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AA242B: MECHANICAL VIBRATIONS

Dynamics of Continuous Systems

These slides are based on the recommended textbook: M. Géradin and D. Rixen, “Mechanical
Vibrations: Theory and Applications to Structural Dynamics,” Second Edition, Wiley, John &
Sons, Incorporated, ISBN-13:9780471975465
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Outline

Hamilton's Principle

Wave Propagation in a Homogeneous Elastic Medium

Free Vibrations of Continuous Systems and Response to External
Excitation

e
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L Definitions

3/57

m Elastic body

X3

X4

S =5, (where t; = ojin;

5 U

Sy (where u; = ;)

e

DA
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|—Hamilton’s Principle

LGreen Strains

B
Dg+d)- L B
.A'-/(Xi +U+dix )
) (G + u)
ds3 = dx;dx; square of the original length
ds? = d(x; + u;)d(x; + u;) square of the deformed length
ds? —dsf = 2e;dxdx;
where

o 1 ou; . Ju; n 8um%
Y2\0x  Ox Ox Ox;

is the Green symmetric strain tensor Jéi/

m Note that £;; = 0 = rigid body motion
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|—Hamilton’s Principle
L Green Strains

B
(¥ +dx)-

s B
A'-/(Xi + U+ dig + up))

. (xi + L,I‘)
x)
m Proof

3
m Einstein's notation: dxjdx; = > dx,-2

ui
m du = B
dsg = dx;dx; ds? = d(X,' + U,')d(X,' + U,')
ds? — dsg = d(X,' + Ll,')d(X,' + U,') — dx;dx; = dx;du; + du;dx; + du;du;
= dujdx; + dujdx; + dupdup,
ou; du; Oum , Oup
— o —— dxjdx; +aldx,d + a,dx'ébgdxj
Juj  Ouj  Oupm Oup,
= dx;d.
(3)9- N 0x; * Ox; 0x; ) e i '*é‘/

= 2¢gjdxidx;
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|—Hamilton’s Principle

LGreen Strains

m Linear deformation (geometric linearity)

m the extension strains remain infinitesimal: ‘

m the rotations have small amplitudes:

6 /57

8Ll,' <1
8X,'
8u,-
1
8&_<<

m the above assumptions lead to a linear expression of the infinitesimal

strain tensor

1
€ij:§

(

au,-
0

+ 6u,—
Ox;

m consider a ds parallel to x;

ds® — dsg = (ds — dsp)(ds + dso) = 2511dX12 = 2511ds§

:>€ll:<

ds — dsp
dSo

)(G) (%)

m for infinitesimal strains, the above result becomes

ds — dsp
dSo

€11 =

(engineering or Cauchy strain)
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|—Hamilton’s Principle

L Stress-Strain Relationships

m Hyperelastic material: the work of the mechanical stresses is stored
in the form of an internal energy and thus is recoverable

gjj = f(&k/)

daw

m Strain energy density: to a strain increment dejj in the stress state
ojj corresponds a strain energy per unit volume

W ij —
dW = gjjdej | = | 0y = 8?(50) . ,,éi
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|—Hamilton’s Principle

L Stress-Strain Relationships

m 0 is energetically conjugate to the Green strain ¢j. It is called the
second Piola-Kirchhoff stress tensor. It does not represent the true
(Cauchy) stresses inside a structure with respect to the initial
reference frame. Rather, it describes the stress field in a reference
frame attached to the body and therefore subjected to its
deformation but is related to the elementary area of the undeformed
structure. In other words, the second Piola-Kirchhoff stress tensor
relates forces in the reference (undeformed) configuration to areas in
the reference (undeformed) configuration.
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|—Hamilton’s Principle

L Stress-Strain Relationships

m Complementary energy density

W* =ojej — W (Legendre transformation)

aij
— W*(O,'j):/o E‘,‘de’,‘j

ow*
d Do
ij

m Linear material
m linear elastic properties

. 1
oij = cijuen (21 coefficients) = | W = 5 CikIEKIE]]
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|—Hamilton’s Principle

L Stress-Strain Relationships

m Linear material (continue)

m Hooke's law for an isotropic linear elastic material

where

and

o= A

Ekk 0j +2G
-

volumetric strain

€ij

shear strain

Ev
AT oA —)
E
= 3aey
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|—Hamilton’s Principle

LDisplacement Variational Principle

m The displacement variational principle is Hamilton's principle for a
continuous system

m Recall Hamilton's principle: among all possible solutions satisfying
du(ty) = du(ty) = 0, the true solution of the dynamic equilibrium

