

AA216/CME345: PROJECTION-BASED MODEL ORDER REDUCTION

Balanced Truncation (BT)

Charbel Farhat
Stanford University
cfarhat@stanford.edu

These slides are based on the recommended textbook: A.C. Antoulas, "Approximation of Large-Scale Dynamical Systems," Advances in Design and Control, SIAM,
ISBN-0-89871-529-6

Outline

- 1 Reachability and Observability
- 2 Balancing
- 3 Balanced Truncation Method
- 4 Error Analysis
- 5 Stability Analysis
- 6 Computational Complexity
- 7 Comparison with the POD Method
- 8 Application
- 9 Balanced POD Method

└ Reachability and Observability

└ Scope (Considered Family of Systems)

- Consider the following **stable**, high-dimensional, LTI system

$$\begin{aligned}\frac{d\mathbf{w}}{dt}(t) &= \mathbf{Aw}(t) + \mathbf{Bu}(t) \\ \mathbf{y}(t) &= \mathbf{Cw}(t) \\ \mathbf{w}(0) &= \mathbf{w}_0\end{aligned}$$

- $\mathbf{w} \in \mathbb{R}^N$: State variables
- $\mathbf{u} \in \mathbb{R}^{in}$: Input variables, typically $\ll N$
- $\mathbf{y} \in \mathbb{R}^q$: Output variables, typically $q \ll N$

- Recall that the solution $\mathbf{w}(t)$ of the above linear ODE can be written as

$$\mathbf{w}(t) = \phi(t, \mathbf{u}; t_0, \mathbf{w}_0) = e^{\mathbf{A}(t-t_0)} \mathbf{w}(t_0) + \int_{t_0}^t e^{\mathbf{A}(t-\tau)} \mathbf{B} \mathbf{u}(\tau) d\tau, \quad \forall t \geq t_0$$

(1)

└ Reachability and Observability

└ Reachability, Controllability, and Observability

Definition

For $T < \infty$, a state $\mathbf{w}(T) \in \mathbb{R}^N$ of a dynamical system is said to be **reachable** (or attainable) from an initial state $\mathbf{w}(t_0)$ if there exists an admissible (finite energy) input function $\mathbf{u}(\cdot)$ defined over $[t_0, T]$ that drives the system from $\mathbf{w}(t_0)$ to $\mathbf{w}(T)$

└ Reachability and Observability

└ Reachability, Controllability, and Observability

Definition

For $T < \infty$, a state $\mathbf{w}(T) \in \mathbb{R}^N$ of a dynamical system is said to be **reachable** (or attainable) from an initial state $\mathbf{w}(t_0)$ if there exists an admissible (finite energy) input function $\mathbf{u}(\cdot)$ defined over $[t_0, T]$ that drives the system from $\mathbf{w}(t_0)$ to $\mathbf{w}(T)$

Definition

A state $\mathbf{w} \in \mathbb{R}^N$ of a dynamical system is said to be **controllable** to the zero state if there exists a finite-time admissible control input function $\mathbf{u}(\cdot)$ defined over $[t_0, T]$ ($T < \infty$) that drives the system from the state \mathbf{w} to the zero state – that is, $\phi(T, \mathbf{u}; t_0, \mathbf{w}) = \mathbf{0}_N$

└ Reachability and Observability

└ Reachability, Controllability, and Observability

Definition

For $T < \infty$, a state $\mathbf{w}(T) \in \mathbb{R}^N$ of a dynamical system is said to be **reachable** (or attainable) from an initial state $\mathbf{w}(t_0)$ if there exists an admissible (finite energy) input function $\mathbf{u}(\cdot)$ defined over $[t_0, T]$ that drives the system from $\mathbf{w}(t_0)$ to $\mathbf{w}(T)$

Definition

A state $\mathbf{w} \in \mathbb{R}^N$ of a dynamical system is said to be **controllable** to the zero state if there exists a finite-time admissible control input function $\mathbf{u}(\cdot)$ defined over $[t_0, T]$ ($T < \infty$) that drives the system from the state \mathbf{w} to the zero state – that is, $\phi(T, \mathbf{u}; t_0, \mathbf{w}) = \mathbf{0}_N$

