2 m(a + x)^2 \]

- equilibrium configuration

\[\frac{\partial \mathcal{V}^*}{\partial x} = 0 \implies kx - \Omega^2 m(a + x) = 0 \implies x_{eq} = \frac{\Omega^2 ma}{k - \Omega^2 m} \]

- the system becomes unstable for \(\Omega^2 = \frac{k}{m} \)

\[k^* = \frac{\partial^2 \mathcal{V}^*}{\partial x^2} = k - \Omega^2 m \implies \text{system is unstable for } \Omega^2 \geq \frac{k}{m} \]
Natural Vibration Modes

- Free-vibration equations: \(M\ddot{q} + Kq = 0 \)
- \(q(t) = qa e^{i\omega t} \Rightarrow (K - \omega^2 M)qa = 0 \Rightarrow \det (K - \omega^2 M) = 0 \)
- If the system has \(n \) degrees of freedom (dofs), \(M \) and \(K \) are \(n \times n \) matrices \(\Rightarrow \) \(n \) eigenpairs \((\omega_i^2, qa_i) \)
- Rigid body mode(s): \(\omega_j^2 = 0 \Rightarrow Kqa_j = 0 \)
- For a rigid body mode, \(V(qa_j) = \frac{1}{2} qa_j^T K qa_j = 0 \)
Consider two distinct eigenpairs \((\omega_i^2, q_{a_i})\) and \((\omega_j^2, q_{a_j})\)

\[
q_{a_j}^T K q_{a_i} = q_{a_j}^T \omega_i^2 M q_{a_i} \tag{2}
\]

\[
q_{a_i}^T K q_{a_j} = q_{a_i}^T \omega_j^2 M q_{a_j} \tag{3}
\]

Because \(M\) and \(K\) are symmetric

\[
(2) - (3)^T \Rightarrow 0 = (\omega_i^2 - \omega_j^2) q_{a_j}^T M q_{a_i}
\]

since \(\omega_i^2 \neq \omega_j^2 \Rightarrow q_{a_j}^T M q_{a_i} = 0\) and \(q_{a_j}^T K q_{a_i} = 0\)
Orthogonality of Natural Vibration Modes

Distinct Frequencies

Physical interpretation of the orthogonality conditions

\[q_{aj}^T M q_{ai} = 0 \Rightarrow q_{aj}^T (\omega_i^2 M q_{ai}) = (\omega_i^2 M q_{ai})^T q_{aj} = 0 \]

which implies that the virtual work produced by the inertia forces of mode \(i \) during a virtual displacement prescribed by mode \(j \) is zero

\[q_{aj}^T K q_{ai} = 0 \Rightarrow (K q_{ai})^T q_{aj} = 0 \]

which implies that the virtual work produced by the elastic forces of mode \(i \) during a virtual displacement prescribed by mode \(j \) is zero
Orthogonality of Natural Vibration Modes

Distinct Frequencies

- Rayleigh quotient

\[Kq_{ai} = \omega_i^2 Mq_{ai} \Rightarrow q_{ai}^T K q_{ai} = \omega_i^2 q_{ai}^T M q_{ai} \Rightarrow \omega_i^2 = \frac{q_{ai}^T K q_{ai}}{q_{ai}^T M q_{ai}} = \frac{\gamma_i}{\mu_i} \]

- \(\gamma_i \) = generalized stiffness coefficient of mode \(i \) (measures the contribution of mode \(i \) to the elastic deformation energy)

- \(\mu_i \) = generalized mass coefficient of mode \(i \) (measures the contribution of mode \(i \) to the kinetic energy)

- Since the amplitude of \(q_{ai} \) is determined up to a factor only \(\Rightarrow \gamma_i \) and \(\mu_i \) are determined up to a constant factor only

- Mass normalization

\[q_{aj}^T M q_{ai} = \delta_{ij} \]
\[q_{aj}^T K q_{ai} = \omega_i^2 \delta_{ij} \]
What happens if a multiple circular frequency is encountered?

Theorem: to a multiple root ω_p^2 of the system

$$Kq_a = \omega^2 Mq_a$$

corresponds a number of linearly independent eigenvectors $\{q_{ai}\}$ equal to the root multiplicity
Modal Superposition Analysis

- n-dof system: \(M \in \mathbb{R}^{n \times n}, K \in \mathbb{R}^n \), and \(q \in \mathbb{R}^n \)
- Coupled system of ordinary differential equations

\[
\begin{align*}
\ddot{M}q + Kq &= 0 \\
q(0) &= q_0 \\
\dot{q}(0) &= \dot{q}_0
\end{align*}
\]
Modal Superposition Analysis

- Natural vibration modes (eigenmodes)

\[Kq_{a_i} = \omega_i^2 Mq_{a_i}, \quad i = 1, \cdots, n \]

\[Q = [q_{a_1} \quad q_{a_2} \quad \cdots \quad q_{a_n}] \Rightarrow \begin{cases} Q^T K Q = \Omega^2 \\ Q^T M Q = I \end{cases} \]

\[\Omega^2 = \begin{pmatrix} \omega_1^2 \\ \vdots \\ \omega_n^2 \end{pmatrix} \]