%]
problem is the one which is the stationary point of / (T —V)dt

t

ty tr
:5/ /;[u]dtza/ (T = V)dt = 0
t: t1

1
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|—Hamilton’s Principle

LDisplacement Variational Principle

1

| T(u) = */ po[l;[l;d\/
2 Jy,

m) = V,',—,t + Vext where

B Ver=— | Xi(t)uidV — / tiu;dS, where the displacement field
Vo T
u; must satisfy the essential Boundary Cond|t|ons (BCs) u; = oi(t)

on S, (recall that for particles, W = Z Qs0gs = W = Z Qsqs)

5=
B the essential BCs are those which cannot be derived from Hamllton's

principle
B those which can, are called the natural BCs
1
| V,',,t = W(E,‘j)d\/ = */ C,'jk/Sk/E,'jdV _ 0@_/
Vo 2 Vo

12/57
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|—Hamilton’s Principle

LEquations of Motion

5/t2(T—V)dt:0

t1

t2 . ow — _
= / / polidu; — —5€U+X,-5u,- dV+/ tidu;ds » dt =0
5} Vo an So

m Approach

m consider the nonlinear Green strain tensor
1 (Ou;  Ouj  OumOup

T 2\0x  Ox Ox Ox;

integrate by parts with respect to both time and space
recall §ui(t1) = dui(t2) =0

account for the symmetry of the tensor o

account for the essential BCs u;j = I;(t) on S,

€jj

. . . . ow
pay special attention to the evaluation of the quantity / —&Ud\% -
Vo 86,'_,' &
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|—Hamilton’s Principle

LEquations of Motion

14 /57

ow 1 Ouj 17} Oum 0 15} 17}
beydV = 7/ o (5 ui 50U 50Um Otm m le) dv
Vo Oejj 2 Vo Ox; Bx, Ox; Ox; x;  Ox;
1 Oum Oum
= 5/5 [njo,-j (6u, + Sum—— o ) + njojj <6uj- + éuma—xj>] ds
1 [ [9o o 17} 17} 17} 17}
— 7/ 0-]5 + 015u1+— cr,-jj Sum + — cr,-jj Sum | dv
2 Ix; Ox; Ox; Ox; Ox; Ox;
ouj 17} Ouj
= /S n; <au +oimg - ) Su;dS — B <aU + a,mﬁ> Su;dV
o 0
2 ) _ du;
) (7_ — V)dt = / {/ <l’j — <O‘,‘j + Oim— ) n,-) 6ujd5}
t o

t

o LG

ox,
Ouj
ox,

) — pon +Yj> 5uj'dv} dt
e

14 /57

<0’U + Oim—
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|—Hamilton’s Principle

LEquations of Motion

m Since du; is arbitrary inside Vg and on S, the previous equation

implies
0 ou; = .
87)(’- <U’J +O-Imax;> +XJ = pOUj n VO
t = (Uij JrgimgLU) n; = on S, (natural BC)
Xm

m The above equations are the equations of dynamic equilibrium of a
deformable body in terms of the second Piola-Kirchhoff stresses.
More specifically, they express the equilibrium of the deformed body
and thus take into account the geometric nonlinearity.
e
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|—Hamilton’s Principle
L The Linear Case and 2nd-Order Effects

S 1 (0ui 0y L L Oum Oum
T 2\0x  Ox 2 0x; Ox
N————

«(!:linear (small displacements & rotations) <{:.quadratic

. 1
m The pure linear case: ¢ = 53-)

m in this case, HP leads to

Ooj | .
axj +X; = fouj- in Vo
t=oin = on S, (natural BC)

m these are the linearized equations of motion for an elastic body
undergoing infinitesimal displacements and rotations — they express
equilibrium in the undeformed state Vo ~ V é -

16 /57
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|—Hamilton’s Principle
L The Linear Case and 2nd-Order Effects

m Second-order effect

m ey =) 4

m strain energy density

1 1 1
W = Ec,-jklak/a,-j = 2CU/</55<I) ( ) + C,Jk/&‘E(,)E(z) + Eka/EEd)aa)
elastic forces second-order effect

m Example (HP approach)

@ _massless cable
= F
e :’M\\

17 /57
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|—Hamilton’s Principle
L The Linear Case and 2nd-Order Effects

m Example (HP approach, continue)