Definition

A state $\mathbf{w} \in \mathbb{R}^N$ of a dynamical system is said to be **unobservable** if for all $t \geq t_0$,

$$\mathbf{y}(t) = \mathbf{C}\phi(t, \mathbf{0}; t_0, \mathbf{w}) = \mathbf{0}_q$$

└ Reachability and Observability

└ Completely Controllable Dynamical System

Definition (R.E. Kalman, 1963)

A *linear dynamical system* $(\mathbf{A}, \mathbf{B}, \mathbf{C})$ is said to be **completely controllable** at time t_0 if it is not equivalent, for all $t \geq t_0$, to a system of the type

$$\begin{aligned}\frac{d\mathbf{w}^{(1)}}{dt} &= \mathbf{A}^{(1,1)}\mathbf{w}^{(1)} + \mathbf{A}^{(1,2)}\mathbf{w}^{(2)} + \mathbf{B}^{(1)}\mathbf{u} \\ \frac{d\mathbf{w}^{(2)}}{dt} &= \mathbf{A}^{(2,2)}\mathbf{w}^{(2)} \\ \mathbf{y}(t) &= \mathbf{C}^{(1)}\mathbf{w}^{(1)} + \mathbf{C}^{(2)}\mathbf{w}^{(2)}\end{aligned}$$

└ Reachability and Observability

└ Completely Controllable Dynamical System

Definition (R.E. Kalman, 1963)

A *linear dynamical system* $(\mathbf{A}, \mathbf{B}, \mathbf{C})$ is said to be **completely controllable** at time t_0 if it is not equivalent, for all $t \geq t_0$, to a system of the type

$$\begin{aligned}\frac{d\mathbf{w}^{(1)}}{dt} &= \mathbf{A}^{(1,1)}\mathbf{w}^{(1)} + \mathbf{A}^{(1,2)}\mathbf{w}^{(2)} + \mathbf{B}^{(1)}\mathbf{u} \\ \frac{d\mathbf{w}^{(2)}}{dt} &= \mathbf{A}^{(2,2)}\mathbf{w}^{(2)} \\ \mathbf{y}(t) &= \mathbf{C}^{(1)}\mathbf{w}^{(1)} + \mathbf{C}^{(2)}\mathbf{w}^{(2)}\end{aligned}$$

- Interpretation: It is not possible to find a coordinate system in which the state variables are separated into two groups, $\mathbf{w}^{(1)}$ and $\mathbf{w}^{(2)}$, such that the second group is affected neither by the first group, nor by the inputs to the system

└ Reachability and Observability

└ Completely Controllable Dynamical System

Definition (R.E. Kalman, 1963)

A *linear dynamical system* $(\mathbf{A}, \mathbf{B}, \mathbf{C})$ is said to be **completely controllable** at time t_0 if it is not equivalent, for all $t \geq t_0$, to a system of the type

$$\begin{aligned}\frac{d\mathbf{w}^{(1)}}{dt} &= \mathbf{A}^{(1,1)}\mathbf{w}^{(1)} + \mathbf{A}^{(1,2)}\mathbf{w}^{(2)} + \mathbf{B}^{(1)}\mathbf{u} \\ \frac{d\mathbf{w}^{(2)}}{dt} &= \mathbf{A}^{(2,2)}\mathbf{w}^{(2)} \\ \mathbf{y}(t) &= \mathbf{C}^{(1)}\mathbf{w}^{(1)} + \mathbf{C}^{(2)}\mathbf{w}^{(2)}\end{aligned}$$

- Interpretation: It is not possible to find a coordinate system in which the state variables are separated into two groups, $\mathbf{w}^{(1)}$ and $\mathbf{w}^{(2)}$, such that the second group is affected neither by the first group, nor by the inputs to the system
- Controllability is only a property of (\mathbf{A}, \mathbf{B})

└ Reachability and Observability

└ Completely Controllable Dynamical System

Definition (R.E. Kalman, 1963)

