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m Note: The material covered in this chapter is based on the following
published documents (continue):

m M. R. Chmiel, J. L. Barnett and C. Farhat. Unified LSPG model
reduction framework and assessment for benchmark hypersonic CFD
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|—Projection-Based Model Order Reduction at the Discrete Level

L Residual Minimization

m Semi-discrete level (parametric dependence not emphasized)

dw
dt

(t) = f(w(t),t), weRN fcRN

d
m Subspace approximation: w(t) =~ Vq(t) = Vd—?(t) ~ f(Vq(t), t)
m Discrete level (backward Euler implicit time integration scheme)
V] M ~f (an+1 tn+1) Ve RNXk qe Rk
At" Y ) Y

m Discrete residual

n+l (ontl) _ Q" —q"
r (q ) =V ( Atn

m At each time step, residual minimization in the two-norm

) _f (an-&-l7 tn+1) c RN

"1 — arg min Hr”“(y)”2
yERK

q
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|—Projection-Based Model Order Reduction at the Discrete Level

LGauss-Newton Method for Nonlinear Least-Squares Problems

At each time step, nonlinear least-squares problem of the form

miny [|r(y)||2, where r e RV, y € R¥, and k < N

1
Equivalent function to minimize: ¢(y) = EH"(Y)”% =

Gradient: Va(y) = J] (y)r(y), where J,(y) = g()’) €

dy

Iterative solution of equivalent minimization problem using the

Gauss-Newton method
YD) — y(O 4 Ay(e+D)
where
V2 (yu)) AyEHD — _v4 (y(e)>
What is V2¢(y)?
N

V2o(y) = Z

i=1

Gauss-Newton method with V2¢(y) ~ J7(y)J(y)

)r,
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|—Projection-Based Model Order Reduction at the Discrete Level

LGauss-Newton Method for Nonlinear Least-Squares Problems

m At each time step, Gauss-Newton method can be written as
y(ZJrl) _ y(é) 4 Ay(zﬂ)

where

a7 <y<z)> J, <y(Z)) Ay — T (y(a) r <y<z)> (1)

m This is the normal equation for
2
3 (v?) 2 e (y)]
m QR decomposition of the Jacobian

3 () = QURO, QW cRM¥, (W) QO =1,

R(®) e RV*k upper triangular

1
Ayt = 58 min ‘

m Equivalent solution using the QR decomposition (assuming that R(®)
has full column rank)

s T ) - ) (@) )
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|—Least-Squares Petrov-Galerkin Method

L Implicit Computations

Recall that for the backward Euler implicit time integration scheme
n+1 n

n+1) — q —q — (Vg ¢l

r(a") (M> (Vg™ ")

For an arbitrary implicit time integration scheme

r(q"!) =g (Vg™,Vq",...,Vq™) — f (Vq"™,t""), m < n,

d
which is an approximation of r(q) = Vd—?(t) — f(Vq(t), t)
Recall W = Vq: From the above expression of r(q), it follows that

or of

3 (a) = 54(@) = — 55 (WV = —J(W)V
Therefore, minimizing
#(a) = 2 (@) + I (a)r(a) = — (J(@)V)  r(a) =0 s

equivalent to solving the nonlinear rectangular problem
W (W)r(w) = 0, where W(W) = J¢(W)V € RV*K

Hence, residual minimization in the two-norm is a Petrov-Galerkin
projection method
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|—Least-Squares Petrov-Galerkin Method

LSummary

m In summary, the projection-based model order reduction (PMOR) method based
on the minimization in the two-norm of the discrete residual is the
Petrov-Galerkin PMOR method with W(W) = Jg(W)V

m At each time step, the solution of the resulting nonlinear rectangular problem

W7 (W)r(W) = 0 by the Gauss-Newton method leads to the same system of
equations as (1), with

3 <q(£)) — ) (w“)) V= (vq(’v’)) v

m This Petrov-Galerkin PMOR method is known today as the Least-Squares
Petrov-Galerkin (LSPG) method: it represents the state of the art of PMOR for
transport problems (first-order hyperbolic problems) and particularly for
convection-dominated turbulent flow problems

m This is because LSPG is numerically stable for such problems, whereas the
standard Galerkin projection method is unstable and thus requires stabilization

m LSPG is equally applicable to steady-state (time-independent) problems

m For computational efficiency, LSPG has been equipped in the literature with the
hyperreduction methods DEIM (in which case it was called the Gauss-Newton
with Approximated Tensors (GNAT) method) and ECSW, and demonstrated for
real-world applications
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|—Least-Squares Petrov-Galerkin Method
|—Application: Turbulent Flow Past the Ahmed Body

