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L Initial Boundary Value Problems

m Linear or Nonlinear Partial Differential Equation (PDE)

LW, x,t) =0
= W = W(x,t) € R": State variable
B xe€QCR? d<3: Space variable
m t > 0: Time variable
m Examples
m Navier-Stokes equations or linearized counterparts
m elastodynamic equations of motion
®m wave equation
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= W = W(x,t) € R": State variable
B xe€QCR? d<3: Space variable
m t > 0: Time variable
m Examples
m Navier-Stokes equations or linearized counterparts
m elastodynamic equations of motion
®m wave equation

Boundary Conditions (BCs)
B(W, XBC, t) =0

m Dirichlet BCs
m Neumann BCs
m Robin (mixed) BCs

m Initial Condition (IC)
W(X, 0) = Wo(x) = W|C(X)
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L Initial Boundary Value Problems
L Parameterized PDE

m Parameter domain: D C RP

m parameter vector (also referred to as parameter “point”):
p=1[m - p]  €EDCRP

where the superscript T designates the transpose operation

m Parameterized PDE
LOWV,x,t; u) =0

m Boundary conditions
B(W,XBC, t; IJ’) =0

m Initial condition
Wo(x) = Wic(x; p)
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|—Typical Parameters of Interest

m Physical parameters
m shape parameters
m material (properties) parameters
m operation parameters (for example, flight conditions, cruise
conditions, - - )
m boundary conditions
m initial condition

6 planform variables +4 224 mesh points on the wing
(sweep, span, t/c, 3 chords) surface as design variables

it
e A

Simplified Planform Model CAD-Free Section Definition
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I—Untypical Parameters of Interest

m Other types of parameters

® modeling parameters
m abstract parameters

Homogenization ‘

1
=— PydV
Breal ),
e |
E N T -
= . Localization
Xier1losy, = Fr X)) Xis1low,,

Macroscale ) Microscale
level k Element Unit Cell Problem Level k + 1

(ucp)

Input to the UCP: 9 components of the deformation gradient F;,
Output of the UCP: 3 components of the symmetric plane stress tensor

w==p Parameterization of the UCP: 9 components of F),
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L Semi-discretization Processes and Dynamical Systems

L Semi-discretized problem

m The PDE is discretized in space using, for example

a finite difference method

a finite volume method

a finite element method

a discontinuous Galerkin method
a spectral method ...
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L Semi-discretized problem

m The PDE is discretized in space using, for example
m a finite difference method
m a finite volume method
m a finite element method
m a discontinuous Galerkin method
m a spectral method ...

m This leads to a system of N = ¢ X Ngyace Ordinary Differential
Equations (ODEs) that can be written as

dw
g = fw,tp)

where
w=w(t;u) € RV

with the initial condition w(0; ) = wo(ut)
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L Semi-discretization Processes and Dynamical Systems

L Semi-discretized problem

m The PDE is discretized in space using, for example
m a finite difference method
m a finite volume method
m a finite element method
m a discontinuous Galerkin method
m a spectral method ...
m This leads to a system of N = ¢ X Ngyace Ordinary Differential
Equations (ODEs) that can be written as

dw
g = fw,tp)

where
w=w(t;u) € RV

with the initial condition w(0; ) = wo(ut)
m This is the High-Dimensional Model (HDM)
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L case for Model Order Reduction

m Multi-query context

parameter solution

T TR w(t; p)
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m Multi-query context

parameter solution

T TR w(t; p)

m routine analysis

B uncertainty quantification
m design optimization

m inverse problems

m optimal control

m model predictive control
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L case for Model Order Reduction
|—Multi-query Context

m Routine analysis

parameter solution

w(t; p)

TR [T

Store Configurations

Altitude

nemp- 10 000s flight configurations

The tyranny of parameters
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L case for Model Order Reduction
|—Multi-query Context

m Uncertainty quantification

parameter solution
TE [ THET N w(t; p)
parameter p output g(wi(t, u))

Monte-Carlo simulations ...
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L Case for Model Order Reduction
|—Multi-query Context

m Design optimization

parameter = [ ... )"

solution w(t; 1)

DESIGN

EVALUATION
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L Case for Model Order Reduction
|—Multi-query Context

m Model predictive control

TRAJECTORY
OPTIMIZER

600 ft

Glideslope
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|—Case for Model Order Reduction
L Model Parameterized PDE

m Advection-diffusion-reaction equation: W = W(x, t; u) solution of

%+u.vw_ﬁAW:fR(W,t;uR) for x € Q

with appropriate boundary and initial conditions
W(x, t; ) = Wp(x, t; pp) for x € T'p

VW(x, t; ) -n(x) =0 for x € Ny
W(x,0; p) = Wo(x; ) for x € Q
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m Parameters of interest

p=1[th - Ugk pg po el
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L Case for Model Order Reduction
L Parameterized Solutions
m Two-dimensional advection-diffusion equation