18 /57

m if the analysis is limited to transverse motion, the axial strain can be

expressed as

ov 1 v v
Ex =04 = (ax) :§><4></—2—2l2

m the kinetic and potential energies are given by
1 .2 1 ! 2
T = *MVM vint = 3 EAEXXdX
2 2 /o
m the HP can then be expressed as
t 2 /1, 1[0,
6/ (T —V)ydt = 6/ —Mv;, — —/ EAe dx | dt
t y \2 2 Jo
t I
/ (M\'/Mé\'/M — / EAEXX(SEXXdX> dt
f 0

ty L. I'EA [ dv Ov
/ MVM5VM - / —_— )
t 0 2 \lox Ox

ov

ax

18/57
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|—Hamilton’s Principle
L The Linear Case and 2nd-Order Effects

m Example (HP approach, continue)

m approach: integrate by parts the first term and substitute all partial
derivatives by their computed values
=

[Mimsvmlz  — /qtz{"/’VM‘”M*/o 152/4(2/4)3(3)
RIEIC SIS
~ fomea () (5 () (oo

— | Min+  EA (2‘;“”) -0

6deX} dt

—— o
restoring force is due -
to second-order effect

19 /57
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|—Hamilton’s Principle
L The Linear Case and 2nd-Order Effects

m Example (equilibrium)
m let Ny = Ao = EAex be the axial force computed from the second
Piola-Kirchhoff stress tensor and its conjugate Green strain measure.
The true force N is such that its virtual work (true/Cauchy stress,
engineering/Cauchy strain) is equivalent to that of N — that is,

ds — dx ds) Y

N(S <T> = Nx6€xx = N(S (a

m recall that

oL —dl\ 1 (ds\* 1 ds (ds
T2 dx? T2 \dx 2 T dx o \dx

OExx _ ds

= N— = Nibew = = N = Ny
?)5( ~— dx ~—~ L "
true force force from Piola-Kirchhoff stresses

(relative to surface of underformed cable)

20 /57
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|—Hamilton’s Principle
L The Linear Case and 2nd-Order Effects

N,  FAc

dx
cosa=— = N=
ds Cos & Cos &

Let F denote the elastic restoring force of the massless cable
Vm>2 2VM

:>F:2Nsina:2EAsxxtana:2EA2( ; ;

2\ 3
éF_EA</M>

which is the same as the restoring force due to second-order effect
determined from the HP
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|—Hamilton’s Principle
L The Linear Case and 2nd-Order Effects

m Effect of initial stress

0 -0 %
& Ojj &, Ojj

measured in V©  measured in V*

0 * . % 0
up = u; + u; u =0+ 0 gj =¢; +¢j

_ * s — *
duj = ou; dejj = dgj;

m assume that large displacements and rotations can happen during
prestress, but only small displacements and rotations occur after th’a%‘/

22/57
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|—Hamilton’s Principle
L The Linear Case and 2nd-Order Effects

m Effect of initial stress (continue)
B the kinetic energy is given by

1 1
T = 7/ p* iidt = 7/ Pt il de =
2 Jyx 2 Jys

B and the potential energy is given by

23 /57

T™*

e

Vint + Vext
where
1 1 0 *\(_0 *
Vit = = / cijewe;dV = = / ciiui (e + Ekl)(Eij + Eij)dV
2 Jux 2 Jys
_ 1 00 0 _* 1 * _x
= 5 CiikieezdV + Cijki€e;dV + 5 Cijki€ g€ dV
JV* Jv* Jv*
0 0
- um+/;afwv+v;
1 2 1 1 1
= Vﬁﬁ/ ag(s;()+e;())dv+7/ e VeV av 1 (HOT)
NG 2 Sy« i
cst \—:—l
Vint
H and

Vext = */ (YO,- +Yf)’-’idv - / (EO,- + f,-)u,-dV = v2xt + V:xt
v* S*

23/57
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|—Hamilton’s Principle
L The Linear Case and 2nd-Order Effects

m Effect of initial stress (continue)
m Two cases:

B case of externally prestressed structures in which the initial stresses result from
the external dead loads Xof and to; : the equilibrium of the prestress state