m Benchmark CFD problem in the automotive industry: slant angle =
20°, Vo =60 m/s (216 km/h), zero angle of attack,
Re = 4.29 x 10°

m RANS (Reynolds-Averaged Navier-Stokes) model based on the
Spalart-Allmaras turbulence model

m HDM: second-order in space and time with N ~ 1.7 x 10’
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|—Least-Squares Petrov-Galerkin Method
|—Application: Turbulent Flow Past the Ahmed Body

m PMOR: POD + GNAT, k = 283, kf = 1514, and k; = 2268 (Circa

2011)
0.28 — High-dimensional model
‘E027 — Reduced-order model
30.26
““:830.25
go2s
o
0.23
0.2 002 004 006 008  Od
Time (s)
Method CPU | Number | Relative
time | of CPUs error
HDM | 13.28 h 512 -
PROM with GNAT 3.88 h 4 0.68%
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L Barrier to Projection-Based Model Order Reduction
L Kolmogorov k-Width “Issue”

m PMOR has been performed for a long
time using the classical linear or affine
subspace approximation w =
Vq + wer, V€ RVXK q € RK, wys € RN

m For highly nonlinear and transport (M)
(first-order hyperbolic) problems in 1
general, and for convection-dominated
flow problems in particular, the 000
convergence of a subspace approximation
is limited by the slow decay of the
Kolmogorov k-width dy (M)

m dj (M) is the worst-case error resulting

from projection onto an optimal subspace
M of dimension k < N

— Linear
Convection-Dominated

Figure: For most linear problems,

m Recent strategies for mitigating this issue dy (M) exhibits exponential decay; for
share the abandonment of the traditional convection-dominated flow problems,
affine approximation in favor of a its exhibits a decay of O (k—1/2)_

nonlinear one such as: a piecewise linear
or affine approximation; a quadratic
approximation; and an arbitrarily
nonlinear approximation grounded in
deep learning
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|—Piecewise Linear or Affine Approximation Method

L Local Approximation of the State

m A piecewise linear or affine approximation is the simplest nonlinear
approximation

m Additional benefit: Approximating the solution manifold M with a
single linear or affine subspace S may result in a large-dimensional
subspace, which can hinder computational efficiency; in contrast,
using local subspaces {84}15:1 to approximate M allows for tailoring
the approximation to different physics regimes, leading to improved
computational efficiency
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|—Piecewise Linear or Affine Approximation Method

L Local Approximation of the State

m In practice, the local approximation of the state takes place at the
discrete level

m Each subspace &y is associated with a pre-computed local
Reduced-Order Basis (ROB) V,

m At each time step n, the state w” is computed as
wn — Wn—l + AW”

m The increment Aw” is then approximated in a subspace
Sy(ny = range (Vy(n)) as

Aw" ~ Vg(n)fln

m The choice of the pre-computed ROB V/, is specified later
m By induction, the state w” is computed as

n
w' = W0 + Z Vg(,')(]l
i=1
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|—Piecewise Linear or Affine Approximation Method

L Local Approximation of the State

m The state w" is computed as

w'’ = W0 —+ Z Vg(,')f]i
i=1

In practice, the ROBs {V,g(,’)};;l are chosen among a finite set of
pre-computed local ROBs {V,};_,

m Hence .
w'=w’+) Vq]
=1
m This shows that
w” € w® +range([V1 - Vi])

m Note that each local ROB can be of a different dimension
V, e RV
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|—Piecewise Linear or Affine Approximation Method
L Construction of the Local ROBs

m Intuitively, a given local subspace S, should approximate only a
portion of the solution manifold M

m The solution manifold is a subset of the solution space RV
MCRV

m RV s partitioned into L subdomains, where each subdomain is
associated with a local approximation subspace Sy = range(Vy)

