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Projection-Based Model Order Reduction at the Discrete Level

Residual Minimization

Semi-discrete level (parametric dependence not emphasized)

dw

dt
(t) = f(w(t), t), w ∈ RN , f ∈ RN

Subspace approximation: w(t) ≈ Vq(t) ⇒ V
dq

dt
(t) ≈ f(Vq(t), t)

Discrete level (backward Euler implicit time integration scheme)

V

(
qn+1 − qn

∆tn

)
≈ f

(
Vqn+1, tn+1

)
, V ∈ RN×k , q ∈ Rk

Discrete residual

rn+1
(
qn+1

)
= V

(
qn+1 − qn

∆tn

)
− f
(
Vqn+1, tn+1

)
∈ RN

At each time step, residual minimization in the two-norm

qn+1 = argmin
y∈Rk

∥∥rn+1(y)
∥∥
2
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Projection-Based Model Order Reduction at the Discrete Level

Gauss-Newton Method for Nonlinear Least-Squares Problems

At each time step, nonlinear least-squares problem of the form
miny ∥r(y)∥2, where r ∈ RN , y ∈ Rk , and k ≪ N

Equivalent function to minimize: ϕ(y) =
1

2
∥r(y)∥22 =

1

2
rT (y)r(y)

Gradient: ∇ϕ(y) = JTr (y)r(y), where Jr(y) =
∂r

∂y
(y) ∈ RN×k

Iterative solution of equivalent minimization problem using the
Gauss-Newton method

y(ℓ+1) = y(ℓ) +∆y(ℓ+1)

where
∇2ϕ

(
y(ℓ)
)
∆y(ℓ+1) = −∇ϕ

(
y(ℓ)
)

What is ∇2ϕ(y)?

∇2ϕ(y) = JT (y)J(y) +
N∑
i=1

∂2ri
∂y2

(y)ri (y)

Gauss-Newton method with ∇2ϕ(y) ≈ JT (y)J(y)
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Projection-Based Model Order Reduction at the Discrete Level

Gauss-Newton Method for Nonlinear Least-Squares Problems

At each time step, Gauss-Newton method can be written as

y(ℓ+1) = y(ℓ) +∆y(ℓ+1)

where

JTr

(
y(ℓ)
)
Jr
(
y(ℓ)
)
∆y(ℓ+1) = −JTr

(
y(ℓ)
)
r
(
y(ℓ)
)

(1)

This is the normal equation for

∆y(ℓ+1) =
1

2
argmin

z

∥∥∥Jr (y(ℓ)) z+ r
(
y(ℓ)
)∥∥∥2

2

QR decomposition of the Jacobian

Jr
(
y(ℓ)
)
= Q(ℓ)R(ℓ), Q(ℓ) ∈ RN×N ,

(
Q(ℓ)

)T
Q(ℓ) = IN

R(ℓ) ∈ RN×k upper triangular

Equivalent solution using the QR decomposition (assuming that R(ℓ)

has full column rank)
∆y(ℓ+1) = −Jr

(
y(ℓ)
)†

r
(
y(ℓ)
)
= −

(
R(ℓ)

)−1 (
Q(ℓ)

)T
r
(
y(ℓ)
)
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Least-Squares Petrov-Galerkin Method

Implicit Computations

Recall that for the backward Euler implicit time integration scheme

r
(
qn+1

)
= V

(
qn+1 − qn

∆tn

)
− f
(
Vqn+1, tn+1

)
For an arbitrary implicit time integration scheme
r
(
qn+1

)
= g

(
Vqn+1,Vqn, . . . ,Vqm

)
− f
(
Vqn+1, tn+1

)
, m < n,

which is an approximation of r(q) = V
dq

dt
(t)− f(Vq(t), t)

Recall w̃ = Vq: From the above expression of r(q), it follows that

Jr(q) =
∂r

∂q
(q) = − ∂f

∂w̃
(w̃)V = −Jf(w̃)V

Therefore, minimizing

ϕ(q) =
1

2
∥r(q)∥22 ⇔ JTr (q)r(q) = − (Jf(w̃)V)T r(q) = 0 is

equivalent to solving the nonlinear rectangular problem

WT (w̃)r(w̃) = 0, where W(w̃) = Jf(w̃)V ∈ RN×k

Hence, residual minimization in the two-norm is a Petrov-Galerkin
projection method
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Least-Squares Petrov-Galerkin Method

Summary

In summary, the projection-based model order reduction (PMOR) method based
on the minimization in the two-norm of the discrete residual is the
Petrov-Galerkin PMOR method with W(w̃) = Jf(w̃)V

At each time step, the solution of the resulting nonlinear rectangular problem
WT (w̃)r(w̃) = 0 by the Gauss-Newton method leads to the same system of
equations as (1), with

Jr
(
q(ℓ)

)
= Jf

(
w̃(ℓ)

)
V = Jf

(
Vq(ℓ)

)
V

This Petrov-Galerkin PMOR method is known today as the Least-Squares
Petrov-Galerkin (LSPG) method: it represents the state of the art of PMOR for
transport problems (first-order hyperbolic problems) and particularly for
convection-dominated turbulent flow problems