A *linear dynamical system* $(\mathbf{A}, \mathbf{B}, \mathbf{C})$ is said to be **completely controllable** at time t_0 if it is not equivalent, for all $t \geq t_0$, to a system of the type

$$\begin{aligned}\frac{d\mathbf{w}^{(1)}}{dt} &= \mathbf{A}^{(1,1)}\mathbf{w}^{(1)} + \mathbf{A}^{(1,2)}\mathbf{w}^{(2)} + \mathbf{B}^{(1)}\mathbf{u} \\ \frac{d\mathbf{w}^{(2)}}{dt} &= \mathbf{A}^{(2,2)}\mathbf{w}^{(2)} \\ \mathbf{y}(t) &= \mathbf{C}^{(1)}\mathbf{w}^{(1)} + \mathbf{C}^{(2)}\mathbf{w}^{(2)}\end{aligned}$$

- Interpretation: It is not possible to find a coordinate system in which the state variables are separated into two groups, $\mathbf{w}^{(1)}$ and $\mathbf{w}^{(2)}$, such that the second group is affected neither by the first group, nor by the inputs to the system
- Controllability is only a property of (\mathbf{A}, \mathbf{B})
- This definition can be extended to linear time-variant systems

└ Reachability and Observability

└ Completely Observable Dynamical System

Definition

A *linear dynamical system* $(\mathbf{A}, \mathbf{B}, \mathbf{C})$ is said to be **completely observable** at time t_0 if it is not equivalent, for all $\underline{t \leq t_0}$, to any system of the type

$$\begin{aligned}\frac{d\mathbf{w}^{(1)}}{dt} &= \mathbf{A}^{(1,1)}\mathbf{w}^{(1)} + \mathbf{B}^{(1)}\mathbf{u} \\ \frac{d\mathbf{w}^{(2)}}{dt} &= \mathbf{A}^{(2,1)}\mathbf{w}^{(1)} + \mathbf{A}^{(2,2)}\mathbf{w}^{(2)} + \mathbf{B}^{(2)}\mathbf{u} \\ \mathbf{y}(t) &= \mathbf{C}^{(1)}\mathbf{w}^{(1)}\end{aligned}$$

└ Reachability and Observability

└ Completely Observable Dynamical System

Definition

A *linear dynamical system* $(\mathbf{A}, \mathbf{B}, \mathbf{C})$ is said to be **completely observable** at time t_0 if it is not equivalent, for all $t \leq t_0$, to any system of the type

$$\frac{d\mathbf{w}^{(1)}}{dt} = \mathbf{A}^{(1,1)}\mathbf{w}^{(1)} + \mathbf{B}^{(1)}\mathbf{u}$$

$$\frac{d\mathbf{w}^{(2)}}{dt} = \mathbf{A}^{(2,1)}\mathbf{w}^{(1)} + \mathbf{A}^{(2,2)}\mathbf{w}^{(2)} + \mathbf{B}^{(2)}\mathbf{u}$$

$$\mathbf{y}(t) = \mathbf{C}^{(1)}\mathbf{w}^{(1)}$$

- Dual of the previous definition

└ Reachability and Observability

└ Completely Observable Dynamical System

Definition

A *linear dynamical system* $(\mathbf{A}, \mathbf{B}, \mathbf{C})$ is said to be **completely observable** at time t_0 if it is not equivalent, for all $t \leq t_0$, to any system of the type

$$\begin{aligned}\frac{d\mathbf{w}^{(1)}}{dt} &= \mathbf{A}^{(1,1)}\mathbf{w}^{(1)} + \mathbf{B}^{(1)}\mathbf{u} \\ \frac{d\mathbf{w}^{(2)}}{dt} &= \mathbf{A}^{(2,1)}\mathbf{w}^{(1)} + \mathbf{A}^{(2,2)}\mathbf{w}^{(2)} + \mathbf{B}^{(2)}\mathbf{u} \\ \mathbf{y}(t) &= \mathbf{C}^{(1)}\mathbf{w}^{(1)}\end{aligned}$$

- Dual of the previous definition
- Interpretation: It is not possible to find a coordinate system in which the state variables are separated into two groups, $\mathbf{w}^{(1)}$ and $\mathbf{w}^{(2)}$, such that the second group affects neither the first group, nor the outputs of the system

