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Solution Approximation

High-Dimensional Model

Ordinary Differential Equation (ODE)

dw

dt
(t) = f(w(t), t) (1)

w ∈ RN : State variable
initial condition: w(0) = w0

Output equation
y(t) = g(w(t), t) (2)

y ∈ Rq: Vector of output variables (typically q ≪ N)

Note the absence of a parameter dependence for now

3 / 38



AA216/CME345: PMOR - Projection-Based Model Order Reduction

Solution Approximation

High-Dimensional Model

Ordinary Differential Equation (ODE)

dw

dt
(t) = f(w(t), t) (1)

w ∈ RN : State variable
initial condition: w(0) = w0

Output equation
y(t) = g(w(t), t) (2)

y ∈ Rq: Vector of output variables (typically q ≪ N)

Note the absence of a parameter dependence for now

3 / 38



AA216/CME345: PMOR - Projection-Based Model Order Reduction

Solution Approximation

Low Dimensionality of Trajectories

In many cases, the trajectories of the solutions computed using
High-Dimensional Models (HDMs) are contained in
low-dimensional subspaces

Let S denote such a subspace and let kS = dim (S)
The state variable – or simply, the state – can be written exactly as
a linear combination of vectors spanning S

w(t) = q1(t)v1 + · · ·+ qkS (t)vkS

VS = [v1 · · · vkS ] ∈ RN×kS is a time-invariant basis for S
(q1(t), · · · , qkS (t)) are the generalized coordinates for w(t) in S
q(t) = [q1(t) · · · qkS (t)]

T ∈ RkS is the reduced-order state vector

In matrix form, the above expansion can be written as

w(t) = VSq(t)
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Solution Approximation

Low Dimensionality of Trajectories

Often, the exact basis VS is unknown but can be estimated
empirically by a trial basis V ∈ RN×k , k < N

k and kS may be different

The following ansatz (educated guess, assumption, etc. to be
verified later) is considered

w(t) ≈ Vq(t)

Substituting the above subspace approximation in Eq. (1) and in
Eq. (2) leads to

d

dt
(Vq(t)) = f(Vq(t), t) + r(t)

y(t) ≈ g(Vq(t), t)

where r(t) is the residual due to the subspace approximation
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Solution Approximation

Low Dimensionality of Trajectories

The residual r(t) ∈ RN accounts for the fact that Vq(t) is not in
general an exact solution of Eq. (1)

Since the basis V is assumed to be time-invariant

d

dt
(Vq(t)) = V

dq

dt
(t)

and therefore

V
dq

dt
(t) = f(Vq(t), t) + r(t)

y(t) ≈ g(Vq(t), t)

Set of N differential equations in terms of k unknowns

q1(t), · · · , qk(t)

Over-determined system (k < N)
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Orthogonal and Oblique Projections

Orthogonality

Let w and y be two vectors in RN

w and y are orthogonal to each other with respect to the canonical
inner product in RN if and only if

wTy = 0

w and y are orthonormal to each other with respect to the canonical
inner product in RN if and only if wTy = 0, and

wTw = 1, and yTy = 1

Let V be a matrix in RN×k

V is an orthogonal (orthonormal) matrix if and only if

VTV = Ik
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Orthogonal and Oblique Projections

Projections

Definition

A matrix Π ∈ RN×N is a projection matrix (or projective matrix,
idempotent matrix) if

Π2 = Π

Some direct consequences

range(Π) is invariant under the action of Π

0 and 1 are the only possible eigenvalues of Π
Π is diagonalizable (follows from the previous consequence)
let k be the rank of Π: then, there exists a basis X such that

Π = X

[
Ik

0N−k

]
X−1

(follows from the two previous consequences)
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Orthogonal and Oblique Projections

Projections

Consider

Π = X

[
Ik

0N−k

]
X−1

decompose X as

X =
[
X1 X2

]
, where X1 ∈ RN×k and X2 ∈ RN×(N−k)

then, ∀w ∈ RN

Πw ∈ range(Π) = range(X1) = S1

w −Πw ∈ Ker(Π) = range(X2) = S2

Π defines the projection onto S1 parallel to S2

RN = S1 ⊕ S2
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Orthogonal and Oblique Projections

Orthogonal Projections

Consider the case where S2 = S⊥
1

Let V ∈ RN×k be an orthogonal matrix whose columns span S1,
and let w ∈ RN : The orthogonal projection of w onto the subspace
S1 is

VVTw

the equivalent projection matrix is

ΠV,V = VVT

special case #1: If w belongs to S1 – that is, w = Vq, where q ∈ Rk

ΠV,Vw = VVTw = VVTV︸ ︷︷ ︸
I

q = Vq = w

special case #2: If w is orthogonal to S1 – that is, VTw = 0

ΠV,Vw = VVTw = 0
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Orthogonal and Oblique Projections