- Truncated eigenbasis

\[Q_r = [q_{a_1} \quad q_{a_2} \quad \cdots \quad q_{a_r}] , \quad r \ll n \Rightarrow \begin{cases} Q_r^T K Q_r = \Omega_r^2 \quad \text{(reduced stiffness matrix)} \\ Q_r^T M Q_r = I_r \quad \text{(reduced mass matrix)} \end{cases} \]

\[\Omega_r^2 = \begin{pmatrix} \omega_1^2 \\ \vdots \\ \omega_r^2 \end{pmatrix} \]
Modal Superposition Analysis

- Modal superposition: \(\mathbf{q} = \mathbf{Q}_r \mathbf{y} = \sum_{i=1}^{r} y_i \mathbf{q}_i \) where

\[
\mathbf{y} = [y_1, y_2, \cdots, y_r]^T
\]
and \(y_i \) is called the modal displacement.

- Substitute in \(M\ddot{\mathbf{q}} + K\mathbf{q} = 0 \)

\[
\Rightarrow MQ_r \ddot{\mathbf{y}} + KQ_r \mathbf{y} = 0
\]

\[
\Rightarrow Q_r^T MQ_r \ddot{\mathbf{y}} + Q_r^T KQ_r \mathbf{y} = 0
\]

\[
\Rightarrow \mathbf{I}_r \ddot{\mathbf{y}} + \Omega_r^2 \mathbf{y} = 0
\]

- Uncoupled differential equations (modal equations)

\[
\ddot{y}_i + \omega_i^2 y_i = 0, \quad i = 1, \cdots r
\]
Modal Superposition Analysis

\[\ddot{y}_i + \omega_i^2 y_i = 0, \quad i = 1, \ldots r \]

- **Case 1:** \(\omega_i^2 = 0 \) (rigid body mode)
 \[y_i = a_i t + b_i \]

- **Case 2:** \(\omega_j^2 \neq 0 \)
 \[y_j = c_j \cos \omega_j t + d_j \sin \omega_j t \]

- **General case:** \(r_b \) rigid body modes
 \[\mathbf{q} = \sum_{i=1}^{r_b} (a_i t + b_i) \mathbf{q}_{a_i} + \sum_{j=1}^{r-r_b} (c_j \cos \omega_j t + d_j \sin \omega_j t) \mathbf{q}_{a_j} \]

- **Initial conditions**
 \[\mathbf{q}(0) = \mathbf{q}_0 = Qy(0) \quad \text{and} \quad \dot{\mathbf{q}}(0) = \dot{\mathbf{q}}_0 = Q\dot{y}(0) \]
Modal Superposition Analysis

\[
q_0 = Q_r y(0) \quad \text{and} \quad \dot{q}_0 = Q_r \dot{y}(0)
\]

\[
\implies q_{a_i}^T M q_0 = q_{a_i}^T M Q_r y(0)
\]

From the orthogonality properties of the natural mode shapes (eigenvectors) it follows that

\[
q_{a_i}^T M q_0 = q_{a_i}^T M Q_r y(0) = q_{a_i}^T M q_{a_i} y_i(0) = y_i(0) \implies y_i(0) = q_{a_i}^T M q(0)
\]

- **Case 1:** \(\omega_i^2 = 0 \) (rigid body mode) \(\implies a_i \times 0 + b_i = q_{a_i}^T M q(0) \implies b_i = q_{a_i}^T M q(0) \)

- **Case 2:** \(\omega_j^2 \neq 0 \) \(\implies c_j \times 1 + d_j \times 0 = q_{a_j}^T M q(0) \implies c_j = q_{a_j}^T M q(0) \)

- **Case 1:** \(\omega_i^2 = 0 \) (rigid body mode) \(\implies a_i = q_{a_i}^T M \dot{q}(0) \)

- **Case 2:** \(\omega_j^2 \neq 0 \) \(\implies d_j = \frac{1}{\omega_j} q_{a_j}^T M \dot{q}(0) \)

Thus, the general solution is

\[
q(t) = \sum_{i=1}^{r_b} \left(\left[q_{a_i}^T M \dot{q}(0) \right] t + q_{a_i}^T M q(0) \right) q_{a_i} + \sum_{j=1}^{r-r_b} \left(q_{a_j}^T M q(0) \cos \omega_j t + q_{a_j}^T M \dot{q}(0) \frac{\sin \omega_j t}{\omega_j} \right) q_{a_j}
\]
Spectral Expansions

∀ \mathbf{x} \in \mathbb{R}^n, \quad \mathbf{x} = \sum_{s=1}^{n} \alpha_s \mathbf{q}_{as} \Rightarrow \mathbf{q}_{aj}^T \mathbf{Mx} = \sum_{s=1}^{n} \alpha_s \mathbf{q}_{aj}^T \mathbf{Mq}_{as} = \alpha_j

