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AA242B: MECHANICAL VIBRATIONS
Damped Vibrations of n-DOF Systems

These slides are based on the recommended textbook: M. Géradin and D. Rixen, “Mechanical
Vibrations: Theory and Applications to Structural Dynamics,” Second Edition, Wiley, John &
Sons, Incorporated, ISBN-13:9780471975465
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Damped Oscillations in Terms of Undamped Natural Modes

Space-State Formulation & Analysis of Viscous Damped Systems
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I—Damped Oscillations in Terms of Undamped Natural Modes

m Assume that the damping mechanism can be described by a viscous,
quadratic, dissipation function in the generalized velocities

1
D:Echqzo

where C is a symmetric! and non-negative damping matrix
m Lagrange’s equations

=>’Md+Cq+Kq:p(t)‘

m Consider again the eigenpairs (w?,q,,),i = 1,--- , n of the
undamped system

m Look for a solution of the damped equations of dynamic equilibrium
of the form

q= Z}/i(f)qa,- é B

1Symmetry is required to obtain a conservative system (or obtain that D is a
homogeneous function of degree 2 in g).
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I—Damped Oscillations in Terms of Undamped Natural Modes

L Normal Equations for a Damped System

Mg+Ca+Ka=p(t)) a=> y(t)a, =Qy(t)
i=1

= Q'MQy +Q"CQy + Q"KQy = Q" p(t)
— Iy +Q'CQy + 2% = Q7p(t)

m In general, Q" CQ = [B;] — where 8; = q] Cq,, — is a full matrix
m Hence,

n
Vi+ Y Biyi+wlyvi=alp(t), =1, ,n
j=1

m The above equation shows that unless some assumptions are
introduced, the method of modal superposition is not that '*é -
interesting for solving the damped equations of dynamic equilibrium
because the resulting modal equations are coupled

1
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I—Damped Oscillations in Terms of Undamped Natural Modes

L Normal Equations for a Damped System

m However, if a small number of modes m < n suffices to compute an
accurate solution, the modal superposition technique can still be
interesting because in this case, the size of the modal equations is
much smaller than that of the original equations (reduced-order

modeling)
C — Q" € Q
nxn mxn NXn  nxm
mxm
m<n
:>yi+2ﬂlj)'/j+w/2}/i:q‘;r;p(t)v i=1---,m
j=1
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I—Damped Oscillations in Terms of Undamped Natural Modes

LModal Damping Assumption for Lightly-Damped Structures

m If the structure is lightly damped, a diagonal matrix Q7CQ is a
consistent even though not a physical assumption

consider Mg+ Cq+Kq =20

search for a solution of the form q = z.eMt

— (MiM + \C +K)z,, =0

without damping, one would have A\x = fiwx and z,, = qa,
if the system is lightly damped, it can be assumed that A« and z,,
differ only slightly from wy and q.,, respectively

A = iwk + AN z,, =Qq,, + Az

substituting in the characteristic equation and neglecting the
second-order terms gives

(K — wiM)Az + (i2wkM + C)qu, AN + iwkC(qa, + Az) ~ 0

the light-damping assumption allows one to neglect the terms CA\
and CAz in the above equation

— (K — wiM)Az + iwk(C + 2AAM)q., ~ 0

6/34

_——



AA242B: MECHANICAL VIBRATIONS
I—Damped Oscillations in Terms of Undamped Natural Modes
LModal Damping Assumption for Lightly-Damped Structures

m If the structure is lightly damped, a diagonal matrix Q"CQ is a
consistent even though not a physical assumption (continue)

= (K — w?M)Az + iw,(C + 2AXM)q,, ~ 0
— q] (K- wiM)Az + q iwk(C + 2AAM)q,, ~ 0
= q] (C+2AXM)q,, ~ 0

1
— AA ~ _Eﬁkk

1 .
= |\~ —Eﬁkk + iwy

m the first-order correction involves only the diagonal damping terms
Bk = ank Cq.,, and thus the influence of the non-diagonal terms is
only second-order ]