└ Reachability and Observability

└ Completely Observable Dynamical System

Definition

A *linear dynamical system* $(\mathbf{A}, \mathbf{B}, \mathbf{C})$ is said to be **completely observable** at time t_0 if it is not equivalent, for all $t \leq t_0$, to any system of the type

$$\begin{aligned}\frac{d\mathbf{w}^{(1)}}{dt} &= \mathbf{A}^{(1,1)}\mathbf{w}^{(1)} + \mathbf{B}^{(1)}\mathbf{u} \\ \frac{d\mathbf{w}^{(2)}}{dt} &= \mathbf{A}^{(2,1)}\mathbf{w}^{(1)} + \mathbf{A}^{(2,2)}\mathbf{w}^{(2)} + \mathbf{B}^{(2)}\mathbf{u} \\ \mathbf{y}(t) &= \mathbf{C}^{(1)}\mathbf{w}^{(1)}\end{aligned}$$

- Dual of the previous definition
- Interpretation: It is not possible to find a coordinate system in which the state variables are separated into two groups, $\mathbf{w}^{(1)}$ and $\mathbf{w}^{(2)}$, such that the second group affects neither the first group, nor the outputs of the system
- Observability is only a property of (\mathbf{A}, \mathbf{C})

└ Reachability and Observability

└ Completely Observable Dynamical System

Definition

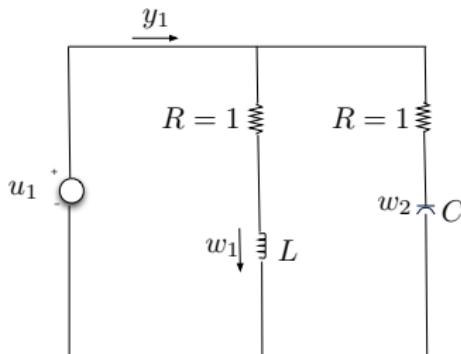
A *linear dynamical system* $(\mathbf{A}, \mathbf{B}, \mathbf{C})$ is said to be **completely observable** at time t_0 if it is not equivalent, for all $t \leq t_0$, to any system of the type

$$\begin{aligned}\frac{d\mathbf{w}^{(1)}}{dt} &= \mathbf{A}^{(1,1)}\mathbf{w}^{(1)} + \mathbf{B}^{(1)}\mathbf{u} \\ \frac{d\mathbf{w}^{(2)}}{dt} &= \mathbf{A}^{(2,1)}\mathbf{w}^{(1)} + \mathbf{A}^{(2,2)}\mathbf{w}^{(2)} + \mathbf{B}^{(2)}\mathbf{u} \\ \mathbf{y}(t) &= \mathbf{C}^{(1)}\mathbf{w}^{(1)}\end{aligned}$$

- Dual of the previous definition
- Interpretation: It is not possible to find a coordinate system in which the state variables are separated into two groups, $\mathbf{w}^{(1)}$ and $\mathbf{w}^{(2)}$, such that the second group affects neither the first group, nor the outputs of the system
- Observability is only a property of (\mathbf{A}, \mathbf{C})
- This definition can be extended to linear time-variant systems

└ Reachability and Observability

└ Example: Simple RLC Circuit



- For $C = L$ and $R = 1$, the equation of the network shown above in terms of the current w_1 flowing through the inductor and the potential w_2 across the capacitor is given by

$$\begin{aligned}\frac{dw_1}{dt} &= -\frac{1}{L}w_1 + u_1 \\ \frac{dw_2}{dt} &= -\frac{1}{L}w_2 + u_1 \\ y_1 &= \frac{1}{L}w_1 - \frac{1}{L}w_2 + u_1\end{aligned}$$

└ Reachability and Observability

└ Example: Simple RLC Circuit

- Under the change of variable $\bar{w}_1 = (w_1 + w_2)/2$ and $\bar{w}_2 = (w_1 - w_2)/2$, the previous dynamical system becomes

$$\begin{aligned}\frac{d\bar{w}_1}{dt} &= -\frac{1}{L}\bar{w}_1 + u_1 \\ \frac{d\bar{w}_2}{dt} &= -\frac{1}{L}\bar{w}_2 \\ y_1 &= \frac{2}{L}\bar{w}_2 + u_1\end{aligned}$$