\Rightarrow \forall \mathbf{x} \in \mathbb{R}^n, \quad \mathbf{x} = \sum_{s=1}^{n} \left(\mathbf{q}_{as}^T \mathbf{Mx} \right) \mathbf{q}_{as} = \sum_{s=1}^{n} \mathbf{q}_{as} \left(\mathbf{q}_{as}^T \mathbf{Mx} \right) = \sum_{s=1}^{n} \left(\mathbf{q}_{as} \mathbf{q}_{as}^T \right) \mathbf{Mx} = \left(\sum_{s=1}^{n} \left(\mathbf{q}_{as} \mathbf{q}_{as}^T \right) \mathbf{M} \right) \mathbf{x}

\Rightarrow \sum_{s=1}^{n} \left(\mathbf{q}_{as} \mathbf{q}_{as}^T \right) \mathbf{M} = \mathbf{I}

- This is the same result as \(\mathbf{Q}^T \mathbf{MQ} = \mathbf{I} \)

- A given load \(\mathbf{p} \) can be expanded in terms of the inertia forces generated by the eigenmodes, \(\mathbf{Mq}_{aj} \) as follows

\[\mathbf{p} = \sum_{j=1}^{n} \beta_j \mathbf{Mq}_{aj} \Rightarrow \mathbf{q}_{ai}^T \mathbf{p} = \sum_{j=1}^{n} \beta_j \mathbf{q}_{ai}^T \mathbf{Mq}_{aj} = \beta_i \]

\[\Rightarrow \beta_i = \mathbf{q}_{ai}^T \mathbf{p} = \text{modal participation factor} \Rightarrow \mathbf{p} = \sum_{j=1}^{n} \left(\mathbf{q}_{aj}^T \mathbf{p} \right) \mathbf{Mq}_{aj} \]
Recall that \(\sum_{s=1}^{n} \left(q_{as} q_{as}^T \right) M = I \)

Hence, \(\forall A \in \mathbb{R}^n, \quad A = \sum_{s=1}^{n} A q_{as} q_{as}^T M \) and \(A = \sum_{s=1}^{n} q_{as} q_{as}^T M A \)

\(A = M \Rightarrow M = \sum_{s=1}^{n} M q_{as} q_{as}^T M = \sum_{s=1}^{n} M q_{as} (M q_{as})^T \) (because \(M \) is symmetric)

\(A = K \Rightarrow K = \sum_{s=1}^{n} K q_{as} q_{as}^T M = \sum_{s=1}^{n} \omega_s^2 M q_{as} q_{as}^T M = \sum_{s=1}^{n} \omega_s^2 M q_{as} (M q_{as})^T \)

\(A = M^{-1} \Rightarrow M^{-1} = \sum_{s=1}^{n} q_{as} q_{as}^T M M^{-1} \Rightarrow M^{-1} = \sum_{s=1}^{n} q_{as} q_{as}^T \)

\(A = K^{-1} \Rightarrow K^{-1} = \sum_{s=1}^{n} q_{as} q_{as}^T M K^{-1} = \sum_{s=1}^{n} q_{as} (M q_{as})^T K^{-1} \Rightarrow K^{-1} = \sum_{s=1}^{n} \frac{q_{as} q_{as}^T}{\omega_s^2} \)
Forced Harmonic Response

\[
\begin{align*}
M\ddot{q} + Kq &= s_a \cos \omega t \\
q(0) &= q_0 \\
\dot{q}(0) &= \dot{q}_0
\end{align*}
\]

Solution can be decomposed as

\[q = q_H \text{(homogeneous)} + q_P \text{(particular)}\]

\[q_p = q_a \cos \omega t \Rightarrow q_a = (K - \omega^2 M)^{-1} s_a\] where \((K - \omega^2 M)^{-1}\) is called the \textit{admittance} or \textit{dynamic influence} matrix

The forced response is the part of the response that is synchronous to the excitation — that is, \(q_p\)
Forced Harmonic Response

- Rigid body modes: \(\{u_{ai}\}_{i=1}^{rb} \)

- For all \(q_a \in \mathbb{R}^n \), \(q_a = \sum_{i=1}^{rb} \alpha_i u_{ai} + \sum_{j=1}^{n-rb} \beta_j q_{aj} \)

\[\Rightarrow s_a = (K - \omega^2 M)q_a = \sum_{i=1}^{rb} \alpha_i (K - \omega^2 M)u_{ai} + \sum_{j=1}^{n-rb} \beta_j (K - \omega^2 M)q_{aj}\]

\[\Rightarrow s_a = -\sum_{i=1}^{rb} \alpha_i \omega^2 Mu_{ai} + \sum_{j=1}^{n-rb} \beta_j (\omega_j^2 - \omega^2)Mq_{aj}\]