. . N .
m In practice, a set of solution snapshots {w;}.}* — where in general,

Ws =W (t,-; ,u(j)) — is partitioned into L subsets using the k-means
clustering algorithm

m This leads to a Voronoi tessellation of RV

m The k-means clustering algorithm is distance-dependent

m After clustering, each snapshot subset can be compressed into a
local ROB, for example, using POD
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|—Piecewise Linear or Affine Approximation Method
L Construction of the Local ROBs

m Local ROBs construction procedure

LR
N,

=
=
n
N
7
l' ’
l,
7, ,'
’
/
(S
\
\Y
.
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|—Piecewise Linear or Affine Approximation Method
L Construction of the Local ROBs

m Local ROBs construction procedure
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|—Piecewise Linear or Affine Approximation Method
L Construction of the Local ROBs

m Local ROBs construction procedure
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|—Piecewise Linear or Affine Approximation Method
L Construction of the Local ROBs

m Local ROBs construction procedure
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|—Piecewise Linear or Affine Approximation Method
L Construction of the Local ROBs

m Local ROBs construction procedure
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|—Piecewise Linear or Affine Approximation Method
L Construction of the Local ROBs

m Local ROBs construction procedure

® 0
R ° °
° © 0o 0 % o
.
A °n %° o o © ® .
° °em ° °
* A e 2, 0 o R °
o A 4% 0% o
K . o N °
. o A A,
¢4 A 3
. N 3 A A
A g A A
. Aag teat A
X W AL
s, . A
. ¢ * W A
«* o . A
¢S . A
. o
e e o * o A,
* o 0 0 A
A

23/68



PMOR - Nonlinear Approximation Methods

|—Piecewise Linear or Affine Approximation Method
L Construction of the Local ROBs

m Local ROBs construction procedure
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|—Piecewise Linear or Affine Approximation Method
L Construction of the Local ROBs

m Local ROBs construction procedure
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|—Piecewise Linear or Affine Approximation Method
L Construction of the Local ROBs

m Local ROBs construction procedure
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|—Piecewise Linear or Affine Approximation Method
L Construction of the Local ROBs

m Local ROBs construction procedure

ROB #4 ROB #1

ROB #3
= ROB #2
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|—Piecewise Linear or Affine Approximation Method
L Online Selection of the Local ROB

m Online, at time step n, a pre-computed local ROB V() must be

chosen

m The selection is based on the current location of w1 on the
solution manifold M

m The local approximation subspace is selected as that associated with
the cluster whose center is the closest to w” ™!

¢(n) = argmin d (w" ', w)
{1, L}

m Consider the case of the distance based on a weighted Euclidian
norm

dw,z) =||w—z|lnp = \/(w —2z)TH(w — 2)

where H € RV*N is a symmetric positive definite matrix
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|—Piecewise Linear or Affine Approximation Method
L Online Selection of the Local ROB

m Choice of the local approximation subspace at time step n

¢(n) = argmin d (w""!, wf)
Le{1,---,L}

m For a distance based on a weighted Euclidian norm, the solution of
the above problem can be computed efficiently at a cost that does
not depend on the large dimension N

m To show this, consider the special form of the solution
L
wnfl — WO + Zviq7_l
i=1

m Then, one needs to compare the distances d (w”*17w§) and
d (w”’l,wfn) forl1</l{#m<L
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|—Piecewise Linear or Affine Approximation Method

L Online Selection of the Local ROB

1,wg,) can be compared

m The two distances d (w"~!,w§) and d (

as follows

DNpm = d (w"fl,w§)2 —d (w"*l,w,cn)2
n—1

— w[r, — [lwt - w7

2
qun 1

H
qun 1

= ||W

2
~ [[w® — wi [ 2 (W~ w, ZV
H

o~ = I, 20— ) > Vi
H H ¢

m The following low-dimensional quantities can be pre-computed

offline and exploited online to compute rapidly Ay, 1 <l#F m< L

a1 = [P = = 0~ w [} € R = o —w) Vi € R

+Hw —w¢|‘H—|—2 w’ —wg ZVq” !
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|—Piecewise Linear or Affine Approximation Method

LExtension to Hyperreduction

m The nonlinear PMOR method based on a piecewise linear or affine
approximation has been equipped (relatively easily) with the
hyperreduction methods DEIM and ECSW
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L Application

m Flow past the NASA Common Research Model (CRM) — (CFD
benchmark in the aeronautical industry)

m 3D compressible Euler equations
m N=3.1x10°

m Constant acceleration of 2.5 m/sz, from M., = 0.8 to M, = 0.9
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|—Piecewise Linear or Affine Approximation Method
L Application

m PMOR using a global ROB

—HDM
14000 MOR with 1 ROB, ky =75
13000 = ~MOR with 1 ROB, %y = 50
MOR with 1 ROB, ky = 25 ;
- - -MOR with 1 ROB, %, = 10