This is because LSPG is numerically stable for such problems, whereas the
standard Galerkin projection method is unstable and thus requires stabilization

LSPG is equally applicable to steady-state (time-independent) problems

For computational efficiency, LSPG has been equipped in the literature with the
hyperreduction methods DEIM (in which case it was called the Gauss-Newton
with Approximated Tensors (GNAT) method) and ECSW, and demonstrated for
real-world applications
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Least-Squares Petrov-Galerkin Method

Application: Turbulent Flow Past the Ahmed Body

Benchmark CFD problem in the automotive industry: slant angle =
20◦, V∞ = 60 m/s (216 km/h), zero angle of attack,
Re = 4.29× 106

RANS (Reynolds-Averaged Navier-Stokes) model based on the
Spalart-Allmaras turbulence model

HDM: second-order in space and time with N ≈ 1.7× 107
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Least-Squares Petrov-Galerkin Method

Application: Turbulent Flow Past the Ahmed Body

PMOR: POD + GNAT, k = 283, kf = 1514, and ki = 2268 (Circa
2011)

Method CPU Number Relative
time of CPUs error

HDM 13.28 h 512 –
PROM with GNAT 3.88 h 4 0.68%
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Barrier to Projection-Based Model Order Reduction

Kolmogorov k-Width “Issue”

PMOR has been performed for a long
time using the classical linear or affine
subspace approximation w̃ =
Vq+ wref, V ∈ RN×k , q ∈ Rk , wref ∈ RN

For highly nonlinear and transport
(first-order hyperbolic) problems in
general, and for convection-dominated
flow problems in particular, the
convergence of a subspace approximation
is limited by the slow decay of the
Kolmogorov k-width dk (M)

dk (M) is the worst-case error resulting
from projection onto an optimal subspace
M of dimension k ≪ N

Recent strategies for mitigating this issue
share the abandonment of the traditional
affine approximation in favor of a
nonlinear one such as: a piecewise linear
or affine approximation; a quadratic
approximation; and an arbitrarily
nonlinear approximation grounded in
deep learning

Figure: For most linear problems,
dk (M) exhibits exponential decay; for
convection-dominated flow problems,
its exhibits a decay of O

(
k−1/2

)
.
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Piecewise Linear or Affine Approximation Method

Local Approximation of the State

A piecewise linear or affine approximation is the simplest nonlinear
approximation

Additional benefit: Approximating the solution manifold M with a
single linear or affine subspace S may result in a large-dimensional
subspace, which can hinder computational efficiency; in contrast,
using local subspaces {Sℓ}Lℓ=1 to approximate M allows for tailoring
the approximation to different physics regimes, leading to improved
computational efficiency

M
S1

S2

S3
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Piecewise Linear or Affine Approximation Method

Local Approximation of the State

In practice, the local approximation of the state takes place at the
discrete level

Each subspace Sℓ is associated with a pre-computed local
Reduced-Order Basis (ROB) Vℓ

At each time step n, the state wn is computed as

wn = wn−1 +∆wn

The increment ∆wn is then approximated in a subspace
Sℓ(n) = range

(
Vℓ(n)

)
as

∆wn ≈ Vℓ(n)q̃
n

The choice of the pre-computed ROB Vℓ(n) is specified later

By induction, the state wn is computed as

wn = w0 +
n∑

i=1

Vℓ(i)q̃
i
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Piecewise Linear or Affine Approximation Method

Local Approximation of the State

The state wn is computed as

wn = w0 +
n∑

i=1

Vℓ(i)q̃
i

In practice, the ROBs
{
Vℓ(i)

}n
i=1

are chosen among a finite set of

pre-computed local ROBs {Vℓ}Lℓ=1

Hence

wn = w0 +
L∑

ℓ=1

Vℓq
n
ℓ

This shows that

wn ∈ w0 + range([V1 · · · VL])

Note that each local ROB can be of a different dimension

Vℓ ∈ RN×kℓ
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Piecewise Linear or Affine Approximation Method

Construction of the Local ROBs

Intuitively, a given local subspace Sℓ should approximate only a
portion of the solution manifold M
The solution manifold is a subset of the solution space RN

M ⊂ RN

RN is partitioned into L subdomains, where each subdomain is
associated with a local approximation subspace Sℓ = range(Vℓ)

In practice, a set of solution snapshots {ws}Nsnap

s=1 – where in general,
ws = w

(
ti ;µ

(j)
)
– is partitioned into L subsets using the k-means

clustering algorithm

This leads to a Voronoi tessellation of RN

The k-means clustering algorithm is distance-dependent

After clustering, each snapshot subset can be compressed into a
local ROB, for example, using POD
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Piecewise Linear or Affine Approximation Method

Construction of the Local ROBs

Local ROBs construction procedure

w(t, µ1)!

w(t, µ2)!

w(t, µ3)!
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Piecewise Linear or Affine Approximation Method

Construction of the Local ROBs

Local ROBs construction procedure

w(t, µ1)!

w(t, µ2)!

w(t, µ3)!
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Piecewise Linear or Affine Approximation Method

Construction of the Local ROBs

Local ROBs construction procedure
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Piecewise Linear or Affine Approximation Method

Construction of the Local ROBs

Local ROBs construction procedure
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Piecewise Linear or Affine Approximation Method

Construction of the Local ROBs

Local ROBs construction procedure
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Piecewise Linear or Affine Approximation Method

Construction of the Local ROBs

Local ROBs construction procedure
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Piecewise Linear or Affine Approximation Method

Construction of the Local ROBs

Local ROBs construction procedure
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Piecewise Linear or Affine Approximation Method

Construction of the Local ROBs

Local ROBs construction procedure
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Piecewise Linear or Affine Approximation Method

Construction of the Local ROBs

Local ROBs construction procedure

ROB #1!