7/34

o



AA242B: MECHANICAL VIBRATIONS 8/34
I—Damped Oscillations in Terms of Undamped Natural Modes
LModal Damping Assumption for Lightly-Damped Structures

m If the structure is lightly damped, a diagonal matrix Q7CQ is a
consistent even though not a physical assumption (continue)

m it is also possible to obtain the eigenmode correction as follows
n
Az = Zajqaj
J=1
j#k

VI#£k, a;(K-wiM)) ajq, + a iwk(C + 2AAM)qa, =~ 0

j=1
7k
iwk 3 S w B
_ kDOki . . Kk Bkj
o= w? — w? Za = o+ ’sz —w? 9
j=1 J
7k
m note that the above expression for z,, is valid only if é
— ——

m the coefficients §y; are first-order quantities
B the undamped eigenfrequencies are well separated
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I—Damped Oscillations in Terms of Undamped Natural Modes
LModal Damping Assumption for Lightly-Damped Structures

m If the structure is lightly damped, a diagonal matrix Q7CQ is a
consistent even though not a physical assumption (continue)

w3
AZ - Zajqa - IZ ok IZ)Q qaj (1)
J

wi
J#k J#k

m note also that
B Az is pure imaginary = a free-vibration of the damped system is no
longer a synchronous motion of the whole system
Qe = 22, = (aa, + I9(A2)) elirt AN ®)
== dof g; is no longer in phase with another dof g;!

m from (1), it follows that for lightly damped systems with
well-separated undamped eigenfrequencies, z,, = qa, + Az = g, and
therefore (2) takes the form

Qi ~ qake(ika)\)t

which is consistent with the approximation - "é‘/

ank Caa, = Bijdy
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I—Damped Oscillations in Terms of Undamped Natural Modes
LModal Damping Assumption for Lightly-Damped Structures

m In summary, the lightly-damped assumption simplifies the modal
equations to

yi+ Biyi+wiyi=alp(t), i=1,---,n

where
Bi = Bi = a] Ca,,

in which case the modal damping coefficient is defined as

e

- 2w,~

&i

= | yi + 2wiyi + wiyi = 4l p(t), i=1--,n

10/34
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I—Damped Oscillations in Terms of Undamped Natural Modes
LModal Damping Assumption for Lightly-Damped Structures

m A simple method for constructing a diagonal damping matrix is the
so-called Rayleigh proportional damping

C=aK+ bM

= | Bij = an,-anj = (aw? + b)dy; Bi = Bii

1 b
=& = E(aw,- + ;)

m Whenever possible, the modal coefficients &; should be determined
from experimental vibration testing
e
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I—Damped Oscillations in Terms of Undamped Natural Modes
LForced Harmonic Response in the Lightly Damped Case

Mg + Cq + Kq = et

m After a certain amount of time, the homogeneous response is
damped out = response can be limited to the forced term
(particular solution) q = z,e'*

— (K - w’M + iwC)z, = f,

n
m Develop the solution in the form z, = >_ y/q,,
=1

— (K — LUZM + IOJC) Zy/qa/ = fa
=1

m Pre-multiply by anj

qf.
2

= V; =
Yi wi — w? + i2§ww;
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I—Damped Oscillations in Terms of Undamped Natural Modes
LForced Harmonic Response in the Lightly Damped Case

m Note: (K —w?M + iwC)~? is the dynamic influence (or admittance)
matrix
n
m Since z, = (K — w?M + iwC)~f, and z, = 3 ¥jQa; with
j=1
o a, f
Y= w? — w? + 260w
this matrix in terms of the undamped modes is given by

, it follows that the spectral expansion of

n

9.9,
K—w’M+iwC) ™ = -
( w + iwC) Z sz — w2+ 126 jww;

m Observe that if w — 0, the right hand-side converges to K, which
is consistent with the limit when w — 0 of the left hand-side Jéi/
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I—Damped Oscillations in Terms of Undamped Natural Modes

LForced Harmonic Response and Force Appropriation Testing

m Vibration test = modal characteristics (natural modes and
frequencies)

m Procedure: force the system to vibrate along successive modes by
tuning the frequency and relative force amplitude of the excitation

m There is no direct method to determine the appropriate excitation of
a given vibration mode: it must be obtained through successive
approximations from criteria such as the phase lag quadrature or the
stationary nature of reactive power to verify that the mode
appropriation is effectively achieved

e
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I—Damped Oscillations in Terms of Undamped Natural Modes