R X N L)
implies 6V2, + //* ogésij )dV = 0 (note the participation of only e,j( ) in

this equilibrium as after prestress, only small deformations are considered here)
B case of internally prestressed structures in which the initial stresses result from

self-equilibrated stresses due to internal forces such as residual stresses arising
(1)

dvV =0and V), =0

. . 0 *
from the forming or assembly process: / 0;0g; ext

v* v
m the HP can then be expressed as

f2 f2 0 +@
5/ (T—V)dt:a/ (T*—V,-T,t—/ ol dV—V;t)dt:O
t t V*

m the geometric prestress potential (second-order effect) is defined as

(2)
Vg:/ oger dV
v

e

1y -
S m/ (T = Vipe—Ve = Vi)dt =0, ouf(n) =6u' () =0| (1)
t

i
i

24/57
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|—Hamilton’s Principle
L The Linear Case and 2nd-Order Effects

m The theory of prestressing forms the basis of structural stability
analysis, which:

m consists in computing the prestressing forces applied to a structural
system which render possible the existence of a static equilibrium
configuration distinct from the prestressed state u* = 0 under the
geometrically linear and nonlinear elastic forces only

m in this case, the HP is reduced to

Sur (Vi + V) =0

m Equation (1) reveals that prestressing modifies the vibration
eigenfrequencies, and that the limiting case of a vanishing
eigenfrequency corresponds to the limit of stability (7* = 0)



AA242B: MECHANICAL VIBRATIONS 26 /57

|—Wave Propagation in a Homogeneous Elastic Medium
LThe Navier Equations in Linear Dynamic Analysis

m Small displacements and rotations imply
m linear expression of the infinitesimal strain tensor

e — 1 8u,- + 8uj
) Ox; Ox;

m linear form of the equations of dynamic equilibrium

Oojj ~ .. .
8X,{ +Xj = fon in Vo
ti=ojn = on S, (natural BC)

m Hooke's law for a linear elastic isotropic medium

oj = )\Ekk5U+2G€ij
8uk 8u,~ 8uj

= A(M)5”+G<é)>g+8x,> 'Jéi/

26 / 57
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|—Wave Propagation in a Homogeneous Elastic Medium

LThe Navier Equations in Linear Dynamic Analysis

m Assuming a homogeneous medium (X and G constant) leads to

2
(/\+G)(8 a“’)+Ga X = poiij, j=1,2,3, in Vo

Ox; 0x Ox;0x;
~~ S~——
V-u V2Uj

e - "
= (A + G)87 + GV?u; + X = polij
J

m V2 is the Laplacian operator (A)

m e = V - u is the divergence of the displacement field
m Propagation of free waves

| YJ‘ =0

= |(\+ G)% + GVPuj = poilj, j=1,2,3, in Vo
J

_——

m Solutions: Plane elastic waves, Rayleigh surface waves, and Love
surface waves

27 /57
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|—Wave Propagation in a Homogeneous Elastic Medium
LPlane Elastic Waves

m Plane waves

’ ui(xj, t) = ui(xy £ ct) ‘

m at a given time t, the displacement is identical at any point of the
plane perpendicular to the direction of wave propagation (here, x1)

m the displacement field at the location (x1, x2, x3) and time t is
translated to the location (x1 F Axi, x2, x3) at time t + At

U,‘(Xl7 X2, X3, t) = u,-(x1 + Ct)
ui (1 F cAt) £ c(t + At))
= u,'(XliFAX1,X2,X3,t:FAt)

where Ax; = cAt
m c is the velocity of the wave propagating in the positive x; direction
when u; = uj(x1 — ct) and in the negative x; direction when
ui = ui(x1 + ct) - "é‘/

28 /57
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|—Wave Propagation in a Homogeneous Elastic Medium
LPlane Elastic Waves

m Plane elastic waves: Longitudinal waves, and transverse waves
m Longitudinal waves

m the displacements are parallel to the direction of propagation
m general form

uy = Asin (2T7T(X1:I:ct))
uz =

us =

constants A and / represent the wave amplitude and length
m characteristic longitudinal wave speed that verifies the Navier

equations
e — A+2G E(1-v)
IR N G | (R &
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|—Wave Propagation in a Homogeneous Elastic Medium
LPlane Elastic Waves
m Transverse waves

m the displacements are orthogonal to the direction of propagation
m general form when the displacement field is parallel to x»

uy = 0

. 2T
u = Asin (T(Xl + ct))
us = 0

constants A and / represent the wave amplitude and length
m characteristic transverse wave speed that verifies the Navier

equations
G
C=CT = —
P

m here, (x1,x2) is the plane of polarization
m the ratio of ¢, and cr depends only on the Poisson coefficient