Orthogonal Projections

ΠV,Vw = VVTw
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Orthogonal and Oblique Projections

Orthogonal Projections

Example: Helix in 3D (N = 3)

let w(t) ∈ R3 define a curve parameterized by t ∈ [0, 6π] as follows

w(t) =

 w1(t)
w2(t)
w3(t)

 =

 cos(t)
sin(t)
t



−0.5
0

0.5
1

−0.5
0

0.5

0

5

10

15

 

w1
w2

 

w
3

w (t)
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Orthogonal and Oblique Projections

Orthogonal Projections

Orthogonal projection onto

range(V) = span(e1, e2)

ΠV,Vw(t) =

 cos(t)
sin(t)
0


−0.5

0
0.5

1

−0.5
0

0.5

0

5

10

15

 

w1
w2

 

w
3

w (t)

ΠV ,Vw (t)
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Orthogonal and Oblique Projections

Orthogonal Projections

Orthogonal projection onto

range(V) = span(e2, e3)

ΠV,Vw(t) =

 0
sin(t)
t


−0.5

0
0.5

1

−0.5
0

0.5

0

5

10

15

 

w1
w2

 

w
3

w (t)

ΠV ,Vw (t)
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Orthogonal and Oblique Projections

Orthogonal Projections

Orthogonal projection onto
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t
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0
0.5

1

−0.5
0

0.5

0

5

10

15

 

w1
w2

 

w
3

w (t)
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Orthogonal and Oblique Projections

Oblique Projections

The following is the general case, where S2 may be distinct from
S⊥
1

Let V ∈ RN×k and W ∈ RN×k be two full-column rank matrices
whose columns span respectively S1 and S⊥

2

The projection of w ∈ RN onto the subspace S1 parallel to S2 is

V(WTV)−1WTw

the equivalent projection matrix is

ΠV,W = V(WTV)−1WT

special case #1: If w belongs to S1, then w = Vq, where q ∈ Rk ,
and

ΠV,Ww = V (WTV)−1WTV︸ ︷︷ ︸
I

q = Vq

special case #2: If w ∈ S2 – that is, w is orthogonal to S⊥
2 – then

WTw = 0 and ΠV,Ww = V(WTV)−1 WTw︸ ︷︷ ︸
0

= 0
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Oblique Projections

ΠV,Ww = V(WTV)−1WTw
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Orthogonal and Oblique Projections

Oblique Projections

Example: Helix in 3D

bases
V = [e1 e2], W = [e1 + e3 e2 + e3]

projection matrix

ΠV,W = V(WTV)−1WT =

 1 0 1
0 1 1
0 0 0


projected helix equation

ΠV,Ww(t) =

 1 0 1
0 1 1
0 0 0

 cos(t)
sin(t)
t

 =

 cos(t) + t
sin(t) + t

0


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Orthogonal and Oblique Projections

Oblique Projections
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Galerkin and Petrov-Galerkin Projections

Projection-Based Model Order Reduction

Start from a HDM for the problem of interest

dw

dt
(t) = f(w(t), t)

y(t) = g(w(t), t)

w(0) = w0

w ∈ RN : Vector of state variables

y ∈ Rq: Vector of output variables (typically q ≪ N)

f(·, ·) ∈ RN : Completes the specification of the HDM-based problem
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Galerkin and Petrov-Galerkin Projections

Projection-Based Model Order Reduction

The goal is to construct a Projection-based Reduced-Order
Model (PROM)

dq

dt
(t) = fr (q(t), t)

y(t) ≈ gr (q(t), t)

where

q ∈ Rk : Vector of reduced-order state variables, k ≪ N
y ∈ Rq: Vector of output variables
fr (·, ·) ∈ Rk : Completes the description of the PROM

The discussion of the initial condition is deferred to later
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Galerkin and Petrov-Galerkin Projections

Requirements

A Projection-based Model Order Reduction (PMOR) method should

be computationally tractable

be applicable to a large class of dynamical systems

minimize a certain measure of the error between the solution
computed using the HDM and that computed using the PROM
(error criterion)

preserve as many properties of the HDM as possible
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Galerkin and Petrov-Galerkin Projections

Petrov-Galerkin Projection

Recall the residual r(t) ∈ RN introduced by approximating w(t) as
Vq(t)

V
dq

dt
(t) = f (Vq(t), t) + r(t) ⇔ r(t) = V

dq

dt
(t)− f (Vq(t), t)