12000
= 11000

10000+

Inviscid Drag (Ibf

® ©
S 9
S o
S o
T T

I 1 I I I I I
0.8 0.81 0.82 0.83 0.84 0.85 0.86 0.87 0.88 0.89
My
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|—Piecewise Linear or Affine Approximation Method
L Application

m PMOR using 5 local ROBs

140001 — HDM

MOR with 5 ROBs, k; = {22,11,9,17, 16}
130001 - - ~MOR with 5 ROBs, k; = {17,8,7,10,10}
MOR with 5 ROBs, k; = {12,6,5,7,7}
12000+ - - -MOR with 5 ROBs, k; = {10,5,5,6,6}
<
= 11000}
B0
5: 10000+
g 9000-
2
£ 8000+
7000

6000~

0.8 0.81 0.82 0.83 0.84 0.85 0.86 0.87 0.88 0.89
Mo,

m Very good accuracy can be obtained with k, < 17 as opposed to

k = 50 (global ROB) — and therefore much faster than with a global
approximation method
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|—Quadratic Approximation Method
LHigher—Order Polynomial Approximations

m General approach
p
~ _} : —i+1
w = Gp—i—}—l q®p ' T Wrer
i=1

where p represents the degree of the polynomial approximation,
G; € RVXK| @ designates the j-fold Kronecker product, and
therefore q®/ € R¥’

m The case p = 1 recovers the affine approximation, where G; =V
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|—Quadratic Approximation Method
LQuadratic Approximation Manifold

m The following quadratic approximation is framed in a data-driven
setting, to obtain a comprehensive, nonlinear approximation
approach that is computationally tractable for large-scale problems
and effective in delaying the effect of the Kolmogorov k-width

W=Hq®?+Vq+we HeRVK

m q € R¥ is the traditional reduced-order vector of generalized
coordinates associated with the ROB V € RV**

m g% ¢ R¥ is the vectorized Kronecker product given by

®2 2 2 217
q = [Ch qiq2 - qigk Q9291 G2 - q2Qk  qkq1 gkQq2 "'Qk]
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|—Quadratic Approximation Method
LQuadratic Approximation Manifold

W=Hq®2+Vq+we, HeRVK

m Train H in a three-step process

m first, construct V by compressing a series of snapshots ws,
5:17"' 7Nsnap

m next, compute the set of generalized coordinates
qs = VT(Ws - Wref), S = 17 Ty Nsnap

m then, determine H from the resulting set of reduced coordinates qs
to reduce further the error vectors es = ws — V qs
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|—Quadratic Approximation Method
LComputation of the Matrix H of the Quadratic Approximation

m Once the error vectors associated with the affine approximation are
computed, determine H by minimizing a global loss function as

follows
-
TN T ®27
€ q;

. . . 2
arg  min : —H : ,e;ERN,q?zeRk

H = HgAlx k T T

®2

e Alsnap q N,

snap

2
mletE=[e;... ey, | € RV Q= {q?z g2 } € RK X Naray

snap

Then, (2) can be re-written as

N
H=arg min [[E-HQ|=arg min Z||E;7:—H§.Q||§
H/ cRNxk? H/ cRN X k2 ] 7

m Hence, (2) is equivalent to the following N independent
minimization problems

h;=H;. =arg min 2||E,-_’;fh§Q||§, i=1,...,N

h;e]Rle
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|—Quadratic Approximation Method

L Regularization

m It follows that H can be determined by solving the following N
independent minimization problems in an embarrassingly parallel
fashion

. 2 .
hi=H;. =arg min |E;. —hQl, i=1,...,N
’ hl'.E]RIXkZ :

m The solution of each of the above optimization problems is
vulnerable to overfitting = Tikhonov regularization using I' = al,
a>0

, 2 2.
hi=H;. =arg min |E.—hiQ|5+«|h, i=1...,N
h/cR1x K>

m Due to the symmetry of the Kronecker product q?@z = (; ® q;, there
are only (k 4+ 1)k/2 linearly independent elements in every row of H
m the k(k — 1)/2 redundant terms in every row of H should be
eliminated to avoid ill-conditioning
Q= q1®2 qﬁjap] is transformed into a redundancy-free matrix

Qe RK(k+1)/2xNsnap 3 the corresponding entries in each row vector
h; are excluded = h; € RV*<k(k+1)/2
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|—Quadratic Approximation Method
L Generalized Cross Validation (GCV)

hi=H;.=arg min [E.—hQl;+alhjl, i=1...N

h,{GRle

m It is preferrable that Ng,ap and k verify Ngn,p > k(k +1)/2, so that
each of the above regularized least-squares problem is
overdetermined and can be solved using the non-truncated thin SVD
of Q as follows

kg 2 T T
Q fops y= (E )
=y = Q.7 Q.¢ i .
Q:U—Z—YI:»hT:Ej : . us i=1,...
Q-Q'q i 2 2 — Q0 J
=1 06,1e+a Q.