ROB #2!

ROB #3!

ROB #4!
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Piecewise Linear or Affine Approximation Method

Construction of the Local ROBs

Local ROBs construction procedure

ROB #1!

ROB #2!

ROB #3!

ROB #4!
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Piecewise Linear or Affine Approximation Method

Online Selection of the Local ROB

Online, at time step n, a pre-computed local ROB Vℓ(n) must be
chosen

The selection is based on the current location of wn−1 on the
solution manifold M

The local approximation subspace is selected as that associated with
the cluster whose center is the closest to wn−1

ℓ(n) = argmin
ℓ∈{1,··· ,L}

d
(
wn−1,wc

ℓ

)
Consider the case of the distance based on a weighted Euclidian
norm

d(w, z) = ∥w − z∥H =
√
(w − z)TH(w − z)

where H ∈ RN×N is a symmetric positive definite matrix
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Piecewise Linear or Affine Approximation Method

Online Selection of the Local ROB

Choice of the local approximation subspace at time step n

ℓ(n) = argmin
ℓ∈{1,··· ,L}

d
(
wn−1,wc

ℓ

)
For a distance based on a weighted Euclidian norm, the solution of
the above problem can be computed efficiently at a cost that does
not depend on the large dimension N

To show this, consider the special form of the solution

wn−1 = w0 +
L∑

i=1

Viq
n−1
i

Then, one needs to compare the distances d
(
wn−1,wc

ℓ

)
and

d
(
wn−1,wc

m

)
for 1 ≤ ℓ ̸= m ≤ L
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Piecewise Linear or Affine Approximation Method

Online Selection of the Local ROB

The two distances d
(
wn−1,wc

ℓ

)
and d

(
wn−1,wc

m

)
can be compared

as follows

∆ℓ,m = d
(
wn−1,wc

ℓ

)2 − d
(
wn−1,wc

m

)2
=

∥∥wn−1 −wc
ℓ

∥∥2
H
−
∥∥wn−1 −wc

m

∥∥2
H

=

∥∥∥∥∥
L∑

i=1

Viq
n−1
i

∥∥∥∥∥
2

H

+
∥∥w0 −wc

ℓ

∥∥2
H
+ 2

(
w0 −wc

ℓ

)T L∑
i=1

Viq
n−1
i

−
∥∥∥∥∥

L∑
i=1

Viq
n−1
i

∥∥∥∥∥
2

H

−
∥∥w0 −wc

m

∥∥2
H
− 2

(
w0 −wc

m

)T L∑
i=1

Viq
n−1
i

=
∥∥w0 −wc

ℓ

∥∥2
H
−
∥∥w0 −wc

m

∥∥2
H
− 2 (wc

ℓ −wc
m)

T
L∑

i=1

Viq
n−1
i

The following low-dimensional quantities can be pre-computed
offline and exploited online to compute rapidly ∆ℓ,m, 1 ≤ ℓ ̸= m ≤ L
aℓ,m =

∥∥w0 − wc
ℓ

∥∥2
H
−

∥∥w0 − wc
m

∥∥2
H
∈ R, gℓ,m =

(
wc
ℓ − wc

m

)T
Vi ∈ Rki

30 / 68



PMOR - Nonlinear Approximation Methods

Piecewise Linear or Affine Approximation Method

Extension to Hyperreduction

The nonlinear PMOR method based on a piecewise linear or affine
approximation has been equipped (relatively easily) with the
hyperreduction methods DEIM and ECSW
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Piecewise Linear or Affine Approximation Method

Application

Flow past the NASA Common Research Model (CRM) – (CFD
benchmark in the aeronautical industry)

3D compressible Euler equations

N = 3.1× 106

Constant acceleration of 2.5 m/s2, from M∞ = 0.8 to M∞ = 0.9
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Piecewise Linear or Affine Approximation Method

Application

PMOR using a global ROB
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Piecewise Linear or Affine Approximation Method

Application

PMOR using 5 local ROBs

Very good accuracy can be obtained with kℓ ≤ 17 as opposed to
k = 50 (global ROB) – and therefore much faster than with a global
approximation method
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Quadratic Approximation Method

Higher-Order Polynomial Approximations

General approach

w̃ =

p∑
i=1

Gp−i+1 q
⊗p−i+1 + wref

where p represents the degree of the polynomial approximation,

Gj ∈ RN×k j

, ⊗j designates the j-fold Kronecker product, and

therefore q⊗j ∈ Rk j

The case p = 1 recovers the affine approximation, where G1 = V
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Quadratic Approximation Method

