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AA242B: MECHANICAL VIBRATIONS
Damped Vibrations of n-DOF Systems

These slides are based on the recommended textbook: M. Géradin and D. Rixen, “Mechanical
Vibrations: Theory and Applications to Structural Dynamics,” Second Edition, Wiley, John &

Sons, Incorporated, ISBN-13:9780471975465
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Outline

1 Damped Oscillations in Terms of Undamped Natural Modes

2 Space-State Formulation & Analysis of Viscous Damped Systems
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Damped Oscillations in Terms of Undamped Natural Modes

Assume that the damping mechanism can be described by a viscous,
quadratic, dissipation function in the generalized velocities

D =
1

2
q̇TCq̇ ≥ 0

where C is a symmetric1 and non-negative damping matrix

Lagrange’s equations

=⇒ Mq̈ + Cq̇ + Kq = p(t)

Consider again the eigenpairs (ω2
i ,qai ), i = 1, · · · , n of the

undamped system

Look for a solution of the damped equations of dynamic equilibrium
of the form

q =
n∑

i=1

yi (t)qai

1Symmetry is required to obtain a conservative system (or obtain that D is a
homogeneous function of degree 2 in q̇).
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Damped Oscillations in Terms of Undamped Natural Modes

Normal Equations for a Damped System

Mq̈ + Cq̇ + Kq = p(t); q =
n∑

i=1

yi (t)qai = Qy(t)

=⇒ QTMQÿ + QTCQẏ + QTKQy = QTp(t)

=⇒ Iÿ + QTCQẏ + Ω2y = QTp(t)

In general, QTCQ = [βij ] – where βij = qT
ai Cqaj – is a full matrix

Hence,

ÿi +
n∑

j=1

βij ẏj + ω2
i yi = qT

ai p(t), i = 1, · · · , n

The above equation shows that unless some assumptions are
introduced, the method of modal superposition is not that
interesting for solving the damped equations of dynamic equilibrium,
because the resulting modal equations are coupled
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Damped Oscillations in Terms of Undamped Natural Modes

Normal Equations for a Damped System

However, if a small number of modes m� n suffices to compute an
accurate solution, the modal superposition technique can still be
interesting because in this case, the size of the modal equations is
much smaller than that of the original equations (reduced-order
modeling)

C
n×n

−→ QT

m×n
C

n×n
Q

n×m︸ ︷︷ ︸
m×m

=⇒ ÿi +
m�n∑
j=1

βij ẏj + ω2
i yi = qT

ai p(t), i = 1, · · · ,m
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Damped Oscillations in Terms of Undamped Natural Modes

Modal Damping Assumption for Lightly-Damped Structures

If the structure is lightly damped, a diagonal matrix QTCQ is a
consistent even though not a physical assumption

consider Mq̈ + Cq̇ + Kq = 0
search for a solution of the form q = zae

λt

=⇒ (λ2
kM + λkC + K)zak = 0

without damping, one would have λk = ±iωk and zak = qak

if the system is lightly damped, it can be assumed that λk and zak
differ only slightly from ωk and qak , respectively

λk = iωk + ∆λ zak = qak + ∆z

substituting in the characteristic equation and neglecting the
second-order terms gives

(K− ω2
kM)∆z + (i2ωkM + C)qak ∆λ+ iωkC(qak + ∆z) ≈ 0

the light-damping assumption allows one to neglect the terms C∆λ
and C∆z in the above equation

=⇒ (K− ω2
kM)∆z + iωk(C + 2∆λM)qak ≈ 0
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Damped Oscillations in Terms of Undamped Natural Modes

Modal Damping Assumption for Lightly-Damped Structures

If the structure is lightly damped, a diagonal matrix QTCQ is a
consistent even though not a physical assumption (continue)

=⇒ (K− ω2
kM)∆z + iωk(C + 2∆λM)qak ≈ 0

=⇒ qT
ak (K− ω2

kM)∆z + qT
ak iωk(C + 2∆λM)qak ≈ 0

=⇒ qT
ak (C + 2∆λM)qak ≈ 0

=⇒ ∆λ ≈ −1

2
βkk

=⇒ λk ≈ −
1

2
βkk + iωk

the first-order correction involves only the diagonal damping terms
βkk = qT

ak Cqak , and thus the influence of the non-diagonal terms is
only second-order
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Damped Oscillations in Terms of Undamped Natural Modes