Constrain this residual to be orthogonal to a subspace W defined by
a test basis W ∈ RN×k – that is, compute q(t) such that

WT r(t) = 0

This leads to the descriptive form of the governing equations of the
Petrov-Galerkin PROM

WTV
dq

dt
(t) = WT f(Vq(t), t)

23 / 38



AA216/CME345: PMOR - Projection-Based Model Order Reduction

Galerkin and Petrov-Galerkin Projections

Petrov-Galerkin Projection

Recall the residual r(t) ∈ RN introduced by approximating w(t) as
Vq(t)

V
dq

dt
(t) = f (Vq(t), t) + r(t) ⇔ r(t) = V

dq

dt
(t)− f (Vq(t), t)

Constrain this residual to be orthogonal to a subspace W defined by
a test basis W ∈ RN×k – that is, compute q(t) such that

WT r(t) = 0

This leads to the descriptive form of the governing equations of the
Petrov-Galerkin PROM

WTV
dq

dt
(t) = WT f(Vq(t), t)

23 / 38



AA216/CME345: PMOR - Projection-Based Model Order Reduction

Galerkin and Petrov-Galerkin Projections

Petrov-Galerkin Projection

Recall the residual r(t) ∈ RN introduced by approximating w(t) as
Vq(t)

V
dq

dt
(t) = f (Vq(t), t) + r(t) ⇔ r(t) = V

dq

dt
(t)− f (Vq(t), t)

Constrain this residual to be orthogonal to a subspace W defined by
a test basis W ∈ RN×k – that is, compute q(t) such that

WT r(t) = 0

This leads to the descriptive form of the governing equations of the
Petrov-Galerkin PROM

WTV
dq

dt
(t) = WT f(Vq(t), t)

23 / 38



AA216/CME345: PMOR - Projection-Based Model Order Reduction

Galerkin and Petrov-Galerkin Projections

Petrov-Galerkin Projection

Assume that WTV is non-singular: In this case, the PROM can be
re-written in the non-descriptive form

dq

dt
(t) = (WTV)−1WT f(Vq(t), t)

y(t) ≈ g(Vq(t), t)

After the above reduced-order equations have been solved, the
subspace approximation of the high-dimensional state vector can be
reconstructed, if needed, as follows

w(t) ≈ Vq(t)
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Galerkin and Petrov-Galerkin Projections

Galerkin Projection

If W = V, the projection method is called a Galerkin projection and
the resulting PROM is called a Galerkin PROM

If in addition V is orthogonal, the reduced-order equations become

dq

dt
(t) = VT f(Vq(t), t)

y(t) ≈ g(Vq(t), t)
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Galerkin and Petrov-Galerkin Projections

Linear Time-Invariant Systems

Special case: Linear Time-Invariant (LTI) systems

f(w(t), t) = Aw(t) + Bu(t)

g(w(t), t) = Cw(t) +Du(t)

u ∈ Rin: Vector of input variables

corresponding Petrov-Galerkin PROM

dq

dt
(t) = (WTV)−1WT (AVq(t) + Bu(t))

y(t) = CVq(t) +Du(t)

reduced-order LTI operators

Ar = (WTV)−1WTAV ∈ Rk×k , k ≪ N

Br = (WTV)−1WTB ∈ Rk×in

Cr = CV ∈ Rq×k

Dr = D ∈ Rq×in
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Galerkin and Petrov-Galerkin Projections

Initial Condition

High-dimensional initial condition

w(0) = w0 ∈ RN

Reduced-order initial condition (Petrov-Galerkin PROM)

q(0) = (WTV)−1WTw0 ∈ Rk

in the high-dimensional state space, this gives

Vq(0) = V(WTV)−1WTw0 ∈ Rk

this is an oblique projection of w0 onto range(V) parallel to
range(W)

Error in the subspace approximation of the initial condition

w(0)− Vq(0) = (IN − V(WTV)−1WT )w0

Alternative: use an affine approximation w(t) = w(0) + Vq(t) (see
Homework #1)

27 / 38



AA216/CME345: PMOR - Projection-Based Model Order Reduction

Galerkin and Petrov-Galerkin Projections

Initial Condition

High-dimensional initial condition

w(0) = w0 ∈ RN

Reduced-order initial condition (Petrov-Galerkin PROM)

q(0) = (WTV)−1WTw0 ∈ Rk

in the high-dimensional state space, this gives

Vq(0) = V(WTV)−1WTw0 ∈ Rk

this is an oblique projection of w0 onto range(V) parallel to
range(W)

Error in the subspace approximation of the initial condition

w(0)− Vq(0) = (IN − V(WTV)−1WT )w0

Alternative: use an affine approximation w(t) = w(0) + Vq(t) (see
Homework #1)