Quadratic Approximation Manifold

The following quadratic approximation is framed in a data-driven
setting, to obtain a comprehensive, nonlinear approximation
approach that is computationally tractable for large-scale problems
and effective in delaying the effect of the Kolmogorov k-width

w̃ = Hq⊗2 + Vq+wref, H ∈ RN×k2

q ∈ Rk is the traditional reduced-order vector of generalized
coordinates associated with the ROB V ∈ RN×k

q⊗2 ∈ Rk2 is the vectorized Kronecker product given by

q⊗2 =
[
q2
1 q1q2 · · · q1qk q2q1 q

2
2 · · · q2qk qkq1 qkq2 · · · q2

k

]T
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Quadratic Approximation Method

Quadratic Approximation Manifold

w̃ = Hq⊗2 + Vq+wref, H ∈ RN×k2

Train H in a three-step process

first, construct V by compressing a series of snapshots ws ,
s = 1, · · · ,Nsnap

next, compute the set of generalized coordinates
qs = VT (ws − wref), s = 1, · · · ,Nsnap

then, determine H from the resulting set of reduced coordinates qs

to reduce further the error vectors es = ws − Vqs
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Quadratic Approximation Method

Computation of the Matrix H of the Quadratic Approximation

Once the error vectors associated with the affine approximation are
computed, determine H by minimizing a global loss function as
follows

arg min
H∈RN×k2

∥∥∥∥∥∥∥∥∥
 eT1

...
eTNsnap


T

−H


q⊗2T

1
...

q⊗2T

Nsnap


T
∥∥∥∥∥∥∥∥∥
F

, ei ∈ RN , q⊗2
i ∈ Rk2

(2)
Let E =

[
e1 . . . eNsnap

]
∈ RN×Nsnap , Q =

[
q⊗2
1 . . . q⊗2

Nsnap

]
∈ Rk2×Nsnap :

Then, (2) can be re-written as

H = arg min
H′∈RN×k2

∥E−H′Q∥F = arg min
H′∈RN×k2

N∑
i=1

∥∥Ei,: −H′
i,: Q

∥∥2
2

Hence, (2) is equivalent to the following N independent
minimization problems

hi = Hi,: = arg min
h′i∈R1×k2

∥Ei,: − h′iQ∥22 , i = 1, . . . ,N
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Quadratic Approximation Method

Regularization

It follows that H can be determined by solving the following N
independent minimization problems in an embarrassingly parallel
fashion

hi = Hi,: = arg min
h′i∈R1×k2

∥Ei,: − h′iQ∥22 , i = 1, . . . ,N

The solution of each of the above optimization problems is
vulnerable to overfitting ⇒ Tikhonov regularization using Γ = αI,
α > 0

hi = Hi,: = arg min
h′i∈R1×k2

∥Ei,: − h′iQ∥22 + α ||h′i ||
2
2 , i = 1, . . . ,N

Due to the symmetry of the Kronecker product q⊗2
i = qi ⊗ qi , there

are only (k + 1)k/2 linearly independent elements in every row of H
the k(k − 1)/2 redundant terms in every row of H should be
eliminated to avoid ill-conditioning

Q =
[
q⊗2
1 . . . q⊗2

Nsnap

]
is transformed into a redundancy-free matrix

Q ∈ Rk(k+1)/2×Nsnap and the corresponding entries in each row vector
hi are excluded ⇒ hi ∈ R1×k(k+1)/2
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Quadratic Approximation Method

Generalized Cross Validation (GCV)

hi = Hi,: = arg min
h′i∈R1×k2

∥Ei,: − h′iQ∥22 + α ||h′i ||
2
2 , i = 1, . . . ,N

It is preferrable that Nsnap and k verify Nsnap > k(k + 1)/2, so that
each of the above regularized least-squares problem is
overdetermined and can be solved using the non-truncated thin SVD
of Q as follows

Q = UQΣQY
T
Q
⇒ h̄Ti =

kQ∑
ℓ=1

(
σ2
Q,ℓ

σ2
Q,ℓ

+ α2

)
yT
Q,ℓ

(
ET
)
i

σQ,ℓ

uQ,ℓ, i = 1, . . . ,N

A reasonable value of α can be found using GCV

Occasional overregularization may occur
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Quadratic Approximation Method

Appropriate Dimension of the Quadratic Approximation Manifold – Observations

Vqua ∈ RN×kqua is built as in the traditional subspace approximation,
where kqua is determined using the singular value energy criterion

For the same reference solution wref ∈ RN

traditional subspace approximation depends on Nktra control
variables defining Vtra

quadratic approximation depends on Nkqua(kqua + 1)/2 + Nkqua
control variables defining the rows h̄i ∈ R1×kqua(kqua+1)/2,
i = 1, . . . ,N, and Vqua ∈ RN×kqua

Hence, equating the two different numbers of control variables
suggests that a quadratic PROM of dimension
kqua =

(√
9 + 8ktra − 3

)
/2 ≪ ktra should deliver the same accuracy

as that of a traditional counterpart of dimension ktra

GCV is vulnerable to overregularization ⇒ potential loss of some of
the capacity of the Nkqua(kqua + 1)/2 control variables defining
h̄i ∈ R1×kqua(kqua+1)/2, i = 1, . . . ,N