- Premultiply by \(u_{ai}^T \Rightarrow \alpha_j = -\frac{u_{ai}^T s_a}{\omega^2} \) and premultiply by \(q_{ai}^T \Rightarrow \beta_i = \frac{q_{ai}^T s_a}{(\omega_i^2 - \omega^2)} \)

\[\Rightarrow q_a = -\sum_{i=1}^{rb} \frac{u_{ai}^T s_a}{\omega^2} u_{ai} + \sum_{j=1}^{n-rb} \frac{q_{aj}^T s_a}{(\omega_j^2 - \omega^2)} q_{aj} = \left(-\sum_{i=1}^{rb} \frac{u_{ai}u_{ai}^T}{\omega^2} + \sum_{j=1}^{n-rb} \frac{q_{aj}q_{aj}^T}{(\omega_j^2 - \omega^2)} \right) s_a\]

- Since \(q_a = (K - \omega^2 M)^{-1}s_a \)

\[\Rightarrow (K - \omega^2 M)^{-1} = -\frac{1}{\omega^2} \sum_{i=1}^{rb} u_{ai}u_{ai}^T + \sum_{j=1}^{n-rb} \frac{q_{aj}q_{aj}^T}{\omega_j^2 - \omega^2}\]
Which excitation $s_{a m}$ will generate a harmonic response with an amplitude corresponding to $q_{a m}$?

$$q_{a m} = (K - \omega^2 M)^{-1}s_{a m} \Rightarrow s_{a m} = (K - \omega^2 M)q_{a m}$$

$$\implies s_{a m} = Kq_{a m} - \omega^2 Mq_{a m} = (\omega_m^2 - \omega^2)Mq_{a m}$$

At resonance ($\omega^2 = \omega_m^2$) $s_{a m} = 0 \Rightarrow$ no force is needed to maintain $q_{a m}$ once it is reached.
The inverse of an admittance is an impedance

\[Z(\omega^2) = (K - \omega^2 M) \]
Forced Harmonic Response

- Application: substructuring (or domain decomposition)

- the dynamical behavior of a substructure is described by its harmonic response when forces are applied onto its interface boundaries.

- a subsystem is typically described by \mathbf{K} and \mathbf{M}, has n_1 free dofs \mathbf{q}_1, and is connected to the rest of the system by $n_2 = n - n_1$ boundary dofs \mathbf{q}_2 where the reaction forces are denoted here by \mathbf{g}_2

\[
\begin{pmatrix}
Z_{11} & Z_{12} \\
Z_{21} & Z_{22}
\end{pmatrix}
\begin{pmatrix}
\mathbf{q}_1 \\
\mathbf{q}_2
\end{pmatrix}
=
\begin{pmatrix}
\mathbf{0} \\
\mathbf{g}_2
\end{pmatrix}
\]

$\Rightarrow Z_{11}\mathbf{q}_1 + Z_{12}\mathbf{q}_2 = 0 \Rightarrow \mathbf{q}_1 = -Z_{11}^{-1}Z_{12}\mathbf{q}_2$

$\Rightarrow (Z_{22} - Z_{21}Z_{11}^{-1}Z_{12})\mathbf{q}_2 = Z_{22}^*\mathbf{q}_2 = \mathbf{g}_2$

- Z_{22}^* is the “reduced” impedance (reduced to the boundary)
Forced Harmonic Response

- Spectral expansion of Z_{22}^*
 - Look at Z_{11}^{-1} and let $(\tilde{\omega}_i^2, \tilde{q}_{ai})$ denote the n_1 eigenpairs of the associated dynamical subsystem: from (4), it follows that
 \[
 Z_{11}^{-1} = \sum_{j=1}^{n_1} \frac{\tilde{q}_{aj} \tilde{q}_{aj}^T}{\tilde{\omega}_j^2 - \omega^2}
 \]
 - Apply twice the relation
 \[
 \frac{1}{\tilde{\omega}_j^2 - \omega^2} = \frac{1}{\tilde{\omega}_j^2} + \frac{\omega^2}{\tilde{\omega}_j^2 (\tilde{\omega}_j^2 - \omega^2)}
 \]
 \[
 \implies Z_{11}^{-1} = K_{11}^{-1} + \omega^2 \sum_{j=1}^{n_1} \frac{\tilde{q}_{aj} \tilde{q}_{aj}^T}{\tilde{\omega}_j^2 (\tilde{\omega}_j^2 - \omega^2)} = K_{11}^{-1} + \omega^2 \sum_{j=1}^{n_1} \frac{\tilde{q}_{aj} \tilde{q}_{aj}^T}{\tilde{\omega}_j^4} + \omega^4 \sum_{j=1}^{n_1} \frac{\tilde{q}_{aj} \tilde{q}_{aj}^T}{\tilde{\omega}_j^4 (\tilde{\omega}_j^2 - \omega^2)}
 \]
 - Owing to the M_{11}-orthonormality of the modes and the spectral expansion of K_{11}^{-1}, the above expression can further be written as
 \[
 Z_{11}^{-1} = K_{11}^{-1} + \omega^2 K_{11}^{-1} M_{11} K_{11}^{-1} + \omega^4 \sum_{j=1}^{n_1} \frac{\tilde{q}_{aj} \tilde{q}_{aj}^T}{\tilde{\omega}_j^4 (\tilde{\omega}_j^2 - \omega^2)}
 \]
 \[
 \implies Z_{22}^* = K_{22} - K_{21} K_{11}^{-1} K_{12} - \omega^2 [M_{22} - M_{21} K_{11}^{-1} K_{12} - K_{21} K_{11}^{-1} M_{12} + K_{21} K_{11}^{-1} M_{11} K_{11}^{-1} K_{12}] - \omega^4 \sum_{i=1}^{n_1} \frac{[\tilde{\omega}_i^2 M_{21} \tilde{q}_{ai}][\tilde{\omega}_i^2 M_{21}\tilde{q}_{ai}]}{\tilde{\omega}_i^4 (\tilde{\omega}_i^2 - \omega^2)}
 \]
Forced Harmonic Response