LForced Harmonic Response and Force Appropriation Testing

m Phase lag quadrature criterion

m damped system, harmonic vibration test
5 (K—w’M+iwC)z, = f, with z, = q;; and w = w;

where f,, is the appropriate excitation to achieve z, = q,; and w = w;
m since (qaj,wjz) satisfies (K — wa)qaj =0, it follows that

which shows that the excitation force is in phase with the dissipation
forces and has a 90%€ phase lag (phase quadrature) with respect to
the response z, = q;
m is the converse true?
e
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I—Damped Oscillations in Terms of Undamped Natural Modes

LForced Harmonic Response and Force Appropriation Testing

m Suppose all the exciting forces are synchronous and the response at
every point of the structure is in phase quadrature with the
excitation

m The phase relationship between response and excitation may be
expressed by assuming that z, is a real vector and f, an imaginary

one
(K—w*M+iwC)z, =f, = (K—w?M)z,= 0 and f, = iwCz,
—_— ~—~ ——
real real imaginary imaginary

showing that the only admissible solution for w and z, are the
eigensolutions of the associated undamped system

m Hence, the converse is true and the 909¢8 phase idea is one way to
2
measure q,, and wj ,,éif
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I—Damped Oscillations in Terms of Undamped Natural Modes

LForced Harmonic Response and Force Appropriation Testing
m Understanding the concept of phase quadrature
(K — wiM + jw,C)z,, —f,, =0

m The Phase Quadrature Criterion: the structure vibrates according to
one of the eigenmodes of the associated undamped system if and
only if all degrees of freedom vibrate synchronously and have a

T ..
phase lag of > with respect to the excitation

Jm

Kz,

10, Cz,

“

Re

fok

O:M z,,
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I—Damped Oscillations in Terms of Undamped Natural Modes

LForced Harmonic Response and Force Appropriation Testing

m The methods based on excitation appropriation are by far the most
reliable ones to determine the modal characteristics of structures
(eigenfrequencies, mode shapes, generalized masses, modal damping
coefficients)

18/34
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I—Damped Oscillations in Terms of Undamped Natural Modes

LForced Harmonic Response and Force Appropriation Testing

m They are however time consuming, delicate to implement
(simultaneous excitation of multiple degrees of freedom = trial and
error procedures to reach the appropriate excitation conditions), and
require a lot of equipment

19/34
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|—Damped Oscillations in Terms of Undamped Natural Modes

|—Forced Harmonic Response and Force Appropriation Testing

m Their usage is therefore limited to the testing of structures for which
it is necessary to have very accurate knowledge of modal properties
— for example, airplanes and spacecraft

5. 555550
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|—Space-State Formulation & Analysis of Viscous Damped Systems

m Damped equations of motion

Mg + Cq + Kq = p(t)

where C is also symmetric
m Above equation of dynamic equilibrium can be written in first-order

form as

()5 3 (D) (%)
B i A r s(t)

—> | Br + Ar = s(t)

m Above first-order form is called the space-state form of the equation
of dynamic equilibrium = a

21/34
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|—Space—State Formulation & Analysis of Viscous Damped Systems

LThe Homogeneous Case

Br+Ar=20
r=y.,e’ = (ABy, + Ay,)e* =0
= ABy, + Ay, =0
~|Ay, = —\By, (EVP)]

m A and B are 2n x 2n matrices if M, C, and K are n x n matrices =
2n eigensolutions (Ak,Ya,)
m Orthogonality relationships

m since M, C, and K are symmetric, then A and B are symmetric
m recall that the eigenvectors of a symmetric pencil (A, B) are
orthogonal with respect to A and B

By, = bidj

. e

oAy, = aid;

22/34
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|—Space—State Formulation & Analysis of Viscous Damped Systems