Modal Damping Assumption for Lightly-Damped Structures

If the structure is lightly damped, a diagonal matrix QTCQ is a
consistent even though not a physical assumption (continue)

it is also possible to obtain the eigenmode correction as follows

∆z =
n∑

j=1

j 6=k

αjqaj

∀l 6= k, qT
al (K− ω2

kM)
n∑

j=1

j 6=k

αjqaj + qT
al iωk(C + 2∆λM)qak ≈ 0

=⇒ αl =
iωkβkl
ω2
k − ω2

l

=⇒ zak = qak + i
n∑

j=1

j 6=k

ωkβkj
ω2
k − ω2

j

qaj

note that the above expression for zak is valid only if

the coefficients βkj are first-order quantities
the undamped eigenfrequencies are well separated
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Damped Oscillations in Terms of Undamped Natural Modes

Modal Damping Assumption for Lightly-Damped Structures

If the structure is lightly damped, a diagonal matrix QTCQ is a
consistent even though not a physical assumption (continue)

∆z =
n∑

j=1

j 6=k

αjqaj = i
n∑

j=1

j 6=k

ωkβkj
ω2
k − ω2

j

qaj (1)

note also that
∆z is pure imaginary ⇒ a free-vibration of the damped system is no
longer a synchronous motion of the whole system

qk = zak e
λk t = (qak + i=(∆z)) e(iωk+∆λ)t (2)

=⇒ dof qi is no longer in phase with another dof qj !

from (1), it follows that for lightly damped systems with
well-separated undamped eigenfrequencies, zak = qak + ∆z ≈ qak and
therefore (2) takes the form

qk ≈ qak e
(iωk∆λ)t

which is consistent with the approximation

qT
ak

Cqal = βkjδkj
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Damped Oscillations in Terms of Undamped Natural Modes

Modal Damping Assumption for Lightly-Damped Structures

In summary, the lightly-damped assumption simplifies the modal
equations to

ÿi + βi ẏi + ω2
i yi = qT

ai p(t), i = 1, · · · , n

where
βi ≡ βii = qT

ai Cqai

in which case the modal damping coefficient is defined as

ξi =
βi

2ωi

=⇒ ÿi + 2ξiωi ẏi + ω2
i yi = qT

ai p(t), i = 1, · · · , n
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Damped Oscillations in Terms of Undamped Natural Modes

Modal Damping Assumption for Lightly-Damped Structures

A simple method for constructing a diagonal damping matrix is the
so-called Rayleigh proportional damping

C = aK + bM

=⇒ βij = qT
ai Cqaj = (aω2

i + b)δij ; βi ≡ βii

=⇒ ξi =
1

2
(aωi +

b

ωi
)

Whenever possible, the modal coefficients ξi should be determined
from experimental vibration testing
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Damped Oscillations in Terms of Undamped Natural Modes

Forced Harmonic Response in the Lightly Damped Case

Mq̈ + Cq̇ + Kq = fae
iωt

After a certain amount of time, the homogeneous response is
damped out ⇒ response can be limited to the forced term
(particular solution) q = zae iωt

=⇒ (K− ω2M + iωC)za = fa

Develop the solution in the form za =
n∑

l=1

ylqal

=⇒ (K− ω2M + iωC)
n∑

l=1

ylqal = fa

Pre-multiply by qT
aj

=⇒ yj =
qT
aj fa

ω2
j − ω2 + i2ξjωωj
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Damped Oscillations in Terms of Undamped Natural Modes

Forced Harmonic Response in the Lightly Damped Case

Note: (K− ω2M + iωC)−1 is the dynamic influence (or admittance)
matrix

Since za = (K− ω2M + iωC)−1fa and za =
n∑

j=1

yjqaj with

yj =
qT
aj fa

ω2
j − ω2 + i2ξjωωj

, it follows that the spectral expansion of

this matrix in terms of the undamped modes is given by

(K− ω2M + iωC)−1 =
n∑

j=1

qaj q
T
aj

ω2
j − ω2 + i2ξjωωj

Observe that if ω → 0, the right hand-side converges to K−1, which
is consistent with the limit when ω → 0 of the left hand-side
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Damped Oscillations in Terms of Undamped Natural Modes

Forced Harmonic Response and Force Appropriation Testing

Vibration test ⇒ modal characteristics (natural modes and
frequencies)

Procedure: force the system to vibrate along successive modes by
tuning the frequency and relative force amplitude of the excitation

There is no direct method to determine the appropriate excitation of
a given vibration mode: it must be obtained through successive
approximations from criteria such as the phase lag quadrature or the
stationary nature of reactive power to verify that the mode
appropriation is effectively achieved
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Damped Oscillations in Terms of Undamped Natural Modes