\[Z_{22}^* = K_{22} - K_{21} K_{11}^{-1} K_{12} - \omega^2 [M_{22} - M_{21} K_{11}^{-1} K_{12} - K_{21} K_{11}^{-1} M_{12} + K_{21} K_{11}^{-1} M_{11} K_{11}^{-1} K_{12}] \\
-\omega^4 \sum_{i=1}^{n_1} \frac{[(K_{21} - \tilde{\omega}_i^2 M_{21}) \tilde{q}_{ai}]^T [(K_{21} - \tilde{\omega}_i^2 M_{21}) \tilde{q}_{ai}]}{\tilde{\omega}_i^4 (\tilde{\omega}_i^2 - \omega^2)} \]

- The first term \(K_{22} - K_{21} K_{11}^{-1} K_{12} \) represents the stiffness of the statically condensed system.

- The second term \(M_{22} - M_{21} K_{11}^{-1} K_{12} - K_{21} K_{11}^{-1} M_{12} + K_{21} K_{11}^{-1} M_{11} K_{11}^{-1} K_{12} \) represents the mass of the subsystem statically condensed on the boundary.

- The last term represents the contribution of the subsystem eigenmodes since it is generated by \(\tilde{q}_{ai} \tilde{q}_{ai}^T \).

- \((K_{21} - \tilde{\omega}_i^2 M_{21}) \tilde{q}_{ai} \) is the dynamic reaction on the boundary.
Response to External Loading

\[
\begin{align*}
\{ \quad M\ddot{q} + Kq &= p(t) \\
q(0) &= q_0 \\
\dot{q}(0) &= \dot{q}_0
\end{align*}
\]

General approach

- Consider the simpler case where there is no rigid body mode \(\Rightarrow \) eigenmodes \((q_{a_i}, \omega_i^2), \omega_i^2 \neq 0, i = 1, \cdots, n \)
- Modal superposition: \(q = Qy = \sum_{i=1}^{n} y_i q_{a_i} \)
- Substitute in equations of dynamic equilibrium

\[
\Longrightarrow MQ\ddot{y} + KQy = p(t) \Rightarrow Q^T MQ\ddot{y} + Q^T KQy = Q^T p(t)
\]

- Modal equations

\[
\ddot{y}_i + \omega_i^2 y_i = q_{a_i}^T p(t), \quad i = 1, \cdots, n
\]

- \(y_i(t) \) depend on two constants that can be obtained from the initial conditions
- \(q(0) = Qy(0), \dot{q}(0) = Q\dot{y}(0) \) \(\Rightarrow \) orthogonality conditions

\[y_i(0), \dot{y}_i(0) \]
Response to an impulsive force

- spring-mass system: \(m, k, \omega^2 = \frac{k}{m} \)
- impulsive force \(f(t) \): force whose amplitude could be infinitely large but which acts for a very short duration of time
- magnitude of impulse: \(I = \int_{-\epsilon}^{\epsilon} f(t) dt \)
- impulsive force \(= I\delta(t) \) where \(\delta \) is the “delta” function centered at \(t = 0 \) and satisfying \(\int_{0}^{\epsilon} \delta(t) dt = 1 \)
Response to an impulsive force (continue)

- dynamic equilibrium

\[m \int_{\tau}^{\tau+\epsilon} \frac{d\dot{u}}{dt} \, dt + k \int_{\tau}^{\tau+\epsilon} \dot{u} \, dt = \int_{\tau}^{\tau+\epsilon} f(t) \, dt = l \]