TN 21—

30 /57

1-2v »“é“/
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|—Wave Propagation in a Homogeneous Elastic Medium
L Surface Waves

m Surface waves: Rayleigh surface waves, and Love surface waves
m Rayleigh surface waves

m two-dimensional semi-infinite medium x; > 0
m no excitation on xo = 0 (stress free surface)
m supposing that the displacement field is the real part of

—bxy _ik(x1—ct

nm = Ae Pegkla=e)

—bxy_ik(xg—ct

n = Be Peeklam
us = 0

where A € C, B € C, wave number k € R, k = %

b>0=e 2 50 asxo = 00

m re-writing the Navier equations as

Oe .
V2 + (i — CQT)(()*X = U
G

31 /57
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|—Wave Propagation in a Homogeneous Elastic Medium
L Surface Waves

32 /57

m Rayleigh surface waves (continue)

m and substituting the expression of the displacement field gives

[c7b” + (S — )k A —i(cf —c3)bkB =0
—i(ci — )bk A+ [cib* +(? —c7)k’]B =0

m (A, B) # (0,0) implies that the determinant vanishes
m solving for b yields two roots

; C2_ / "o C2_ 11
b =k 1—7—b(k7C), b =k l—T—b(k,C)
CL CT

m b real implies that c < cr < ¢,
m corresponding amplitudes

()5 () -5-(3) e 4

32/57
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|—Wave Propagation in a Homogeneous Elastic Medium
L Surface Waves
m Rayleigh surface waves (continue)
m the general solution becomes

A/e—b/xzeik(xl—ct)+A/l —b""x3 ik(xl—ct)

u =
b 1 _—b'x lk(x ct) ik . — b xy _ik(xy —ct)
— _ 7A 2 1— A 2 1—
[75) " + b e
us = 0

m A, A” and wave speed c are determined by the free surface
conditions
o3 =02 =0, at xx =0

free surface: o.n,=0
0

33 /57
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|—Wave Propagation in a Homogeneous Elastic Medium
L Surface Waves

m Rayleigh surface waves (continue)

m using Hooke's law and the expression of the linear strain, these
conditions become

8U1 8[]2

o =0 = + — = 0 atxx =0
a 8X28 6x1 a
— ol | otz o _ —
on=0 = )\(8X1 +8X2)+2G8X2 0 atx 0

e

34 /57
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|—Wave Propagation in a Homogeneous Elastic Medium
L Surface Waves
m Rayleigh surface waves (continue)
m substituting in the previous two equations the expression of the
general solution, using the identities G = pc and \ = p(cf — 2¢%),
and taking into account the expressions for b’ and b” leads to

2_7
3 /(1-5) A 0
C2

CT

(2—%)A —2A" =0
C
z

m (A, A”) # (0,0) implies that c verifies the characteristic equation

2\ 2 2 2
<2—i2) s 1-5 1-5
cr < cr

m factorizing c2/c2} leads to the Rayleigh equation

2 6 4 2
c“|c c 24 16 c Y
72{ 87+ (?_?>_16< _%>}_0 ' é

7 Lk 7 T L L

m k remains a free parameter
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|—Wave Propagation in a Homogeneous Elastic Medium
L Surface Waves

m Rayleigh surface waves (continue)
m Rayleigh equation

216 4 2
24 16
< [C—ﬁ—s%+c2 (—2——2> —16( _%)} =0| (2
r LT cr T < L
mc=0=A=A"=0= u; = wp = 0 (trivial solution)
m from cr < ¢, it follows that the second factor of (2) is negative for
¢ = 0 and positive for ¢ = c7: hence, it has a real root 0 < ¢ < cr

which shows that surface waves with a velocity lower than ¢ may
appear in the solution of a Navier problem

e

36 /57
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L wave Propagation in a Homogeneous Elastic Medium
L Surface Waves

m Rayleigh surface waves (continue)

instantaneous

wave surface wave direction

of propagation

instantaneous
speed W particle
Mt WQZ‘T

%VW\%?@@D%
—F A ~
dlsplacement / (Y

. veetor—._ . / 1l

m In the propagation of a Rayleigh wave the motion is backward
elliptic — in contrast to the direct elliptic motion in the propagation
of a surface wave in a fluid é =

37/57
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I—W.';\ve Propagation in a Homogeneous Elastic Medium
L Surface Waves

m Love waves

m the displacement is perpendicular to the plane of propagation (here,
(31, x2))

m homogeneous layer of material M; with thickness H; superimposed
on a semi-infinite space of a different material M