Forced Harmonic Response and Force Appropriation Testing

Phase lag quadrature criterion

damped system, harmonic vibration test
(K− ω2M + iωC)za = fa with za = qaj and ω = ωj

=⇒ (K− ω2
j M + iωjC)qaj = faj

where faj is the appropriate excitation to achieve za = qaj and ω = ωj

since (qaj , ω
2
j ) satisfies (K− ω2

j M)qaj = 0, it follows that

faj = iωjCqaj

which shows that the excitation force is in phase with the dissipation
forces and has a 90deg phase lag (phase quadrature) with respect to
the response za = qaj

is the converse true?
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Damped Oscillations in Terms of Undamped Natural Modes

Forced Harmonic Response and Force Appropriation Testing

Suppose all the exciting forces are synchronous and the response at
every point of the structure is in phase quadrature with the
excitation

The phase relationship between response and excitation may be
expressed by assuming that za is a real vector and fa an imaginary
one

(K−ω2M+iωC)za = fa ⇒ (K− ω2M)za︸ ︷︷ ︸
real

= 0︸︷︷︸
real

and fa︸︷︷︸
imaginary

= iωCza︸ ︷︷ ︸
imaginary

showing that the only admissible solution for ω and za are the
eigensolutions of the associated undamped system

Hence, the converse is true and the 90deg phase idea is one way to
measure qak and ω2

k
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Damped Oscillations in Terms of Undamped Natural Modes

Forced Harmonic Response and Force Appropriation Testing

Understanding the concept of phase quadrature

(K− ω2
kM + iωkC)zak − fak = 0

The Phase Quadrature Criterion: the structure vibrates according to
one of the eigenmodes of the associated undamped system if and
only if all degrees of freedom vibrate synchronously and have a

phase lag of
π

2
with respect to the excitation
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Damped Oscillations in Terms of Undamped Natural Modes

Forced Harmonic Response and Force Appropriation Testing

The methods based on excitation appropriation are by far the most
reliable ones to determine the modal characteristics of structures
(eigenfrequencies, mode shapes, generalized masses, modal damping
coefficients)
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Damped Oscillations in Terms of Undamped Natural Modes

Forced Harmonic Response and Force Appropriation Testing

They are however time consuming, delicate to implement
(simultaneous excitation of multiple degrees of freedom ⇒ trial and
error procedures to reach the appropriate excitation conditions), and
require a lot of equipment
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Damped Oscillations in Terms of Undamped Natural Modes

Forced Harmonic Response and Force Appropriation Testing

Their usage is therefore limited to the testing of structures for which
it is necessary to have very accurate knowledge of modal properties
– for example, airplanes and spacecraft
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Space-State Formulation & Analysis of Viscous Damped Systems

Damped equations of motion

Mq̈ + Cq̇ + Kq = p(t)

where C is also symmetric

Above equation of dynamic equilibrium can be written in first-order
form as(

C M
M 0

)
︸ ︷︷ ︸

B

(
q̇
q̈

)
︸ ︷︷ ︸

ṙ

+

(
K 0
0 −M

)
︸ ︷︷ ︸

A

(
q
q̇

)
︸ ︷︷ ︸

r

=

(
p(t)

0

)
︸ ︷︷ ︸

s(t)

=⇒ Bṙ + Ar = s(t)

Above first-order form is called the space-state form of the equation
of dynamic equilibrium
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Space-State Formulation & Analysis of Viscous Damped Systems

The Homogeneous Case

Bṙ + Ar = 0

r = yae
λt ⇒ (λBya + Aya)eλt = 0

⇒ λBya + Aya = 0

⇒ Aya = −λBya (EVP)

A and B are 2n × 2n matrices if M, C, and K are n × n matrices ⇒
2n eigensolutions (λk , yak )

Orthogonality relationships
since M, C, and K are symmetric, then A and B are symmetric
recall that the eigenvectors of a symmetric pencil (A,B) are
orthogonal with respect to A and B

=⇒


yT
aj Byai = biδij

yT
aj Ayai = aiδij
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Space-State Formulation & Analysis of Viscous Damped Systems

The Homogeneous Case

Conjugate eigensolutions

if (λk , yak ) is an eigensolution, the complex conjugate pair (λ̄k , ȳak )
is also an eigensolution of Aya = −λBya

proof
λk = µk + iνk yak = uak + ivak

=⇒ A(uak + ivak ) + (µk + iνk)B(uak + ivak ) = 0

=⇒
{

Auak + µkBuak − νkBvak = 0 (real part)
Avak + νkBuak + µkBvak = 0 (imaginary part)