The above result can be interpreted as working effectively with a
number of control variables Nk ′

qua(k
′
qua + 1)/2 < Nkqua(kqua + 1)/2

– or equivalently, with a dimension k ′
qua < kqua
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Quadratic Approximation Method

Appropriate Dimension of the Quadratic Approximation Manifod – Heuristic
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Quadratic Approximation Method

Appropriate Dimension of the Quadratic Approximation Manifod – Heuristic

Compute the dimension ktra associated with the singular value
energy criterion (and say εS = 10−4 ⇒ 1− εS = 99.99%)

Compute k ′
qua =

(√
9 + 8ktra − 3

)
/2 based on matching the

numbers of control variables of the quadratic and traditional
PROMs, and assuming no overregularization of the least-squares
problems defining H

Set kqua = (1 + ζ)k ′
qua, where 0 < ζ < 0.2, to correct for any

overregularization of the least-squares problems defining H

Finally, set

k = min
(
kqua,

(√
1 + 8Nsnap − 1

)
/2
)

to satisfy the constraint Nsnap > k(k + 1)/2

Note: interestingly, kqua ≈
√
ktra (asymptotically)
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Quadratic Approximation Method

Impact on the LPSG PMOR Method

Residual minimization in the 2-norm

qn+1 = arg min
x∈Rk

∥∥∥∥∥∥∥rn+1

Hxn+1⊗2
+ Vxn+1 +wref︸ ︷︷ ︸

w̃n+1(xn+1)

, tn+1


∥∥∥∥∥∥∥
2

2

⇐⇒ qn+1 solution ofWn+1T rn+1

Hqn+1⊗2
+ Vqn+1 +wref︸ ︷︷ ︸

w̃n+1(qn+1)

, tn+1

 = 0

Hence, for a quadratic LSPG PROM, the left ROB is given by

Wn+1 = Jn+1 H
[
qn+1 ⊗ I+ I⊗ qn+1

]︸ ︷︷ ︸
additional term

due to quadratic approximation

+ Jn+1V︸ ︷︷ ︸
traditional
left ROB

, Jn+1 =
∂rn+1

∂w̃

(
w̃n+1

)
∈ RN×N
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Quadratic Approximation Method

Impact on the LPSG PMOR Method

Additional cost associated with constructing the left ROB

Wn+1 = Jn+1 H
[
qn+1 ⊗ I+ I⊗ qn+1

]︸ ︷︷ ︸
additional term

due to quadratic approximation

+ Jn+1V︸ ︷︷ ︸
traditional
left ROB

, Jn+1 =
∂rn+1

∂w̃

(
w̃n+1

)
∈ RN×N

(
qn+1 ⊗ I+ I⊗ qn+1

)
∈ Rk(k+1)/2×k is a sparse matrix ⇒

H
[
qn+1 ⊗ I+ I⊗ qn+1

]
should be performed using dense-sparse

matrix-matrix computations
the number of nonzero entries in

(
qn+1 ⊗ I+ I⊗ qn+1

)
grows as k2

each evaluation of H
[
qn+1 ⊗ I+ I⊗ qn+1

]
requires O

(
Nk2

)
operations
the construction of Wn+1 requires O(2N3k) operations whereas in
the case of the traditional PROM, it requires O(N3k) operations
hyperreduction eliminates the dependence on N from both
complexities
in the case of the quadratic PROM (QPROM), the construction of
W requires the additional storage of the matrix
H
[
qn+1 ⊗ I+ I⊗ qn+1

]
∈ RN×k
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Quadratic Approximation Method

Impact on the ECSW Hyperreduction Method

Energy conserving sampling and weighting (ECSW)
project-then-approximate rather than approximate-then-project

rn+1
k

(
qn+1

, tn+1
)

= WT rn+1
(
Hqn+1⊗2

+ V qn+1 + wref, t
n+1

)
≈

∑
ei∈Ẽ

ξ
ei
(
LeiW

)T rei
n+1 (

Lei
+ [

Hqn+1⊗2
+ V qn+1 + wref

]
, tn+1

)

recall the interpretation of the ECSW method: cubature where the
elements of the reduced mesh Ẽ ⊂ E are the points and{
ξe1 , . . . , ξeÑe

}
are the corresponding weights

implementation (context of the finite volume method): augmented
reduced mesh

Augmented reduced mesh: ⊚
represents a selected node
attached to a selected
element; and ⊗ represents an
added node to enable the full
representation of the
computational stencil at the
selected node/element
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Quadratic Approximation Method

Impact on the ECSW Hyperreduction Method

ECSW training for the QPROM predictions

rn+1
k

(
qn+1

, tn+1
)

≈
∑
ei∈Ẽ

ξ
ei
(
LeiW

)T rei
n+1

Lei
+

Hqn+1⊗2
+ V qn+1 + wref︸ ︷︷ ︸

w̃n+1(qn+1)

 , tn+1



for QPROMs, qn+1 can no longer be identified via projection onto
the right ROB: instead, it requires the solution of a nonlinear
problem of the form