m A reasonable value of « can be found using GCV

m Occasional overregularization may occur

40/68



PMOR - Nonlinear Approximation Methods

|—Quadratic Approximation Method

LAppropriate Dimension of the Quadratic Approximation Manifold — Observations

Vqua € RV>kua is built as in the traditional subspace approximation,
where kq,, is determined using the singular value energy criterion

For the same reference solution w,es € RV

m traditional subspace approximation depends on Nk, control
variables defining V.,

m quadratic approximation depends on Nkqua(kqua + 1)/2 + Nkqua
control variables defining the rows h; € R*aua(kua+1)/2,
i=1,...,N, and Vgu, € RV*kaa

Hence, equating the two different numbers of control variables
suggests that a quadratic PROM of dimension

Kqua = (\/9 + 8Kira — 3) /2 < ks should deliver the same accuracy
as that of a traditional counterpart of dimension ki,

GCV is vulnerable to overregularization = potential loss of some of

the capacity of the quua(kqua + 1)/2 control variables defining
h Rlxkqua(kqua+1)/2’ i = 1 N

The above result can be mterpreted as working effectively with a
number of control variables Nk(,,(ki., +1)/2 < Nkgua(kqua +1)/2

qua qua
— or equivalently, with a dimension kg, < kqua
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|—Quadratic Approximation Method

LAppropriate Dimension of the Quadratic Approximation Manifod — Heuristic
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|—Quadratic Approximation Method

LAppropriate Dimension of the Quadratic Approximation Manifod — Heuristic

m Compute the dimension ki, associated with the singular value
energy criterion (and say €5 = 107% = 1 — 5 = 99.99%)

= Compute k,, = (v/9 + 8ka — 3) /2 based on matching the
numbers of control variables of the quadratic and traditional
PROMs, and assuming no overregularization of the least-squares
problems defining H

m Set kqua = (1 + ()kguar Where 0 < ¢ < 0.2, to correct for any
overregularization of the least-squares problems defining H

m Finally, set

k= min (Kqua, (v/TF 8Nenap — 1) /2)

to satisfy the constraint Ngnap > k(k +1)/2
m Note: interestingly, kqua &~ v kira (asymptotically)
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|—Quadratic Approximation Method
L Impact on the LPSG PMOR Method

m Residual minimization in the 2-norm

2
. ®2
g™t = arg min [[r"™ | Hx™7 £ VX 4w, 71
xERK
Wn+1(xn+1) 5
. T ®2
— q" solution of W ™1 | Hg" ™1™ + V@ + Wier, "1 | = 0
wn+1(qn+1)

m Hence, for a quadratic LSPG PROM, the left ROB is given by

8rn+1 .
witl — g+l [qn+1 RNI+1® qn+1] 4+ Jrtly N Lan g e (Wn+1) c RVXN
additional term traditional
left ROB

due to quadratic approximation
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m Additional cost associated with constructing the left ROB

orntt
W= J"HH " @l +1q"] + )TVt = e (W) e RVXN
~ W
additional term traditional
left ROB

due to quadratic approximation

(@' @1+ 1®q""™) € RFK/2xK s 3 sparse matrix =

H [q"+1 RN+1® q”*l] should be performed using dense-sparse
matrix-matrix computations

the number of nonzero entries in (q"+1 RN+1® q”*l) grows as k>
each evaluation of H [q”Jrl RN+1® q”“} requires O (Nkz)
operations

the construction of W™ requires O(2N>k) operations whereas in
the case of the traditional PROM, it requires O(N3k) operations
hyperreduction eliminates the dependence on N from both
complexities

in the case of the quadratic PROM (QPROM), the construction of
W requires the additional storage of the matrix

H [qn+1 @1+1 ®qn+1] c RNxk
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m Energy conserving sampling and weighting (ECSW)
m project-then-approximate rather than approximate-then-project
r:+1 <qn+1’ tn+1> — Wt (H qn+1®2 +an+1 + Wiet, tn+1)

Z ¢ (l_e;W)Tre,-"Jrl (Le;+ [H a1 Ly gttt +Wref} ~,fn+1)
e,-Eg

Q

m recall the interpretation of the ECSW method: cubature where the
elements of the reduced mesh £ C £ are the points and