- assume that at \(t = \tau \), the system is at rest (\(u(\tau) = 0 \) and \(\dot{u}(\tau) = 0 \))
- focus on the short (infinitesimal) interval of time \(d\tau \)

\[\ddot{u} \approx A/\epsilon \Rightarrow \int_{\tau}^{\tau+\epsilon} \ddot{u} \, dt \approx A \text{ and } \int_{\tau}^{\tau+\epsilon} u \, dt \approx A\epsilon^2/6 \]

- hence

\[m \int_{\tau}^{\tau+\epsilon} \frac{d\dot{u}}{dt} \, dt \approx I \Rightarrow m\Delta\dot{u} \approx I \Rightarrow \Delta\dot{u} = \dot{u}(\tau + \epsilon) - \dot{u}(\tau) \approx \frac{l}{m} \Rightarrow \dot{u}(\tau + \epsilon) \approx \frac{l}{m} \]

\[\int_{\tau}^{\tau+\epsilon} \dot{u} \, dt \approx 0 \Rightarrow \Delta u \approx 0 \Rightarrow u(\tau + \epsilon) - u(\tau) \approx 0 \Rightarrow u(\tau + \epsilon) \approx 0 \]

- the above equations provide initial conditions for the free-vibrations that start at the end of the impulsive load

\[\Rightarrow u(t) \approx \frac{l}{m\omega} \sin \omega t \text{ for impulses of finite duration} \]
Response to an impulsive force (continue)

for the differential time interval \(d\tau \) \((d\tau \to 0)\), the response analysis of the previous page becomes exact

\[
\Rightarrow du = \frac{f(\tau)d\tau}{m\omega} \sin \omega(t - \tau)
\]

linear system \(\Rightarrow\) superposition principle

\[
du = \frac{f(\tau)d\tau}{m\omega} \sin \omega(t - \tau) \Rightarrow u(t) = \frac{1}{m\omega} \int_0^t f(\tau) \sin \omega(t - \tau) d\tau
\]
Response to External Loading

- Time-integration of the normal equations
 - let $p_i(t) = q^T_{ai}p(t) = i$-th modal participation factor
 - modal or normal equation: $\ddot{y}_i + \omega_i^2 y_i = p_i(t)$
 - $y_i(t) = y^H_i(t) + y^P_i(t)$, $y^H_i = A_i \cos \omega_i t + B_i \sin \omega_i t$
 - the particular solution $y^P_i(t)$ depends on the form of $p_i(t)$
 - however, the general form of a particular solution that satisfies the rest initial conditions is given by the Duhamel’s integral

$$y^P_i(t) = \frac{1}{\omega_i} \int_0^t p_i(\tau) \sin \omega_i(t - \tau) d\tau$$

- complete solution

$$y_i(t) = A_i \cos \omega_i t + B_i \sin \omega_i t + \frac{1}{\omega_i} \int_0^t p_i(t) \sin \omega_i(t - \tau) d\tau$$

- $A_i = y_i(0), B_i = \frac{\dot{y}_i(0)}{\omega_i}$ and $y_i(0)$ and $\dot{y}_i(0)$ can be determined from the initial conditions $\mathbf{q}(0)$ and $\dot{\mathbf{q}}(0)$ and the orthogonality conditions.
Response truncation and mode displacement method

- computational efficiency \(\Rightarrow q = Q_r y = \sum_{i=1}^{r} y_i q_{ai}, \quad r \ll n \)
- what is the effect of modal truncation?
- consider the case where \(p(t) = g_{\text{static load distribution}} \times \phi(t) \)
- for a system initially at rest \((q(0) = 0 \text{ and } \dot{q}(0) = 0) \)
 \(y_i(0) = q_{ai}^T M q(0) = 0 \text{ and } \dot{y}_i(0) = q_{ai}^T M \dot{q}(0) = 0 \Rightarrow A_i = B_i = 0 \)

\[
\Rightarrow y_i(t) = \frac{1}{\omega_i} \int_{0}^{t} p_i(\tau) \sin \omega_i(t-\tau) d\tau = \frac{q_{ai}^T g}{\omega_i} \int_{0}^{t} \phi(\tau) \sin \omega_i(t - \tau) d\tau
\]

\[
\Rightarrow q(t) = \sum_{i=1}^{r} \left[q_{ai} q_{ai}^T g \right] \left[\frac{1}{\omega_i} \int_{0}^{t} \phi(\tau) \sin \omega_i(t - \tau) d\tau \right]
\]
Response truncation and mode displacement method (continue)

- general solution for restrained structure initially at rest

\[q(t) = \sum_{i=1}^{r} \left[q_{a_i} q_{a_i}^T g \right] \left[\frac{1}{\omega_i} \int_0^t \phi(\tau) \sin \omega_i(t - \tau) d\tau \right] \]