δn+1(qn+1) = Hqn+1⊗2

+ Vqn+1 + wref − wn+1 = 0 ⇒ w̃n+1
(
qn+1

)
Yet another Gauss-Newton procedure

qn+1,0 = VTwn+1

qn+1,ℓ+1 = qn+1,ℓ −
(
∂δn+1

∂q

(
qn+1,ℓ

))+

δn+1
(
qn+1,ℓ

)
where ℓ designates the ℓ-th iteration and + designates the
Moore-Penrose inverse
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Quadratic Approximation Method

Impact on the ECSW Hyperreduction Method

Major advantage for hyperreduction

recall that ECSW is a cubature method

recall that the number of cubature points required for approximating
a d-dimensional integral function with p cubature points along each
dimension grows as pd

recall that kqua ≈
√
ktra

it follows that for a fixed level of training accuracy, ECSW can be
expected to deliver for a PROM a much smaller reduced mesh than
for a traditional counterpart
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Quadratic Approximation Method

Application: Ahmed Body Turbulent Wake Flow

Benchmark CFD problem in the
automotive industry: slant angle =
20◦, V∞ = 60 m/s, zero angle of
attack, Re = 4.29× 106

DES (detached eddy simulation) model
based on the Spalart-Allmaras
turbulence model

HDM: second-order in space and time
with N ≈ 1.7× 107; executed on 240
CPU cores of a Linux cluster

Data collection: Nsnap = 1251 solution
snapshots uniformly collected in
[0, 2× 10−1] s

All HPROMs executed on 8 CPU
cores of same Linux cluster
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Quadratic Approximation Method

Application: Ahmed Body Turbulent Wake Flow

Projection errors

time-averaged relative
projection error

1
Nsnap∑
s=1

∆ts

Nsnap∑
s=1

∆ts ||w̃ (qs)− ws ||2
||ws ||2

∆ts = 2∆t = 1.6× 10−4 s
hyperreduced QPROM
(HQPROM) converges
significantly faster than
traditional (affine subspace
approximation) HPROM
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Quadratic Approximation Method

Application: Ahmed Body Turbulent Wake Flow

Relative errors: focus is set on quantities of interest (QoIs)

integral QoIs (lift and drag coefficients)
pointwise (probed) QoIs (e.g., vx and vz)

Relative errors of HPROM- and HQPROM-based predictions

(Q̃oI (t)) are globally measured in [0, 2× 10−1] s, with respect to
HDM-based counterparts QoI (t), as follows

REQoI =

√∑
t∈T

(
Q̃oI (t)− QoI (t)

)2
√∑

t∈T
QoI (t)2

T =
{
t ∈ {0,∆s, 2∆s, . . . } : t ≤ 2× 10−1 s

}
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Quadratic Approximation Method

Application: Ahmed Body Turbulent Wake Flow

Offline performance (excluding computation of solution snapshots)

Computational k Ñe Ñe/Ne (%) ECSW time
model

PROM → HPROM 627 7 389 0.26 7.9 h
QPROM → HQPROM 39 544 0.019 1.8 mn

Computational k Wall clock time Wall clock time Wall clock time
model (V) (H) (total offline)

HPROM 627 16.8 mn – 9.0 h
HQPROM 39 17.0 mn 9.6 mn 1.7 h 1

1dominated by the cost of GCV for regularization
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Quadratic Approximation Method

Application: Ahmed Body Turbulent Wake Flow

Online performance (accuracy, qualitative): Visualization at
t = 2× 10−1 s of the predicted iso-vorticity contours colored by the
Mach number

HDM (1.7× 107)

HPROM (627)

HQPROM (39)
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Quadratic Approximation Method

Application: Ahmed Body Turbulent Wake Flow

Online performance (accuracy, qualitative): Predicted time-histories
of the lift (top, left) and drag (top, right) coefficients, vx/v∞
(bottom, left), and vz/v∞ (bottom, right)
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Quadratic Approximation Method

Application: Ahmed Body Turbulent Wake Flow

Online performance (accurady and wall-clock time, quantitative)

Computational model k REcD (%) REcL (%) REvx (%) REvz (%)
HPROM 627 0.24 0.77 0.83 3.95

HQPROM 39 0.10 0.71 0.54 2.66

Computational model k Wall clock Speed-up factor Speed-up factor
(number of cores) time (wall-clock time) (CPU time)

HDM (240) – 15.1 h – –
HPROM (8) 627 3.75 h 4 121

HQPROM (8) 39 6.9 mn 131 3 940
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Arbitrarily Nonlinear Approximation Method Grounded in Deep Learning

Nonlinear PMOR Based on Modeling the Closure Error in the Latent Space

Nonlinear approximation manifold generated by a ROB and an artificial
neural network (ANN)

w̃ = wref + Vq+ VN (q)

where

V ∈ RN×k is constructed using the first
k ≪ N columns of U and k ≪ ktra (looser
tolerance ϵ)

V ∈ RN×k̄ is constructed using a subset of
the next k̄ ≪ N columns of U and k̄ ≫ k
V and V satisfy VTV = Ik , V