└ Reachability and Observability

└ Example: Simple RLC Circuit

- Under the change of variable $\bar{w}_1 = (w_1 + w_2)/2$ and $\bar{w}_2 = (w_1 - w_2)/2$, the previous dynamical system becomes

$$\begin{aligned}\frac{d\bar{w}_1}{dt} &= -\frac{1}{L}\bar{w}_1 + u_1 \\ \frac{d\bar{w}_2}{dt} &= -\frac{1}{L}\bar{w}_2 \\ y_1 &= \frac{2}{L}\bar{w}_2 + u_1\end{aligned}$$

- \bar{w}_1 is controllable but not observable

└ Reachability and Observability

└ Example: Simple RLC Circuit

- Under the change of variable $\bar{w}_1 = (w_1 + w_2)/2$ and $\bar{w}_2 = (w_1 - w_2)/2$, the previous dynamical system becomes

$$\begin{aligned}\frac{d\bar{w}_1}{dt} &= -\frac{1}{L}\bar{w}_1 + u_1 \\ \frac{d\bar{w}_2}{dt} &= -\frac{1}{L}\bar{w}_2 \\ y_1 &= \frac{2}{L}\bar{w}_2 + u_1\end{aligned}$$

- \bar{w}_1 is controllable but not observable
- \bar{w}_2 is observable but not controllable

└ Reachability and Observability

└ Example: Simple RLC Circuit

- Under the change of variable $\bar{w}_1 = (w_1 + w_2)/2$ and $\bar{w}_2 = (w_1 - w_2)/2$, the previous dynamical system becomes

$$\begin{aligned}\frac{d\bar{w}_1}{dt} &= -\frac{1}{L}\bar{w}_1 + u_1 \\ \frac{d\bar{w}_2}{dt} &= -\frac{1}{L}\bar{w}_2 \\ y_1 &= \frac{2}{L}\bar{w}_2 + u_1\end{aligned}$$

- \bar{w}_1 is controllable but not observable
- \bar{w}_2 is observable but not controllable
- Hence, this dynamical system is neither completely controllable nor completely observable

└ Reachability and Observability

└ Canonical Structure Theorem

Theorem (Kalman, 1961)

Consider a linear dynamical system $(\mathbf{A}, \mathbf{B}, \mathbf{C})$. Then:

(i) There is a state space coordinate system in which the components of the state vector can be decomposed into four parts

$$\mathbf{w} = [\mathbf{w}^{(a)} \ \mathbf{w}^{(b)} \ \mathbf{w}^{(c)} \ \mathbf{w}^{(d)}]^T$$

(ii) The sizes N_a , N_b , N_c and N_d of these vectors do not depend on the choice of basis

(iii) The system matrices take the form

$$\mathbf{A} = \begin{bmatrix} \mathbf{A}^{(a,a)} & \mathbf{A}^{(a,b)} & \mathbf{A}^{(a,c)} & \mathbf{A}^{(a,d)} \\ 0 & \mathbf{A}^{(b,b)} & 0 & \mathbf{A}^{(b,d)} \\ 0 & 0 & \mathbf{A}^{(c,c)} & \mathbf{A}^{(c,d)} \\ 0 & 0 & 0 & \mathbf{A}^{(d,d)} \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} \mathbf{B}^{(a)} \\ \mathbf{B}^{(b)} \\ 0 \\ 0 \end{bmatrix},$$

$$\mathbf{C} = [\ 0 \ \ \mathbf{C}^{(b)} \ \ 0 \ \ \mathbf{C}^{(d)} \]$$

└ Reachability and Observability

└ Canonical Structure Theorem

- The four parts of w can be interpreted as follows

└ Reachability and Observability

└ Canonical Structure Theorem

- The four parts of w can be interpreted as follows
 - part (a) is completely controllable but unobservable

└ Reachability and Observability

└ Canonical Structure Theorem

- The four parts of w can be interpreted as follows
 - part (a) is completely controllable but unobservable
 - part (b) is completely controllable and completely observable

└ Reachability and Observability

└ Canonical Structure Theorem

- The four parts of w can be interpreted as follows
 - part (a) is completely controllable but unobservable
 - part (b) is completely controllable and completely observable
 - part (c) is uncontrollable and unobservable