023=0

. 1) 1
M, e, ot

M: c,cr

%

m u3 and o3 are continuous at the interface xo = 0 - ”‘@"/

38/57
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L wave Propagation in a Homogeneous Elastic Medium
L Surface Waves

m Love waves (continue)
m the displacement field

u1 =
uz =

2

—kxz 1-5

c —ct))

u3 = T I (a—et) in M
2
7}()(2 1— < <
(1 (1) k(x1—ct)

uz = CT —|—Be CT e ta=et) in my

satisfies the Navier equations and the condition u3 — 0 when
X — OQ

e

39/57
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|—Wave Propagation in a Homogeneous Elastic Medium
L Surface Waves

m Love waves (continue)

m u3 and o3 are continuous at the interface xo = 0
moxn=0atx=—H;

A = B+PB

2
2
GAJ1- < = G(B-B)|1- (i>
c (1)
- T Ccr
2 2
kHy 1—(%) —kHy 1—<ﬁ)
Be T = Be T

m eliminating A, B and B’ leads to the equation governing the
propagation velocity ¢ of a surface wave with motion perpendicular
to the propagation direction

2 2
i< _a < 1| tan | kH i 1|l =o0
_e_ <\ N Y
z 0 KO
(1)

m for C(Tl) < cr, the above equation has a real root ¢c;’ < ¢ < cr :Jéi/
Love waves ]
= k remains a free parameter

40/57
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|—Free Vibrations of Continuous Systems and Response to External Excitation

LEigenvalue Problem

m Harmonic motion of a linear system not subjected to external force
m displacement
ui(x,t) = us, () coswt

m time interval [t1, t2] chosen such that du;(t1) = dui(t2) = 0, here for
instance
[t1, &2] = [—l l]
b 20 2w

m linearity assumption = kinetic and internal energy are quadratic in
the displacement

= T = Trax sinwt, V = Vpax cOS> wt

where

1 1
Tmax = *w2/ polz Uz dV, Vimax = */ cijwewEjdV
2 Vo 2 Vo

e

41/57
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|—Free Vibrations of Continuous Systems and Response to External Excitation
LEigenvalue Problem
m Hamilton’s principle

W eliminate the time variables by accounting for

i

P
2w 2w . U
/ « cos2 wt dt = / « sm2 wt dt = —
_ o _ 2w
2w 2w

2 1
— L] =5 |2 / pous; gy dV — = / ciuenegdV | =0
2 Jy, 2 Jy,

m Definitions
- T
m displacement vector u = [ s Us,  Usy |

- T
W stressvector 0 = [ o1 02 033 On 03 013 |

. 7
W strainvectore = [ en 2 €33 Y2 Y23 13 |, where

2¢gj;

B matrix H of Hooke's law elastic coefficients

for example in 2D (plane stress — that is, 013 = 023 = 033 = 0)
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LEigenvalue Problem

m Definitions (continue)
B spatial differentiation operator

a 1é)
Axq 0 0 Axo 0 Ox3
T _ o o 9
D" = 0 Ixp 0 Axy Ox3 0
0 0 o 0 o 9
dx3 dxg dx1

B associated matrix of the direction cosines of the outward normal at S,
np 0 0 ny 0 n3
N"=| 0 m 0 m n O
0 0 ns 0 o m

m Linear kinematics

[c=Du|=[o=HDu

m Local dynamic equilibrium

doii
(;U = pol; in VW { DTa+w2p0u = 0 inVy
Xi = T _

oini = 0 on S, N o = 0 onS,

m Variational form of Hamilton's principle

1 1
6{w2/ EpouTudV—/ E(Du)TH(Du) dv} =0
Vo Yo

43 /57
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LEigenvalue Problem

m Using the matrix notation, the equations of local dynamic
equilibrium (3) can be re-written as

N"HDu 0 onS,

{DTHDu+w2p0u = 0 inW

m The homogeneous system of equations defining the local dynamic

44 /57

equilibrium, together with its associated variational form, defines an

eigenvalue problem of the Sturm-Liouville type

0 onS, i=1,---,©

{ DTHDU(,') —|-0J,-2p0u(,-) =0 inVy = DTHDU(;) = —w?pQU(;)

N”HDu;
where
U(1), U(2),U), "~

are the eigenvectors!

subscript i to avoid confusion with the i-th direction of a vector

4/

e

n this chapter, the subscript (/) is used to denote the i-th mode instead of the
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L Orthogonality of Eigensolutions

m Orthogonality of the eigenvectors
m equilibrium equations verified by the eigenmodes