T
V = Ik̄ ,

VTV = 0k,k̄ , and V
T
V = 0k̄,k

N is an ANN representing a map Rk → Rk̄

whose size kANN scales with k̄ ≪ N
q ∈ Rk is the vector of generalized
coordinates
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Arbitrarily Nonlinear Approximation Method Grounded in Deep Learning

Nonlinear PMOR Based on Modeling the Closure Error in the Latent Space

w̃ = wref + Vq+ VN (q) (⋆)

Let kideal ≥ ktra denote the ideal dimension of Vtra. If
∑

ℓ>k σℓ decays
slowly, kideal is unaffordable, and then (⋆) expresses the following
three-part idea

Part 1: construct a ROB
[
V V

]
of

dimension (k + k̄) < kideal ≪ N, where
k ≪ k̄
Part 2: split this ROB in two orthogonal
ROBs V ∈ RN×k and V ∈ RN×k̄ , and
construct the affine approximation
w̃ = wref + Vq+ Vq̄
Part 3: treat only q ∈ Rk as a vector of
generalized coordinates ⇒ build a PROM
of dimension k ≪ (k + k̄); and learn the

dependence of q̄ ∈ Rk̄ on q ∈ Rk

⇒ q̄ = f (q), where f (q) : Rk → Rk̄ is
represented by a deep ANN N
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Arbitrarily Nonlinear Approximation Method Grounded in Deep Learning

Nonlinear PMOR Based on Modeling the Closure Error in the Latent Space

w̃ = wref + Vq+ VN (q)︸ ︷︷ ︸
q̄

(⋆)

Interpretations

Data-driven model of the closure error:
Vq̄ = VN (q) = w̃ − (wref + Vq)

Variational multi-scale approach

Nonlinear compression of a ROB and
associated PROM: k ≪ (k + k̄)

Most efficient use of a set of solution
snapshots defining a solution manifold:(
q; q̄ = f (q)

)
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Arbitrarily Nonlinear Approximation Method Grounded in Deep Learning

Offline Training of the ANN Representing the Map f (q)

Let N (q; γ) be the ANN representing the map f (q) : Rk → Rk̄ ,
where the vector-valued hyperparameter γ ∈ RkANN and kANN ≪ N

Construct N (q; γ) such that ideally

wi = wref + Vqi + VN (qi ; γ) , i = 1, · · · ,Nsnap

From the above and the orthogonality properties of V and V, it
follows that

qi = VT (wi −wref) andN (qi ; γ) = V
T
(wi −wref) ≡ q̄i , i = 1, · · · ,Nsnap

Hence
q (input) → N (q; γ) → q̄ (output)

and

γ = argmin
γ′

1

Ntrain

Ntrain∑
i=1

(
q̄i −N

(
qi ; γ

′))2
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Arbitrarily Nonlinear Approximation Method Grounded in Deep Learning

Impact on the LPSG PMOR Method

Residual minimization in the 2-norm

qn+1 = arg min
x∈Rk

∥∥∥∥∥∥∥rn+1

wref + Vxn+1 + VN
(
xn+1

)︸ ︷︷ ︸
w̃n+1(xn+1)

, tn+1


∥∥∥∥∥∥∥
2

2

⇐⇒ qn+1 sol. of Wn+1T rn+1

wref + Vqn+1 + VN
(
qn+1

)︸ ︷︷ ︸
w̃n+1(qn+1)

, tn+1

 = 0

Hence, for an ANN-LSPG PROM, the left ROB is given by

Wn+1 = Jn+1V︸ ︷︷ ︸
traditional left ROB

+ Jn+1 V
∂N
∂q

(
qn+1

)
︸ ︷︷ ︸

additional term
due to ANN approximation

, Jn+1 =
∂r

∂w̃

(
w̃n+1

)
∈ RN×N
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Arbitrarily Nonlinear Approximation Method Grounded in Deep Learning

Impact on the ECSW Hyperreduction Method

Energy conserving sampling and weighting (ECSW)
project-then-approximate rather than approximate-then-project

rn+1
k

(
qn+1

, tn+1
)

= WT rn+1
(
wref + Vqn+1 + VN

(
qn+1

)
, tn+1

)
≈

∑
ei∈Ẽ

ξ
ei
(
LeiW

)T rei
n+1 (

Lei
+ [

wref + Vqn+1 + VN
(
qn+1

)]
, tn+1

)

recall the interpretation of the ECSW method: cubature where the
elements of the reduced mesh Ẽ ⊂ E are the points and{
ξe1 , . . . , ξeÑe

}
are the corresponding weights

implementation (context of the finite volume method): augmented
reduced mesh

Augmented reduced mesh: ⊚
represents a selected node
attached to a selected
element; and ⊗ represents an
added node to enable the full
representation of the
computational stencil at the
selected node/element
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Arbitrarily Nonlinear Approximation Method Grounded in Deep Learning

Application: Two-Dimensional (2D) Inviscid Burgers’ Problem

2D, parametric, inviscid Bugers’ problem

∂ux
∂t

+
1

2

(
∂u2x
∂x

+
∂ (uxuy )

∂y

)
= 0.02 exp(µ2x)

∂uy
∂t

+
1

2

(
∂ (uyux)