{feu . ,§eA7 } are the corresponding weights

m implementation (context of the finite volume method): augmented

reduced mesh

Augmented reduced mesh: ©®
represents a selected node

A A A A, A A, A, A A’
(K I (5 attached to a selected
NN AN element; and ® represents an
AL Lol sl o added node to enable the full
A A A, A, A A, A, A, .
828284 020% 0% 4 representation of the
A A A, A, A A, A, A 1 1
AL A computational stencil at the

selected node/element
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m ECSW training for the QPROM predictions

n+1

+1 + n n
r:+1< n+1 n+1) Zg L W T e" Lei Hq +1®2+Vq +1+Wref ot

4€E @nt1(gnil)

m for QPROMs, q"*! can no longer be identified via projection onto
the right ROB: instead, it requires the solution of a nonlinear
problem of the form

n+192 n ~n n
6n+1(qn+1) Hq +1E2 Vq +1 Wer— W™l = 0= W +1 (q +1)

m Yet another Gauss-Newton procedure

1,0 T 1
qn+ -V wn+

n +
n+1,0+1 _ _n+1,0 04 1 n+1,0 n+1 n+1,0
q =q “\7aq q g q

where £ designates the /-th iteration and + designates the
Moore-Penrose inverse
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m Major advantage for hyperreduction
m recall that ECSW is a cubature method

m recall that the number of cubature points required for approximating
a d-dimensional integral function with p cubature points along each
dimension grows as p“

m recall that kqua ~ V'kira

m it follows that for a fixed level of training accuracy, ECSW can be
expected to deliver for a PROM a much smaller reduced mesh than
for a traditional counterpart
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m Benchmark CFD problem in the
automotive industry: slant angle =
20°, Vo = 60 m/s, zero angle of
attack, Re = 4.29 x 106

m DES (detached eddy simulation) model r
based on the Spalart-Allmaras Outet
turbulence model

Symmetry

m HDM: second-order in space and time Gy o
with N & 1.7 x 107; executed on 240 -
CPU cores of a Linux cluster

m Data collection: Ngn,p, = 1251 solution
snapshots uniformly collected in
[0,2 x 1071] s

m All HPROMs executed on 8 CPU
cores of same Linux cluster
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m Projection errors

m time-averaged relative
projection error

Nsna ~
L A (a) - wl,
T, H [wel],
s=1 °

B AL, =2At=16x10""s

m hyperreduced QPROM
(HQPROM) converges
significantly faster than
traditional (affine subspace
approximation) HPROM

Time-Averaged Relative Projection Error
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m Relative errors: focus is set on quantities of interest (Qols)
m integral Qols (lift and drag coefficients)
m pointwise (probed) Qols (e.g., vk and v;)
m Relative errors of HPROM- and HQPROM-based predictions
(Qol(t)) are globally measured in [0,2 x 10~] s, with respect to
HDM-based counterparts Qol(t), as follows

5> (Qol(t) - Qol(r))’

teT

REQO| =
2. Qol(t)?

teT

w7 ={te{0,As,2As,...}: t<2x 107! s}
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m Offline performance (excluding computation of solution snapshots)

Computational k ﬁe NNe/Ne (%) | ECSW time
model

PROM — HPROM | 627 | 7389 0.26 79h

QPROM — HQPROM 39 544 0.019 1.8 mn
Computational k | Wall clock time | Wall clock time | Wall clock time
model (V) (H) (total offline)
HPROM | 627 16.8 mn - 9.0 h
HQPROM 39 17.0 mn 9.6 mn 1.7h'T

ldominated by the cost of GCV for regularization
51/68



PMOR - Nonlinear Approximation Methods
I—Quadratic Approximation Method
|—Application: Ahmed Body Turbulent Wake Flow

m Online performance (accuracy, qualitative): Visualization at
t =2 x 107! s of the predicted iso-vorticity contours colored by the
Mach number

HDM (1.7 x 107)

HPROM (627)

HQPROM (39)
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m Online performance (accuracy, qualitative): Predicted time-histories
of the lift (top, left) and drag (top, right) coefficients, vy /v
(bottom, left), and v, /v (bottom, right)
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m Online performance (accurady and wall-clock time, quantitative)

Computational model k | REc, (%) | RE; (%) | REy, (%) | RE,, (%)
HPROM | 627 0.24 0.77 0.83 3.95