DTHDU(,') + w,-zpou(,-) =0

m multiply by ué) and integrate over the reference volume V;
m integrate the first term by parts

/ u(y D"HDu(; dV = /ug)NTHDu(,.)dS— (Dugy) " H (Dug) dV
Vo A S—— S Vo

m compatibility of the displacement field and surface equilibriun
condition for uy;

u(Ti) = 0 onS,

N'HDu;; = 0 onS,

o /\/ [— (DUU)) T H (DU(;)) + w?pou5)u(;)} dvV =0 (EJ)
()
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L Orthogonality of Eigensolutions

m Orthogonality of the eigenvectors (continue)
m similarly for u(;

/VO |~ (Dug) " H (Dug) +w} poulyugy | dv =0 (E;)

(Ei) — (Ej)

= (w} — w?)/ poué)u(,-)dV =0
Vo
m if wf # w?

/ pou(J hHdV =0
Vo

®m if w’ = w] and i # j (multiple eigenfrequency), the eigenmodes can
also be orthogonalized as

/ pouo d\/ =0
Vo

m normalize the eigenvector u(;y as follows é
— -\/

/pou()u dv =1
Vo

46 /57



AA242B: MECHANICAL VIBRATIONS
|—Free Vibrations of Continuous Systems and Response to External Excitation

L Orthogonality of Eigensolutions

m Orthogonality of the eigenvectors (continue)
m recall (Ej)

A;(Duw)TH(DUm)dV::wﬁ/ poudyudV
YV

Vo

/ pou(;)U(,-)dV 5,’j
Vo

y (DUU))TH(DU(i)) dv = w?é,-j
0

47 /57
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LResponse to External Excitation: Modal Superposition

m Response of a system with homogeneous BCs
|

eigenmodes form a complete set of solutions of the problem with
homogeneous BCs

u(>, t) Zns(t 9(%)

where 7s(t) are the normal coordinates associated with each mode
ues)

the general solution u satisfies the linear equilibrium equation
D"HDu + X — poii = 0 in Vg
m and the homogeneous BCs

N"HDu =

u =

=0 onS,
=0 on S, 'Jéi/

cl e+l

48 /57
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LResponse to External Excitation: Modal Superposition

m Response of a system with homogeneous BCs (continue)
m linear equilibrium equation using the eigenmodes

> 7D HDu() + X = " poijsu =0 in Vo

s=1 s=1

premultiply by u(T,)

integrate over Vg

integrate by parts in space

use the normalization of the modal masses and the orthogonality of
the eigenmodes

m apply the BCs

:}’i’}r—"—wf’nr:d)r, r:17...’oo

m ¢, is the participation factor of the eigenmode u(,) to the external
excitation X Jéi/

¢,:/ ulyXdv
Vo

49 /57



AA242B: MECHANICAL VIBRATIONS 50 /57
|—Free Vibrations of Continuous Systems and Response to External Excitation

LResponse to External Excitation: Modal Superposition

m Response of a system with homogeneous BCs (continue)

u 7+ w?nr = ¢, can be integrated in time as

0e(£) = n(0) coswrt + i (0) I ¢

= ¢,( )sin (w,(t — 7)) dr

Wr Wr

where

7(0) = / poul u(0)dV, 7,(0) = / poulyi(0)dV

m therefore, the general solution obtained by modal superposition is

oo

u(xj, t) = Zu(s)coswst/ pouzyu(0)dV
s=1 Vo

= sinwst .
+ Zu(s) /v pou(Ts)u(O)dV

w.
s=1 s

+ Z . / és(T) sin (ws(t — 7)) dT ; ,,éi/

s=1
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LResponse to External Excitation: Modal Superposition

m Response of a system with non-homogeneous spatial BCs

m consider the following problem

51 /57

D HDu + X — poii = 0 in

with the initial conditions u(0) and 1(0), and the non-homogeneous
BCs

|
-+l

N"HDu

u =

on S,

on S,

<l

the external forces t applied on the surface S, and the displacement

u specified on S, can be function of time

solution approach: exploit linearity to split the problem into a

quasi-static problem with non-homogeneous BCs and a dynamic

problem with a source term and homogeneous BCs (which we

already know how to solve) . Jéif
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LResponse to External Excitation: Modal Superposition

52 /57

m Response of a system with non-homogeneous spatial BCs (continue)