LThe Homogeneous Case

m Conjugate eigensolutions
m if (Ax,¥a,) is an eigensolution, the complex conjugate pair (Ax, ¥a, )
is also an eigensolution of Ay, = —ABy,
m proof
Ak = Pk + vk Ya, = Ua, + iV,
= A(u,, + iva,) + (i + ivi)B(ua, +iv,, ) =0
Au,, + pBu, —1Bv,, = 0 (real part) 3)
Av,, + vBu,, + Bv,, = 0 (imaginary part)
note that equations (3) above are invariant with respect to the
sirflultaneous changes vk — —vi and v — —vi, which implies that
(A = pk — ivi), (Ya, = ua, — iva,)) is also a solution of the
eigenvalue problem Ay, = —ABy,
m modal superposition delivers a real-valued solution of a real-valued

problem ' ,,éi/
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|—Space—State Formulation & Analysis of Viscous Damped Systems

LThe Homogeneous Case

m Stability of the general solution

recall that Mg + Cq + Kq = 0 <= B + Ar = 0 where r = [q ¢] "

_ q _ Z5 At _ At _ Z5
=(§) (5 )eromeron=( 7))

hence, the 2n eigenmodes of Br + Ar = 0 are of the form

z .

Yo, = ( \ azk > where z;, is a complex mode of the damped
k&ay

system, and Ak is a complex eigenvalue of either system above and

therefore solution of
MM+ MC+K)z,, =0, k=1,---n

pre-multiply the above equation by iaTk and assume that the system
is lightly damped

:>’>\imk+>\kck+kk:0‘

where my = iaTk Mz, , o = iaTkCzak, and k. = iaTk Kz,
stability condition - ’é‘/
Wk = %(Ak) <0

24/34
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|—Space—State Formulation & Analysis of Viscous Damped Systems

LThe Homogeneous Case

m Stability of the general solution (continue)

)\imk + Akck + ke =0

=T =T =T
me =2, Mz, , cx =2, Cz,,, ki =2, Kz,,

m recall that if Ay = px + ivk is solution of the above characteristic
equation, Xk = i — vk is also solution of this characteristic
equation

Ck

Ck
| )\k1+Ak2:2/},k:—7jp/k:_7
my 2mk

m stability: px = R(\) <0< fzcﬁkk <0«

m the general solution of Mg + Cq + Kq = 0 (or for that matter p(t))
remains stable if C is positive definite, which is assumed to be the é /
case in the remainder of this chapter e
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|—Space—State Formulation & Analysis of Viscous Damped Systems
LThe Homogeneous Case

m Solution of the free-vibrations equation Br + Ar =0
n -
r= Z <ie>\itya; + <ie/\ityaf
i=1

where the constants ¢; and (; are determined from the initial
conditions and orthogonality relationships of y,,, and the eigenvalues
A; and \; are the solutions of

Nmi+ Nci+ ki =0

Ci k;
m recall that § = —— and w? = —
2m,-w,- mj

= A2 + 25w\ +w? =0

Ai = —&iwi iw,\/,gi - ,,éi/

26 /34
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|—Space—State Formulation & Analysis of Viscous Damped Systems

LThe Homogeneous Case
A= —&wi L wiy /2 -1

m underdamped (lightly damped) mode i: & < 1

—giw;j £ iwiy /1 — € = —gw; £ iw!
= w,-d :w,—,/l—f’?

n
ro=> e Ciwit [(A,- coswf’t + B;sin wfjt)ua,. + (B cos wf’t — A;sin wft)val.]
i=1

>
Il

and the constants A; and B; are determined from the initial conditions and orthogonality

relationships of Ya; = Uy, + iV,

ate) dinad
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|—Space—State Formulation & Analysis of Viscous Damped Systems

Ai = —gwi Fwiy /€ —1

LThe Homogeneous Case

m critically damped mode i: ;=1

)\,‘ = —Wwj
T r =Y e A+ Bit)y,
i=1

where the constants A; and B; are determined from the initial
conditions and orthogonality relationships of the eigenvectors y,,

which are in this case real-valued

ult) €n.)
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|—Space—State Formulation & Analysis of Viscous Damped Systems