- truncated response is accurate if neglected terms are small, which is true if:
 - \(q_{a_i} q_{a_i}^T g \) is small for \(i = r + 1, \cdots, n \) \(\Rightarrow g \) is well approximated in the range of \(Q_r \)
 - \(\frac{1}{\omega_j} \int_0^t \phi(\tau) \sin \omega_j(t - \tau) d\tau \) is small for \(j > r \), which depends on the frequency content of \(\phi(t) \)

\[\phi(t) = 1 \quad \Rightarrow \quad \theta_i(t) = \frac{1 - \cos \omega_i t}{\omega_i} \to 0 \text{ for large circular frequencies} \]

\[\phi(t) = \sin \omega t \quad \Rightarrow \quad \theta_i(t) = \frac{\omega_i \sin \omega t - \omega \sin \omega_i t}{\omega_i(\omega_i^2 - \omega^2)} \]
Response to External Loading

- Mode acceleration method

\[M\ddot{q} + Kq = p(t) \implies Kq = p(t) - M\ddot{q} \]

- apply truncated modal representation to the acceleration

\[q(t) = Q_r y(t) \implies \dot{q}(t) = Q_r \dot{y}(t) \]

\[\implies Kq = p(t) - \sum_{i=1}^{r} Mq_{a_i} \ddot{y}_i \implies q = K^{-1} p(t) - \sum_{i=1}^{r} \frac{q_{a_i}}{\omega_i^2} \ddot{y}_i \]

- recall that

\[\ddot{y}_i + \omega_i^2 y_i = q_{a_i}^T p(t) \tag{5} \]

- and that for a system initially at rest

\[y_i(t) = \frac{1}{\omega_i} \int_0^t q_{a_i}^T p(\tau) \sin \omega_i(t - \tau) d\tau \tag{6} \]

- (5) and (6) \implies \ddot{y}_i(t) = q_{a_i}^T (p(t) - \omega_i \int_0^t p(\tau) \sin \omega_i(t - \tau) d\tau)
Mode acceleration method (continue)

- substitute in $q(t) = K^{-1}p(t) - \sum_{i=1}^{r} \frac{q_{a_i}}{\omega_i^2} \ddot{y}_i$

$$\implies q(t) = \sum_{i=1}^{r} \frac{q_{a_i}}{\omega_i} q_{a_i}^T \int_0^t p(\tau) \sin \omega_i (t-\tau) d\tau + \left(K^{-1} - \sum_{i=1}^{r} \frac{q_{a_i} q_{a_i}^T}{\omega_i^2} \right) p(t)$$

- recall the spectral expansion $K^{-1} = \sum_{i=1}^{n} \frac{q_{a_i} q_{a_i}^T}{\omega_i^2}$

$$\implies q(t) = \sum_{i=1}^{r} \frac{q_{a_i} q_{a_i}^T}{\omega_i} \int_0^t p(\tau) \sin \omega_i (t-\tau) d\tau + \left(\sum_{i=r+1}^{n} \frac{q_{a_i} q_{a_i}^T}{\omega_i^2} \right) p(t)$$

- which shows that the mode acceleration method complements the truncated mode displacement solution with the missing terms using the modal expansion of the static response

- how to deal with the computational cost issue?
Response to External Loading

- Direct time-integration methods for solving

\[\begin{align*}
 \ddot{q} + Kq &= p(t) \\
 q(0) &= q_0 \\
 \dot{q}(0) &= \dot{q}_0
\end{align*} \]

- will be covered towards the end of this course
The general case

\[
\mathbf{q} = \begin{pmatrix} q_1 \\ q_2 \end{pmatrix}
\]

where \(q_2 \) is prescribed

\[
\begin{pmatrix} M_{11} & M_{12} \\ M_{21} & M_{22} \end{pmatrix} \begin{pmatrix} \ddot{q}_1 \\ \ddot{q}_2 \end{pmatrix} + \begin{pmatrix} K_{11} & K_{12} \\ K_{21} & K_{22} \end{pmatrix} \begin{pmatrix} q_1 \\ q_2 \end{pmatrix} = \begin{pmatrix} 0 \\ r_2(t) \end{pmatrix}
\]

The first equation gives

\[
M_{11}\ddot{q}_1 + K_{11}q_1 = -K_{12}q_2 - M_{12}\ddot{q}_2 \Rightarrow q_1(t)
\]

Substitute in second equation

\[
\Rightarrow r_2(t) = K_{21}q_1 + M_{21}\ddot{q}_1 + K_{22}q_2 + M_{22}\ddot{q}_2
\]
Quasi-static response of \(q_1 \)

\[
0 + K_{11} q_1 = -K_{12} q_2 - 0
\]

\[
\Rightarrow q_{qs}^{1} = -K^{-1}_{11} K_{12} q_2 = S q_2
\]