(3)

note that equations (3) above are invariant with respect to the
simultaneous changes νk → −νk and vk → −vk , which implies that(
(λ̄k = µk − iνk), (ȳak = uak − ivak )

)
is also a solution of the

eigenvalue problem Aya = −λBya

modal superposition delivers a real-valued solution of a real-valued
problem
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Space-State Formulation & Analysis of Viscous Damped Systems

The Homogeneous Case

Stability of the general solution
recall that Mq̈ + Cq̇ + Kq = 0⇐⇒ Bṙ + Ar = 0 where r = [q q̇]T

r =

(
q
q̇

)
=

(
za
λza

)
eλt = yae

λt ⇒ ya =

(
za
λza

)
hence, the 2n eigenmodes of Bṙ + Ar = 0 are of the form

yak =

(
zak
λkzak

)
where zak is a complex mode of the damped

system, and λk is a complex eigenvalue of either system above and
therefore solution of

(λ2
kM + λkC + K)zak = 0, k = 1, · · · n

pre-multiply the above equation by z̄Tak and assume that the system
is lightly damped

=⇒ λ2
kmk + λkck + kk = 0

where mk = z̄Tak Mzak , ck = z̄Tak Czak , and kk = z̄Tak Kzak
stability condition

µk = <(λk) < 0
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Space-State Formulation & Analysis of Viscous Damped Systems

The Homogeneous Case

Stability of the general solution (continue)

λ2
kmk + λkck + kk = 0

mk = z̄Tak Mzak , ck = z̄Tak Czak , kk = z̄Tak Kzak

recall that if λk = µk + iνk is solution of the above characteristic
equation, λ̄k = µk − iνk is also solution of this characteristic
equation

λk1 + λk2 = 2µk = − ck
mk
⇒ µk = − ck

2mk

stability: µk = <(λk) < 0⇔ − ck
2mk

< 0⇔ ck > 0

the general solution of Mq̈ + Cq̇ + Kq = 0 (or for that matter p(t))
remains stable if C is positive definite, which is assumed to be the
case in the remainder of this chapter
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Space-State Formulation & Analysis of Viscous Damped Systems

The Homogeneous Case

Solution of the free-vibrations equation Bṙ + Ar = 0

r =
n∑

i=1

ζie
λi tyai + ζ̄ie

λ̄i t ȳai

where the constants ζi and ζ̄i are determined from the initial
conditions and orthogonality relationships of yai , and the eigenvalues
λi and λ̄i are the solutions of

λ2
i mi + λici + ki = 0

recall that ξi =
ci

2miωi
and ω2

i =
ki
mi

=⇒ λ2
i + 2ξiωiλi + ω2

i = 0

hence

λi = −ξiωi ± ωi

√
ξ2
i − 1
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Space-State Formulation & Analysis of Viscous Damped Systems

The Homogeneous Case

λi = −ξiωi ± ωi

√
ξ2
i − 1

underdamped (lightly damped) mode i : ξi < 1

=⇒



λi = −ξiωi ± iωi

√
1− ξ2

i = −ξiωi ± iωd
i

where

ωd
i = ωi

√
1− ξ2

i

r =
n∑

i=1

e−ξiωi t
[

(Ai cosωd
i t + Bi sinωd

i t)uai
+ (Bi cosωd

i t − Ai sinωd
i t)vai

]
and the constants Ai and Bi are determined from the initial conditions and orthogonality

relationships of yai = uai
± ivai
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Space-State Formulation & Analysis of Viscous Damped Systems

The Homogeneous Case

λi = −ξiωi ± ωi

√
ξ2
i − 1

critically damped mode i : ξi = 1

=⇒

 λi = −ωi

r =
n∑

i=1

e−ωi t(Ai + Bi t)yai

where the constants Ai and Bi are determined from the initial
conditions and orthogonality relationships of the eigenvectors yai
which are in this case real-valued
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Space-State Formulation & Analysis of Viscous Damped Systems

The Homogeneous Case

λi = −ξiωi ± ωi

√
ξ2
i − 1

overdamped mode i : ξi > 1

=⇒


λi = −ωi

(
ξi ∓

√
ξ2
i − 1

)
< 0

r =
n∑

i=1

(Ai e
−ωi

(
ξi−

√
ξ2
i
−1
)

+ Bi e
−ωi

(
ξi +

√
ξ2
i
−1
)

)yai

where the constants Ai and Bi are determined from the initial conditions and orthogonality

relationships of the eigenvectors yai which are in this case real-valued
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Space-State Formulation & Analysis of Viscous Damped Systems