%/tv—t—u-VW—/{AW:Oforer

with boundary and initial conditions
W(x, t; u) = Wp(x, t; pup) for x € T'p
VW(x, t; ) -n(x) =0 for x € Ny
W(x,0; p) = Wo(x) for x € Q

My

rD y Q
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|—Case for Model Order Reduction
L Parameterized Solutions

m Two-dimensional advection-diffusion equation

%—FU-VW—/@AW:OfoerQ

with boundary and initial conditions
W(x,t; u) = Wp(x, t; pup) for x € T'p
VW(x,t; ) -n(x) =0 for x € Ty
W(x,0; ) = Wy(x) for x € Q
m 4 parameters of interest = p=14
w=[U U k pp]” €R?

where pp is a specified constant value of Wp(x, t; pp)
s w € RY with N = 5402

15/20



AA216/CME345: PMOR - Parameterized PDEs
|—Case for Model Order Reduction

LParameterized Solutions

m Solution snapshots at some time t;, for six sampled parameter points
pl), j=1, .. 6 (recall that u = [Uy Us K pp]” € R*)

(0,0,0.0002,950) (10,0,0,950) (10,10,0.0004,800)

0 05 1 15
X
(10,2,0.00025,950)
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|—Subspace Approximation

m Question: Can we reuse the pre-computed snapshots to reconstruct
a solution for a queried but unsampled parameter point p*?
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|—Subspace Approximation

m Question: Can we reuse the pre-computed snapshots to reconstruct
a solution for a queried but unsampled parameter point p*?

m ldea: Use a linear combination of these snapshots such as, for
example

N N
w(t; pu*) =~ Z qfl) (t;p*)w (t,-; u(l))+~ : -+Z qfk) (t; p*)w (t,-; u(k))
i=1

i=1

where
[ Ns(j), j=1, -+, k denotes the number of pre-computed solution
snapshots using the sampled parameter point uY) and k denotes the
total number of parameter points sampled in the parameter space D

" w (t,-; p,(f)) € RY denotes the pre-computed solution snapshots at

time t; using the sampled parameter point u
L] qf’)(t; p) € R denotes the expansion coefficient associated with

w (t,-;p,(j))
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|—Subspace Approximation

m The linear expansion

N N
w(t; )~ 3 a0 (6w (6@ ) 43 g (e mw (8 p0)
i=1 i=1

can be written as
w(t; p) =~ Wa(t; p)

where

W — [W (tl;uu)) W(t,\,p);u(l)) w(tl;u(“) w(t,vg);u(k))]
and

q(t: p) = [qil)(t;u) qfvls()n(t;u) e a ) - qf\lkgl)(t;u)r
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|—Subspace Approximation

m The parameterized approximation
w(t; p) = Wa(t; p)

is a subspace approximation of w(t; i), where the subspace is

S = span {W (t1;u(1)) W (t/vﬁk)? N(k))}

and its dimension is

dim (S) = rank [w (tl; u(1)> ~~~~~~ w (tN(k); u(k))} < Z Ny)
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m This approximation constitutes one of the pillars of projection-based
model order reduction (PMOR): It raises the following questions
m how to sample the parameter space D?
m how to reduce the dimensionality of W and therefore that of the

ko
approximation subspace S below N2
j=1
m how to compute the vector of generalized coordinates q(t; t)?
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m The parameterized approximation

w(t; p) = Wa(t; p)

is a subspace approximation of w(t; i), where the subspace is

S = span {W (t1;u(1)) W (t/vﬁk)? N(k))}

and its dimension is
dim (S) = rank [w (tl; u(1)> ~~~~~~ w (th(k); u(k))} < JZ;NSU)

m This approximation constitutes one of the pillars of projection-based
model order reduction (PMOR): It raises the following questions
m how to sample the parameter space D?
m how to reduce the dimensionality of W and therefore that of the
k .
approximation subspace S below N2
j=1
m how to compute the vector of generalized coordinates q(t; t)?
m These are some of the questions that this course addresses
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m Curse of dimensionality

«4Or «F»

a

DA
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m Curse of dimensionality

m high-dimensional parameter spaces (application-dependent)

m assume that at minimum, the dependence of W(x, t; u) is linear in
each component u; of g = at minimum, 2 parameter points must
be sampled in each direction of the parameter space D

m = at minimum, 2P parameter points must be sampled in D

m = for p =20, at least N, = 1048576 parameter points must be
sampled in D = at least 1048576 high-dimensional solution
snapshots must be computed!

m Exponential growth of N, with p and linear growth of the training
cost with N, = adaptive sampling and additional strategies for
mitigating the curse of dimensionality
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