Decompose \(q_1 = q_{qs}^{1} + z_1 = S q_2 + z_1 \)

\[
\Rightarrow q(t) = \begin{pmatrix} q_1 \\ q_2 \end{pmatrix} = \begin{pmatrix} I & S \\ 0 & I \end{pmatrix} \begin{pmatrix} z_1 \\ q_2 \end{pmatrix}
\]

where \(z_1 \) represents the sole dynamics part of the response

Substitute in the first dynamic equation and exploit above results

\[
\Rightarrow M_{11} S \ddot{q}_2 + M_{11} \ddot{z}_1 + K_{11} q_{qs}^{1} + K_{11} z_1 = -K_{12} q_2 - M_{12} \ddot{q}_2
\]

\[
\Rightarrow \begin{cases}
M_{11} \ddot{z}_1 + K_{11} z_1 & = g_1(t) \\
- M_{11} \ddot{q}_{qs}^{1} - M_{12} \ddot{q}_2 & = -(M_{11} S + M_{12}) \ddot{q}_2
\end{cases}
\]
Consider next the system fixed to the ground and solve the corresponding EVP

\[K_{11} x = \omega^2 M_{11} x \Rightarrow \tilde{Q} = [\cdots \tilde{q}_a, \cdots] \]

\[\Rightarrow z_1(t) = \tilde{Q}\eta(t) \]

Solve \(M_{11}\ddot{z}_1 + K_{11}z_1 = g_1(t) \) for \(z_1(t) \) using the modal superposition technique.
Case of a global support acceleration $\ddot{q}_2(t) = u_2 \phi(t)$, where $u = [u_1 \ u_2]^T$ denotes a rigid body mode.

- Decomposition of the solution into a rigid body motion and a relative displacement \mathbf{y}

$$\ddot{q} = \ddot{q}^{rb} + \mathbf{y} \Rightarrow \begin{bmatrix} \ddot{q}_1 \\ \ddot{q}_2 \end{bmatrix} = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \phi(t) + \begin{bmatrix} \ddot{y}_1 \\ 0 \end{bmatrix}$$

- $u_1 = S u_2 \Rightarrow g_1(t) = -(M_{11} S u_2 + M_{12} u_2) \phi(t)$

$$\Rightarrow g_1(t) = -(M_{11} u_1 + M_{12} u_2) \phi(t)$$
Mechanical Systems Excited Through Support Motion

- Method of additional masses (approximate method)
 - suppose the system is subjected not to a specified $q_2(t)$ but to an imposed

 \[
 \begin{pmatrix}
 0 \\
 f(t)
 \end{pmatrix}
 \]

 - suppose that masses associated with q_2 are increased to $M_{22} + M_{22}^*$
 - then

 \[
 \begin{pmatrix}
 M_{11} & M_{12} \\
 M_{21} & M_{22} + M_{22}^*
 \end{pmatrix}
 \begin{pmatrix}
 \ddot{q}_1 \\
 \ddot{q}_2
 \end{pmatrix} + \begin{pmatrix}
 K_{11} & K_{12} \\
 K_{21} & K_{22}
 \end{pmatrix}\begin{pmatrix}
 q_1 \\
 q_2
 \end{pmatrix} = \begin{pmatrix}
 0 \\
 f(t)
 \end{pmatrix}
 \]

 - by elimination one obtains
 \[
 \ddot{q}_2 = (M_{22} + M_{22}^*)^{-1}(f(t) - K_{22}q_2 - K_{21}q_1 - M_{21}\ddot{q}_1)
 \]

 and

 \[
 M_{11}\ddot{q}_1 + K_{11}q_1 = -K_{12}q_2 - M_{12}(M_{22} + M_{22}^*)^{-1}(f(t) - K_{22}q_2 - K_{21}q_1 - M_{21}\ddot{q}_1)
 \]
Method of additional masses (continue)

therefore

\[
\begin{align*}
\{M_{11} - M_{12}(M_{22} + M_{22}^*)^{-1}M_{21}\} \ddot{q}_1 + \left\{K_{11} - M_{12}(M_{22} + M_{22}^*)^{-1}K_{21}\right\}q_1 = -K_{12}q_2 - M_{12}(M_{22} + M_{22}^*)^{-1}(f(t) - K_{22}q_2)
\end{align*}
\]

now if \((M_{22} + M_{22}^*)^{-1} \rightarrow 0\) and if \(f(t) = (M_{22} + M_{22}^*)\ddot{q}_2\), one obtains

\[
M_{11}\ddot{q}_1 + K_{11}q_1 = -K_{12}q_2 - M_{12}\ddot{q}_2 \implies M_{11}\ddot{q}_1 + M_{12}\ddot{q}_2 + K_{11}q_1 + K_{12}q_2 = 0
\]

which is the same equation as in the general case of excitation through support motion.

⇒ for \(M_{22}^*\) very large, the response of the system with ground motion is the same as the response of the system with added lumped mass \(M_{22}^*\) and the forcing function

\[
\begin{pmatrix}
0 \\ (M_{22} + M_{22}^*)\ddot{q}_2
\end{pmatrix} \approx \begin{pmatrix}
0 \\ M_{22}^*\ddot{q}_2
\end{pmatrix}
\]

where \(\ddot{q}_2\) is given ⇒ apply same solution method as for problems of response to external loading