The Non-Homogeneous Case

In the following section, the system is assumed to be underdamped and therefore ωd
k is real

and λk is complex
Governing system of equations

Bṙ + Ar = s(t); s(t) =
(

pT (t) 0T
)T

Modal superposition: r =
2n∑
i=1

ηi (t)yai

(
=

n∑
i=1

ηi (t)yai + η̄i (t)ȳai

)

=⇒
2n∑
i=1

Byai η̇i (t) +
2n∑
i=1

Ayai ηi = s(t)

Pre-multiply the above equation by yT
aj

and recall the orthogonality conditions

=⇒ (yT
aj

Byaj )η̇j + (yT
aj

Ayaj )ηj = yT
aj

s

Recall that an eigenvector yaj satisfies

yT
aj

Ayaj = −λjy
T
aj

Byaj ⇒ λj = −
yT
aj

Ayaj

yT
aj

Byaj

=⇒ η̇j − λjηj =
yT
aj

s

yT
aj

Byaj︸ ︷︷ ︸
Φj
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Space-State Formulation & Analysis of Viscous Damped Systems

The Non-Homogeneous Case

η̇j − λjηj =
yT
aj s

yT
aj Byaj︸ ︷︷ ︸

Φj

Pre-multiply by e−λj t

=⇒ e−λj t η̇j − e−λj tλjηj = e−λj tΦj

=⇒ d

dt

(
e−λj tηj

)
= e−λj tΦj

=⇒ ηj(t) = eλj t

∫ t

0

Φj(τ)e−λjτdτ︸ ︷︷ ︸
particular solution

+ ηj(0)eλj t︸ ︷︷ ︸
homogeneous solution
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Space-State Formulation & Analysis of Viscous Damped Systems

The Harmonic Case

s(t) = sae
iωt where sa =

(
pT
a 0T

)T ⇒ Φj (t) =
yT
aj

sa

yT
aj

Byaj
e iωt = Φaj

e iωt

After the transient response is damped out, the amplitude ηj (t) of the forced response
becomes

ηj (t) = amp

(
eλj t

∫ t

0

Φaj
e(iω−λj )τdτ

)
=

(
e iωt

iω − λj

)
Φaj

, ∀t > t?, t? 6= 0

Recalling that λi = −ξiωi ± iωd
i , it follows that the forced harmonic response of an

underdamped system can be written as

r =
n∑

j=1


 1

yT
aj

Byaj

 yaj yT
aj

ξjωj + i(ω + ωd
j )

+

 1

ȳT
aj

Bȳaj

 ȳaj ȳT
aj

ξjωj + i(ω − ωd
j )

 sae
iωt
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Space-State Formulation & Analysis of Viscous Damped Systems

The Harmonic Case

r =
n∑

j=1


 1

yT
aj

Byaj

 yaj yT
aj

ξjωj + i(ω + ωd
j )

+

 1

ȳT
aj

Bȳaj

 ȳaj ȳT
aj

ξjωj + i(ω − ωd
j )

 sae
iωt

Recall that (summary for harmonic case)

r =

(
q
q̇

)
= yae

iωt =

(
za

iωza

)
e iωt

, s = sae
iωt =

(
pa

0

)
e iωt

And note that

yT
aj

Byaj =
(

zTaj
iωjz

T
aj

)( C M
M 0

)(
zaj

iωjzaj

)
= zTaj

Czaj + 2iωjz
T
aj

Mzaj = ρj

ȳT
aj

Bȳaj =
(

z̄Taj
−iωj z̄

T
aj

)( C M
M 0

)(
z̄aj

−iωj z̄aj

)
= z̄Taj

Cz̄aj − 2iωj z̄
T
aj

Mz̄aj = ρ̄j

yaj yT
aj

sa =

(
zaj zTaj

iωjzaj zTaj

)
pa, ȳaj ȳT

aj
sa =

(
z̄aj z̄Taj

−iωj z̄aj z̄Taj

)
pa

and

za = (K− ω2M + iωC)−1pa
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Space-State Formulation & Analysis of Viscous Damped Systems

The Harmonic Case

It follows that

za =
n∑

j=1


(

1

ρj

) zaj zTaj

ξjωj + i(ω + ωd
j )

+

(
1

ρ̄j

) z̄aj z̄Taj

ξjωj + i(ω − ωd
j )

 pa

and therefore the expansion of the admittance matrix in terms of the damped modes is
given by

(K− ω2M + iωC)−1 =
n∑

k=1

{(
1

ξkωk + i(ω + ωd
k )

)
zTak

zTak
ρk

+

(
1

ξkωk + i(ω − ωd
k )

)
z̄ak z̄Tak
ρ̄k

}
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