LThe Homogeneous Case

Ai = —wi L wi /€2 — 1
m overdamped mode i: & >1

A :7w,-(§,-q:\/5/_27,1)<0
- r = Xn:(Aie—wi(fi—\/Efi—l) + Bﬁ—w,-(g[..;.\/@))y
i=1

ai

where the constants A; and B; are determined from the initial conditions and orthogonality

relationships of the eigenvectors y,. which are in this case real-valued
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LThe Non-Homogeneous Case

30/34

m In the following section, the system is assumed to be underdamped and therefore wf is real

and Ay is complex
m Governing system of equations

Bi+Ar=s(t); s(t)=( p"(t) 07 )7

2n n
m Modal superposition: r = Z ni(t)Ya; (: > ni(t)ya; + ﬁ;(t)ya/.)

i=1 i=1

2n

2n
= > By, ni(t) + > Ayami = s(t)
i=1

i=1

m Pre-multiply the above equation by y;r_ and recall the orthogonality conditions
J

T - T T
= (¥2;BYa;)1 + (¥a,Aya )1y = ¥,

m Recall that an eigenvector Ya; satisfies

T T yaTjAy'?j
Yo AYs = =AY, By = A = ~yTBy,,
T J
= 1 — Ajnj =
i J y;]'. Byaj
N —r’

@)
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|—Space-State Formulation & Analysis of Viscous Damped Systems

LThe Non-Homogeneous Case

-

. Yy S

W= A\ = ——

)j = AT yIBy,,

®;
m Pre-multiply by et
- e_)‘ftﬁj — e_kjt)\jnj = e_Ajtd)j
X\ N
— 2 (o) = e,

t
— nj(t)ze’\ft/ Oi(r)e NTdr+  n(0)et
0 N—_——

homogeneous solution é
— —

particular solution
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|—Space—State Formulation & Analysis of Viscous Damped Systems

LThe Harmonic Case

s(t) =s,e™" where s, = (pI o7 )T = ®i(t) = TJ et = ¢ajei“’t

m After the transient response is damped out, the amplitude 7)(t) of the forced response

becomes
ot t ) X elu.)t
ni(t) = amp (e j / b, v~ J”dr) = - ., VE>t5,tT#£0
0 J iw — Aj 4
m Recalling that \; = —§jw; £ iw,-d, it follows that the forced harmonic response of an

underdamped system can be written as

T < =T
n 1 Yajyaj 1 Yaj yaj it

r—= - + | === "
2 YIByy, | Gt i(otwf) |\ 918y ) Gyt iw — o)
&
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|—Space—State Formulation & Analysis of Viscous Damped Systems

LThe Harmonic Case

n 1 yajyIj 1 yajﬂj ot
r= Z T : d 7T BV i 4y ( 52
2\ 3By, ) g+ iwro?) T\ 578, | G+ i@ —w)
j=1 Y3 J 3 Y3 J
m Recall that (summary for harmonic case)
_ q _ iwt Z, iwt _ iwt Pa iwt
r7<q>7y5e 7<iwza>e , S=-s,€ 7< 0 )e
® And note that
T T P C M Z5; T . T
¥.BYsy = ( Ty 9%y ) < M 0 ) < iniaj ) = 2;,Czy; + 2iwjz, Mz, = p;
T o =T - C M Z,; ST = P _
¥,BYs = ( Zyy Tz ) ( M 0 ) < s, ) =2, C2,; — 2iwz, Mz,; = )
'j
T s 5T
Ya¥.Sa = %) p V9.5 = 2% )
7> iwjza.zz—_ a %Gra>? —iwj-iai; ?
S S
and é
z, = (K- WM + iu)C)71pa e

33/34



AA242B: MECHANICAL VIBRATIONS 34/34
|—Space—State Formulation & Analysis of Viscous Damped Systems

LThe Harmonic Case

m It follows that
n T s 5T
B [ SV S W
= pi /) Ejwj+i(w +w) P/ Ewi+i(w — wf)

and therefore the expansion of the admittance matrix in terms of the damped modes is
given by

n T T s =T
1 Za Za 1 z, Za
(K — w’M + jwC) ™t = . k %k 4 . k 2k
d d
= Ekwi + i(w + wy) Pk Ekwk + i(w — wf) Pk

e
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