└ Reachability and Observability

└ Canonical Structure Theorem

- The four parts of w can be interpreted as follows
 - part (a) is completely controllable but unobservable
 - part (b) is completely controllable and completely observable
 - part (c) is uncontrollable and unobservable
 - part (d) is uncontrollable and completely observable

└ Reachability and Observability

└ Canonical Structure Theorem

- The four parts of w can be interpreted as follows
 - part (a) is completely controllable but unobservable
 - part (b) is completely controllable and completely observable
 - part (c) is uncontrollable and unobservable
 - part (d) is uncontrollable and completely observable
- This theorem can be extended to linear time-variant systems

└ Reachability and Observability

└ Reachable and Controllable Subspaces

Definition

The **reachable subspace** $W_{\text{reach}} \subset \mathbb{R}^N$ of a system (A, B, C) is the set containing all reachable states of the system and

$$\mathcal{R}(A, B) = [B \ A B \ \cdots \ A^{N-1} B]$$

is the **reachability matrix** of the system

└ Reachability and Observability

└ Reachable and Controllable Subspaces

Definition

The **reachable subspace** $W_{\text{reach}} \subset \mathbb{R}^N$ of a system (A, B, C) is the set containing all reachable states of the system and

$$\mathcal{R}(A, B) = [B \ A B \ \cdots \ A^{N-1} B]$$

is the **reachability matrix** of the system

Definition

The **controllable subspace** $W_{\text{contr}} \subset \mathbb{R}^N$ of a system (A, B, C) is the set containing all controllable states of the system

└ Reachability and Observability

└ Reachable and Controllable Subspaces

Theorem

Given a system $(\mathbf{A}, \mathbf{B}, \mathbf{C})$,

$$\mathbb{W}_{\text{reach}} = \text{Im } \mathcal{R}(\mathbf{A}, \mathbf{B})$$

■ Proof

- recall (1) then set $t_0 = 0$ and $\mathbf{w}(0) = \mathbf{0}$
- recall that $e^{\mathbf{A}(t-\tau)} = \mathbf{I}_N + \mathbf{A}(t-\tau) + \frac{(\mathbf{A}(t-\tau))^2}{2!} + \dots$
- then $\mathbf{w}(t) = \int_0^t \left(\mathbf{I}_N + \mathbf{A}(t-\tau) + \frac{(\mathbf{A}(t-\tau))^2}{2!} + \dots \right) \mathbf{B}\mathbf{u}(\tau) d\tau$
- for any finite t , $\int_0^t \frac{(t-\tau)^k}{k!} \mathbf{u}(\tau) d\tau$ acts as an in-long vector
multiplying $\mathbf{A}^k \mathbf{B}$ to the right
 \Rightarrow linear combination of $\{\mathbf{B}, \mathbf{AB}, \dots, \mathbf{A}^{N-1}\mathbf{B}, \mathbf{A}^N\mathbf{B}, \mathbf{A}^{N+1}\mathbf{B}, \dots\}$
- recall Cayley-Hamilton: $c_N \mathbf{A}^N + c_{N-1} \mathbf{A}^{N-1} + \dots + c_1 \mathbf{A} + c_0 \mathbf{I}_N = \mathbf{0}$
 \Rightarrow linear combination of the columns of $[\mathbf{B} \ \mathbf{AB} \ \dots \ \mathbf{A}^{N-1}\mathbf{B}]$ □

└ Reachability and Observability

└ Reachable and Controllable Subspaces

Corollary

- (i) If \mathcal{R} has full rank, $\mathbf{A}\mathbb{W}_{\text{reach}} \subset \mathbb{W}_{\text{reach}}$
- (ii) The system is completely reachable if and only if $\text{rank } \mathcal{R}(\mathbf{A}, \mathbf{B}) = N$
- (iii) Reachability is basis independent