27 / 38



AA216/CME345: PMOR - Projection-Based Model Order Reduction

Galerkin and Petrov-Galerkin Projections

Initial Condition

High-dimensional initial condition

w(0) = w0 ∈ RN

Reduced-order initial condition (Petrov-Galerkin PROM)

q(0) = (WTV)−1WTw0 ∈ Rk

in the high-dimensional state space, this gives

Vq(0) = V(WTV)−1WTw0 ∈ Rk

this is an oblique projection of w0 onto range(V) parallel to
range(W)

Error in the subspace approximation of the initial condition

w(0)− Vq(0) = (IN − V(WTV)−1WT )w0

Alternative: use an affine approximation w(t) = w(0) + Vq(t) (see
Homework #1)

27 / 38



AA216/CME345: PMOR - Projection-Based Model Order Reduction

Galerkin and Petrov-Galerkin Projections

Initial Condition

High-dimensional initial condition

w(0) = w0 ∈ RN

Reduced-order initial condition (Petrov-Galerkin PROM)

q(0) = (WTV)−1WTw0 ∈ Rk

in the high-dimensional state space, this gives

Vq(0) = V(WTV)−1WTw0 ∈ Rk

this is an oblique projection of w0 onto range(V) parallel to
range(W)

Error in the subspace approximation of the initial condition

w(0)− Vq(0) = (IN − V(WTV)−1WT )w0

Alternative: use an affine approximation w(t) = w(0) + Vq(t) (see
Homework #1)

27 / 38



AA216/CME345: PMOR - Projection-Based Model Order Reduction

Galerkin and Petrov-Galerkin Projections

Initial Condition

High-dimensional initial condition

w(0) = w0 ∈ RN

Reduced-order initial condition (Petrov-Galerkin PROM)

q(0) = (WTV)−1WTw0 ∈ Rk

in the high-dimensional state space, this gives

Vq(0) = V(WTV)−1WTw0 ∈ Rk

this is an oblique projection of w0 onto range(V) parallel to
range(W)

Error in the subspace approximation of the initial condition

w(0)− Vq(0) = (IN − V(WTV)−1WT )w0

Alternative: use an affine approximation w(t) = w(0) + Vq(t) (see
Homework #1)

27 / 38



AA216/CME345: PMOR - Projection-Based Model Order Reduction

Galerkin and Petrov-Galerkin Projections

Initial Condition

High-dimensional initial condition

w(0) = w0 ∈ RN

Reduced-order initial condition (Petrov-Galerkin PROM)

q(0) = (WTV)−1WTw0 ∈ Rk

in the high-dimensional state space, this gives

Vq(0) = V(WTV)−1WTw0 ∈ Rk

this is an oblique projection of w0 onto range(V) parallel to
range(W)

Error in the subspace approximation of the initial condition

w(0)− Vq(0) = (IN − V(WTV)−1WT )w0

Alternative: use an affine approximation w(t) = w(0) + Vq(t) (see
Homework #1)

27 / 38



AA216/CME345: PMOR - Projection-Based Model Order Reduction

Equivalent High-Dimensional Model

Question: Which HDM would produce the same solution as that
given by the Petrov-Galerkin PROM? (this notion will prove to be
useful for the stability analysis of a PROM)

recall the reduced-order equations

dq

dt
(t) = (WTV)−1WT f(Vq(t), t)

y(t) = g(Vq(t), t)

the corresponding reconstructed high-dimensional state solution is

w̃(t) = Vq(t)

pre-multiplying the above reduced-order equations by V leads to

dw̃

dt
(t) = V(WTV)−1WT f(w̃(t), t)

ỹ(t) = g(w̃(t), t)

the associated initial condition is

w̃(0) = Vq(0) = V(WTV)−1WTw(0)
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Equivalent High-Dimensional Model

Recall the projector ΠV,W

ΠV,W = V(WTV)−1WT

Definition

Equivalent HDM

dw̃

dt
(t) = ΠV,Wf(w̃(t), t)

ỹ(t) = g(w̃(t), t)

with the initial condition

w̃(0) = ΠV,Ww(0)

The equivalent dynamical function is

f̃(·, ·) = ΠV,Wf(·, ·)
29 / 38



AA216/CME345: PMOR - Projection-Based Model Order Reduction

Equivalent High-Dimensional Model

Equivalence Between Two Projection-Based Reduced-Order Models

Consider the Petrov-Galerkin PROM

dq

dt
(t) = (WTV)−1WT f(Vq(t), t)

y(t) ≈ g(Vq(t), t)

q(0) = (WTV)−1WTw(0)