∂x
+

∂u2y
∂y

)
= 0

ux(x = 0, y , t;µ) = µ1

ux(x , y , t = 0) = uy (x , y , t = 0) = 1

computational domain: (x , y) ∈ [0, 100]× [0, 100]
time-interval: t ∈ [0, 25]
parameter domain: µ = (µ1, µ2) ∈ D = [4.25, 5.50]× [0.015, 0.03]
computing system: Linux cluster where 1 node is configured with 2
Intel Xeon Gold 5118 processors clocked at 2.3 GHz and 192 GB of
memory
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Arbitrarily Nonlinear Approximation Method Grounded in Deep Learning

Application: Two-Dimensional (2D) Inviscid Burgers’ Problem

HDMs Far-traveling shock problem

Godunov-type scheme and two
uniform meshes
M1: Ne = 250× 250 ⇒ N = 125 000

M2: Ne = 750× 750 ⇒ N = 1125 000

Temporal discretization:
trapezoidal method and constant
∆t = 0.05 (Nt = 500 time-steps)
uref = 0 (in all cases)
Measure of the relative error

RE(µ) =

Nt∑
m=0

||um(µ)− ũm(µ)||2
Nt∑

m=0
||um(µ)||2 (µ⋆ = (4.75, 0.02))
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Arbitrarily Nonlinear Approximation Method Grounded in Deep Learning

Application: Two-Dimensional (2D) Inviscid Burgers’ Problem

Training Kolmogorov ktra-width

Uniform sampling of
D = [4.25, 5.50]× [0.015, 0.03]
by a 3× 3 grid characterized by
∆µ1 = 0.625 and
∆µ2 = 0.0075 ⇒ 9 training
parameter points

Above sampling leads to
Ns = 4501 solution snapshots,
including the initial condition
which is nonparametric and
therefore shared by all sampled
parameter points

LSPG PROM with ntra = 95
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Arbitrarily Nonlinear Approximation Method Grounded in Deep Learning

Application: Two-Dimensional (2D) Inviscid Burgers’ Problem

PyTorch for constructing the ANN N for the map f (q) : Rk → Rk̄

(n, 32) →
ELU

(32, 64) →
ELU

(64, 128) →
ELU

(128, 256) →
ELU

(256, 256) →
ELU

(256, k̄)

Exponential linear unit (ELU) activation functions

90%-10% training-testing random split of the set of generalized
coordinates associated with the Ns = 4501 collected solution
snapshots

PyTorch for computing the gradient ∂N/∂q (forward mode
automatic differentiation)

Mesh M1: (k , k̄) = (10, 140)

Mesh M2: (k , k̄) = (10, 140) and (k , k̄) = (20, 280)
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Arbitrarily Nonlinear Approximation Method Grounded in Deep Learning

Application: Two-Dimensional (2D) Inviscid Burgers’ Problem

All tests are performed for the following queried but unsampled
parameter points

µ(1) = (5.19, 0.026)
µ(2) = (4.56, 0.019)
µ(3) = (4.75, 0.020)

Maximum relative error REmax = maxµ(1),µ(2),µ(3) RE(µ) is reported
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Arbitrarily Nonlinear Approximation Method Grounded in Deep Learning

Application: Two-Dimensional (2D) Inviscid Burgers’ Problem

Accuracy results: Case M2, queried but unsampled parameter point
µ(2) = (4.56, 0.019) corresponding to REmax

(k, k̄) = (10, 140) (k, k̄) = (20, 280)
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Arbitrarily Nonlinear Approximation Method Grounded in Deep Learning

Application: Two-Dimensional (2D) Inviscid Burgers’ Problem

Offline performance results (wall-clock time): Case M2, queried but
unsampled parameter point µ(2) = (4.56, 0.019) corresponding to
REmax, 1 core except when otherwise specified

Computational model k Ñe Time
(N for HDM) (Ne for HDM) (mins)

HDM (∆t = 0.05) 1 125 000 562 500 407.47
HPROM (ECSW, offline, 24 cores) 95 63 106 45.25

HPROM-ANN (ANN, offline) 10 − 23.40
HPROM-ANN (ECSW, offline) 10 3 496 26.40
HPROM-ANN (ANN, offline) 20 − 20.80

HPROM-ANN (ECSW, offline, 24 cores) 20 22 984 5.21

note: configuration (n, n̄) = (20, 280) uses a single-layer-ANN
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Arbitrarily Nonlinear Approximation Method Grounded in Deep Learning

Application: Two-Dimensional (2D) Inviscid Burgers’ Problem

Online performance results (wall-clock time): Case M2, queried but
unsampled parameter point µ(2) = (4.56, 0.019) corresponding to
REmax, 1 core

Computational model k Ñe REmax Time Speedup
(N for HDM) (Ne for HDM) (mins) factor

HDM 1 125 000 562 500 − 407.47 −
HPROM 95 63 106 8.05% 35.08 11.61

PROM-ANN 10 − 5.50% 23.90 17.05
HPROM-ANN 10 3 496 3.43% 0.500 814.94
PROM-ANN 20 − 4.60% 65.13 6.26
HPROM-ANN 20 22 984 4.72% 8.74 46.62

note: configuration (n, n̄) = (20, 280) uses a single-layer-ANN
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