HQPROM 39 0.10 0.71 0.54 2.66
Computational model k | Wall clock Speed-up factor | Speed-up factor
(number of cores) time | (wall-clock time) (CPU time)
HDM (240) | - 151h - -

HPROM (8) | 627 375h 4 121
HQPROM (8) 39 6.9 mn 131 3940
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Nonlinear approximation manifold generated by a ROB and an artificial
neural network (ANN)

w = Wref+vq —‘rVN((])

where

m V € RV*K is constructed using the first
k < N columns of U and k < ki, (looser
tolerance ¢)

m V € RV*K is constructed using a subset of
the next k < N columns of U_and k > k

m V and V satisfy VTV = I, VTV =1z,
VIV=0,;and V'V =0z,

m N is an ANN representing a map R¥ — Rk
whose size kann scales with k < N

m g € R¥ is the vector of generalized
coordinates
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W = wees + Va + VA(a)| ()

Let kigeal > kira denote the ideal dimension of Vy,. If E€>k oy decays
slowly, Kigeal is unaffordable, and then (x) expresses the following
three-part idea

= Part 1: construct a ROB [V V] of
dimension (k + k) < kigeal < N, where
k < k

m Part 2: split this ROB in two orthogonal
ROBs V € RV*k and V € RV*k and
construct the affine approximation
W= Wref+VQ+VC_I

m Part 3: treat only q € R as a vector of
generalized coordinates = build a PROM
of dimension k < (k + k); and learn the
dependence of @ € R on q € RF
= q = f(q), where f(q) : Rk — R¥ is
represented by a deep ANN N
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W = e + Vg + VAN(q) | (%)
—

q

Interpretations

(] Eata—d_riven model of the closure error:
Vq = VN(Q) =W — (Wref =+ Vq)

m Variational multi-scale approach

m Nonlinear compression of a ROB and
associated PROM: k < (k + k)

m Most efficient use of a set of solution
snapshots defining a solution manifold:

(a; @=f(a))
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m Let V(q;7) be the ANN representing the map f(q) : R — RK,
where the vector-valued hyperparameter v € R*W and kany < N

m Construct M (q; ) such that ideally
Wi:Wref+vqi+vN(qi;’Y)a i:]-a"'stnap

m From the above and the orthogonality properties of V and V, it
follows that

—T
qi =V (W — Wref) and NV (gi;7) =V

m Hence
q(input) — |N(q;7)| — @ (output)
and
Ntrain 2
fy:argmi,n Z ((_],N(qh,yl)>
1

Y train i—
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m Residual minimization in the 2-norm

q"t = arg min P Weer + VX + VA (x™F) 7
xeR

Wn+1 (xn+1) 5

— q"? sol. of W ¢+ [ wi e + Vg™t £ VA ("), t™ ] =0

Wn+1(qn+1)
m Hence, for an ANN-LSPG PROM, the left ROB is given by
n+1 __ n+1 n+1 8'/\/ n+1 n+1 __ ﬂ ~n+1 NxN
wrtt = gty Jvaq( ) I 76W(W)GR

traditional left ROB
additional term
due to ANN approximation
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m Energy conserving sampling and weighting (ECSW)

m project-then-approximate rather than approximate-then-project
rZ+1 (qnﬂ7 tn+l) - wTt (Wref+ an+1 VN (qn+1) vtn+1)

Z ¢ (Le"W)T rein+1 (Le[+ [Wref + an+1 VN (qn+1)] 7 tn+1)

e,-ef

Q

m recall the interpretation of the ECSW method: cubature where the
elements of the reduced mesh £ C £ are the points and

{fel, e ,feﬁ } are the corresponding weights

m implementation (context of the finite volume method): augmented

reduced mesh
Augmented reduced mesh: ©®
represents a selected node

A A A, A, A, A, A, A A,
P B (5 attached to a selected
ZNINLNL IAZALNA 2 element; and ® represents an
AL Lol sl o - added node to enable the full
A A A, A, A A, A A A .
828284 020% 0% 4 ' representation of the
A A A A A, A, A A 1 1
AL A computational stencil at the

selected node/element
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m 2D, parametric, inviscid Bugers' problem