Lemma

Choosing two different bases V′ and W′ that respectively span the same
subspaces V and W results in the same reconstructed solution w(t)

In other words, subspaces are more important than bases ...
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Equivalent High-Dimensional Model

Equivalence Between Two Projection-Based Reduced-Order Models

Consequences

given a HDM, a corresponding PROM is uniquely defined by its
associated Petrov-Galerkin projector ΠV,W

this projector is itself uniquely defined by the two subspaces

W = range(W) and V = range(V)

hence
PROM ⇔ (W,V)

W and V belong to the Grassmann manifold G(k,N), which is the
set of all subspaces of dimension k in RN
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W and V belong to the Grassmann manifold G(k,N), which is the
set of all subspaces of dimension k in RN
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Error Analysis

Definition

Question: Can we characterize the error of the solution computed
using a PROM relative to the solution obtained using the HDM?

EPROM(t) = w(t)− w̃(t)

= w(t)− Vq(t)

assume here a Galerkin projection and an associated orthogonal basis

VTV = Ik
projector ΠV,V = VVT

the error vector can be decomposed into two orthogonal
components

EPROM(t) = w(t)−ΠV,Vw(t) +ΠV,Vw(t)− Vq(t)

= (IN −ΠV,V)w(t) + V
(
VTw(t)− q(t)

)
= EV⊥(t) + EV(t)
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Error Analysis

Orthogonal Components of the Error Vector

Error component orthogonal to V

EV⊥(t) = (IN −ΠV,V)w(t)

Interpretation: The exact trajectory does not strictly belong to
V = range(V) ⇒ projection error

Error component parallel to V

EV(t) = V
(
VTw(t)− q(t)

)
Interpretation: An “equivalent” but different high-dimensional
dynamical system is solved ⇒ modeling error

Note that EV⊥(t) can be computed without executing the PROM
and therefore can provide an a priori error estimate
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Error Analysis

Orthogonal Components of the Error Vector

w(t)

(IN �⇧V,V)w(t)

V(VT w(t) � q(t))

Vq(t)

V?

V

w(t) � Vq(t)
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Error Analysis

Orthogonal Components of the Error Vector

Adapted from A New Look at Proper Orthogonal Decomposition, Rathiman and Petzold, SIAM

Journal of Numerical Analysis, Vol. 41, No. 5, 2003.
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Error Analysis

Orthogonal Components of the Error Vector

Again, consider the case of an orthogonal Galerkin projection

One can derive an ODE governing the behavior of the error
component lying in V in terms of that lying in V⊥

dEV
dt

(t) = ΠV,V

(
f(w(t), t)− f(w(t)− EV(t)− EV⊥(t), t)

)
EV(0) = 0

In the case of an autonomous linear system (ALS)

dw

dt
(t) = Aw(t)

the error ODE has the simple form

dEV
dt

(t) = ΠV,V (AEV(t)) +ΠV,V (AEV⊥(t))

where EV⊥(t) acts as a forcing term
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Error Analysis

Orthogonal Components of the Error Vector

Then, one can derive the following error bound for an ALS

Theorem

∥EPROM(t)∥ ≤
(
∥F (T ,VTAV)∥2∥VTAV⊥∥2 + 1

)
∥EV⊥(t)∥

where ∥ · ∥ denotes the L2

(
[0,T ],RN

)
function norm,

∥f ∥2 =
√∫ T

0
∥f (τ)∥22dτ , and F (T ,M) denotes the linear operator

defined by

F (T ,M) : L2

(
[0,T ],RN

)
→ L2

(
[0,T ],RN

)
u 7−→ t 7−→

(∫ t

0

eM(t−τ)u(τ)dτ

)

Error bounds for the nonlinear case can be found in A New Look at
Proper Orthogonal Decomposition, Rathiman and Petzold, SIAM
Journal of Numerical Analysis, Vol. 41, No. 5, 2003
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Preservation of Model Stability

If A is symmetric and the projection is an orthogonal Galerkin
projection, the stability of the HDM is preserved during the reduction
process

(
Hint: Consider the equivalent HDM and analyze the sign of

d

dt

(
w̃T w̃

)
after making the change of variable y = (−A)1/2w

)

However, if A is not symmetric, the stability of the HDM is not
preserved: For example, consider a linear HDM characterized by the
following unsymmetric matrix

A =

[
1 −3.5
0.6 −2

]

the eigenvalues of A are {−0.1127,−0.8873} (stable model)

consider next the reduced-order basis V

V =

[
1
0

]

Ar = [1] and therefore the Galerkin PROM is not asymptotically
stable
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