B quasi-static displacement field ugs(x;, t) resulting from the application of the

non-homogeneous BCs
D" HDuy,

N"HDug,
Ugs

o

[

in Vo

= | characterizes ugs
on S,
on S,

B modal superposition for the rest of the response leads to

u(x, 1) = ugs(xj, £) + D ms(t)ugs) ()
s=1

B equilibrium equation

> 7:D"HDu(,) + X — > poiisugs) = poilgs in Vo

s=1

H BGCs

s=1

oo
NTHD<Z7]SU(S)> = 0 onS,
s=1

oo
Znsu(s) = 0 on§S,
s=1
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LResponse to External Excitation: Modal Superposition

m Response of a system with non-homogeneous spatial BCs (continue)

pre-multiply by u(T,)

integrate by parts over Vg

account for the orthogonality of the eigenmodes
account for the BCs satisfied by the eigenmodes

- ﬁr+wf77r = ¢r _/ PoU(Tr)qudV7 r=1,---,00
Vo

m the solution is

n(t) = n,(0)cosw,t+ ﬁr(O)M
1 [t T . :
+ = |T) = | pougyiies(7) | sin (wi(t — 7)) dT
Wr Jo Vo
where

4

n0) = [ ool (4(0) — u(0) AV, :(0) = [ pony (5(0) — ip(0)) iV
JVy 0
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LResponse to External Excitation: Modal Superposition

m Response of a system with non-homogeneous spatial BCs (continue)
m general solution

U(Xj7 t)

>y,
ugs(xj, t) — Z 26 / / pou(5 ligs(7) sin (ws(t — 7)) dVdT

+ Zu cos wst /‘;0 pgu ( (0) — ugs(0)) dV

s=1

+ i sin wst /V poul, (@(0) — s (0)) dV

ues) .
+ 27/0 ¢s(7) sin (ws(t — 7)) dT

m differs from the homogeneous case by the contribution of the
quasi-static displacement field (and its time-derivatives)
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LResponse to External Excitation: Modal Superposition

m Response of a system with non-homogeneous spatial BCs (continue)
m integrate by parts twice the terms involving tigs

1 t sinwst |
— Ugs(7)sin(ws(t — 7)) dT7 =  — Ugs(0) + ugs(t) — coswst ugs(0)
Ws S0 N et e ——’ Ws

—ws /t ugs(7) sin(ws(t — 7))dr
0

= - Z -6 / / pgu(Ts)iqu(T)sin (ws(t — 7)) dVdT
ws Jo Jy

0
Il
iR

= ZU(S)coswst/ pou(z)uqs(o)dv
Yo

> sinwst [ .
+ 2w [ poulie(0)av
Yo

Ws

> u t .
+ Z (s) / <w§/ pou(c)(‘r)uqs(T)d\/> sin (ws(t — 7)) d7
0 Vo
oo
T
- ZU(S)/\; pgu(s)uqst
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LResponse to External Excitation: Modal Superposition

m Response of a system with non-homogeneous spatial BCs (continue)
m express Ugs in the basis of the eigenmodes

Ugs = ZU(S)/ poU(C)qudV
s=1

Vo

m substitute in previous expression of u(x;, t) to keep dependence on
ugs only

oo inwot
= u(x;,t) = E u(s) / pgu(Ts) (u(O) cos wst + l‘J(O)Smi> dv
Jvy w.

s
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LResponse to External Excitation: Modal Superposition

m Response of a system with non-homogeneous spatial BCs (continue)

recall equilibrium equations, multiply them by u;—s and integrate over Vg
T T 2 T
- /\/ u,D HDU(s)dV+w5/\/ pougusdV =0
(] 0

integrate the first term in the above equation by parts
recall equations satisfied by the quasi-static displacement field ugs

introduce r) = —NTHDu(S) and eliminate dependence on ugs
S sin wst
= u(x;,t) = u(s) <cosw5t/ pgu(Ts)u(O)d\/+ 75/ pgu(Ts)(l(O)dV>
=1 Vo Ws Vo
> u t _
b 32 o+ [ ulinas+ [ amrgds |
—1 Ys Jo - Su

sin(ws(t — 7))dT

w/r to the homogeneous BCs case, the modal participation factor is augmented by
Phs = / u(7;>fd5 + / fl(T)Tr(s)ds
N 5 &
— "

displacement and the work produced by the eigenmode boundary reaction with @

which is the work produced by the boundary tractions with the eigenmode
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