Ouy 1 (0u2  0O(ueuy)\
5 o ( I + 3y> = 0.02 exp(p2x)

duy 1 <8<uyux) . 8u§> o

ot 2 dx By

u(x =0,y,t;p) = iy
ux(x,y,t =0) = uy(x,y,t =0) =1

computational domain: (x,y) € [0,100] x [0, 100]

time-interval: t € [0, 25]

parameter domain: p = (u1, p2) € D = [4.25,5.50] x [0.015, 0.03]
computing system: Linux cluster where 1 node is configured with 2
Intel Xeon Gold 5118 processors clocked at 2.3 GHz and 192 GB of
memory
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HDMs

m Godunov-type scheme and two
uniform meshes
M1: Ne =250 x 250 = N = 125000
M2: Ne =750 x 750 = N = 1125000
m Temporal discretization:
trapezoidal method and constant
At =0.05 (N; = 500 time-steps)
m s = 0 (in all cases)
m Measure of the relative error

N
2 [[u" (k) = 8" (p)ll;

RE(p) = m
Z:IO [um ()1l

wy(z,y = 50.1)

50.1,3)

o(x

0

Far-traveling shock problem

—— Mesh M1: N = 125000
—— Mesh M2: N =1 ]23“””&/
0 20 10 60 80 100
.
I
—— Mesh M1: N = 125000
—— Mesh M2: N = 1125000
-
0 20 10 60 80 100

¥

(p* = (4.75, 0.02))
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Training Kolmogorov ki,-width

m Uniform sampling of
D = [4.25,5.50] x [0.015,0.03]
by a 3 x 3 grid characterized by
Apg = 0.625 and
App = 0.0075 = 9 training s
parameter points
m Above sampling leads to T
Ns = 4501 solution snapshots,
including the initial condition
which is nonparametric and
therefore shared by all sampled
parameter points

m LSPG PROM with ny,, = 95

—— Mesh M1: N = 125000
Mesh M2: N = 1125000

200 100 600 800 1000
Singular value index j
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m PyTorch for constructing the ANN A for the map f(q) : RK — RK

(n,32) > (32,64) -+ (64,128) —» (128,256) > (256,256) _+ (256, k)

m Exponential linear unit (ELU) activation functions

m 90%-10% training-testing random split of the set of generalized
coordinates associated with the Ny = 4501 collected solution
snapshots

m PyTorch for computing the gradient N /dq (forward mode
automatic differentiation)

= Mesh M1: (k,k) = (10, 140)

= Mesh M2: (k, k) = (10, 140) and (k, k) = (20, 280)
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m All tests are performed for the following queried but unsampled
parameter points

M) = (5.19,0.026)

) = (4.56,0.019)

®) = (4.75,0.020)

TETE

= Maximum relative error REma, = max,0) @ e RE(u) is reported
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|—Application: Two-Dimensional (2D) Inviscid Burgers’ Problem

m Accuracy results: Case M2, queried but unsampled parameter point
p?d = (4.56,0.019) corresponding to RE .«

4
21 3
— HDM — HDM
= | — HPROM-ANN S | — HPROM-ANN

[ 20 10 60 80 100 0 20 10 60 0 100

0.1

Y

50.1,3)

2 ] — HDM | — HDM
HPROM-ANN , | HPROM-ANN

0 20 10 60 S0 100 0 2 10 60 80 100

(k, k) = (10, 140) (k, k) = (20, 280)
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m Offline performance results (wall-clock time): Case M2, queried but

unsampled parameter point pu(?) =

(4.56,0.019) corresponding to

REmax, 1 core except when otherwise specified

Computational model k N, Time

(N for HDM) | (N, for HDM) | (mins)

HDM (At = 0.05) 1125000 562500 | 407.47

HPROM (ECSW, offline, 24 cores) 95 63106 45.25
HPROM-ANN (ANN, offline) 10 — 23.40
HPROM-ANN (ECSW, offline) 10 3496 26.40
HPROM-ANN (ANN, offline) 20 — 20.80
HPROM-ANN (ECSW, offline, 24 cores) 20 22984 5.21

note: configuration (n, i) = (20, 280) uses a single-layer-ANN
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m Online performance results (wall-clock time): Case M2, queried but
unsampled parameter point pu(?) = (4.56,0.019) corresponding to

REax, 1 core

Computational model k Ne REmax Time Speedup
(N for HDM) (Ne for HDM) (mins) factor

HDM 1125000 562 500 — 407.47 —
HPROM 95 63106 | 8.05% 35.08 11.61
PROM-ANN 10 — 5.50% 23.90 17.05
HPROM-ANN 10 3496 | 3.43% 0.500 814.94
PROM-ANN 20 — 4.60% 65.13 6.26
HPROM-ANN 20 22984 | 4.72% 8.74 46.62

note: configuration (n, i) = (20, 280) uses a single-layer-ANN
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