■ Proof

- only the term $\mathbf{A}^N \mathbf{B} \in \mathbb{R}^{N \times \text{in}}$ requires special attention
 - Cayley-Hamilton: $c_N \mathbf{A}^N + c_{N-1} \mathbf{A}^{N-1} + \cdots + c_1 \mathbf{A} + c_0 \mathbf{I}_N = \mathbf{0}$

$$\Rightarrow c_N \mathbf{A}^N \mathbf{B} + c_{N-1} \mathbf{A}^{N-1} \mathbf{B} + \cdots + c_1 \mathbf{A} \mathbf{B} + c_0 \mathbf{B} = \mathbf{0}$$

$$\Rightarrow \mathbf{A}^N \mathbf{B} = -\frac{c_{N-1}}{c_N} \mathbf{A}^{N-1} \mathbf{B} - \cdots - \frac{c_1}{c_N} \mathbf{A} \mathbf{B} - \frac{c_0}{c_N} \mathbf{B}$$

□

└ Reachability and Observability

└ Reachability and Observability Gramians

Definition

The **reachability (controllability) Gramian** at time $T < \infty$ is defined as the $N \times N$ symmetric positive semi-definite matrix

$$\mathcal{P}(T) = \int_0^T e^{\mathbf{A}\tau} \mathbf{B} \mathbf{B}^* e^{\mathbf{A}^*\tau} d\tau$$

where \star designates the transpose of the complex conjugate

└ Reachability and Observability

└ Reachability and Observability Gramians

Definition

The **reachability (controllability) Gramian** at time $T < \infty$ is defined as the $N \times N$ symmetric positive semi-definite matrix

$$\mathcal{P}(T) = \int_0^T e^{\mathbf{A}\tau} \mathbf{B} \mathbf{B}^* e^{\mathbf{A}^*\tau} d\tau$$

where \star designates the transpose of the complex conjugate

Definition

The **observability Gramian** at time $T < \infty$ is defined as the $N \times N$ symmetric positive semi-definite matrix

$$\mathcal{Q}(T) = \int_0^T e^{\mathbf{A}^*\tau} \mathbf{C}^* \mathbf{C} e^{\mathbf{A}\tau} d\tau$$

└ Reachability and Observability

└ Reachability and Observability Gramians

Proposition

The columns of $\mathcal{P}(T)$ span the reachability subspace

$$\mathbb{W}_{\text{reach}} = \text{Im } \mathcal{R}(\mathbf{A}, \mathbf{B})$$

└ Reachability and Observability

└ Reachability and Observability Gramians

Proposition

The columns of $\mathcal{P}(T)$ span the reachability subspace

$$\mathbb{W}_{\text{reach}} = \text{Im } \mathcal{R}(\mathbf{A}, \mathbf{B})$$

Corollary

A system $(\mathbf{A}, \mathbf{B}, \mathbf{C})$ is reachable if and only if $\mathcal{P}(T)$ is Symmetric Positive Definite (SPD) at some time $T > 0$

■ Proof

- if $\mathcal{P}(T)$ is SPD, define the input $\mathbf{u}(t) = \mathbf{B}^* e^{\mathbf{A}^*(T-t)} \mathcal{P}^{-1} \mathbf{w}$, $t \in [0, T]$
- starting from $\mathbf{w}(0) = \mathbf{0}$, the resulting final state is $\mathbf{w}(t) = \int_0^T e^{\mathbf{A}(T-\tau)} \mathbf{B} \mathbf{u}(\tau) d\tau = \left(\int_0^T e^{\mathbf{A}(T-\tau)} \mathbf{B} \mathbf{B}^* e^{\mathbf{A}^*(T-\tau)} d\tau \right) \mathcal{P}^{-1} \mathbf{w}(T)$
 $= \underbrace{\left(\int_0^T e^{\mathbf{A}\tau} \mathbf{B} \mathbf{B}^* e^{\mathbf{A}^*\tau} d\tau \right)}_{\mathcal{P}} \mathcal{P}^{-1} \mathbf{w}(T) = \mathbf{w}(T)$

└ Reachability and Observability

└ Equivalence Between Reachability and Controllability

Theorem

For continuous linear dynamical systems, the notions of controllability and reachability are equivalent – that is,

$$\mathbb{W}_{reach} = \mathbb{W}_{contr}$$

└ Reachability and Observability

└ Unobservability Subspace

Definition

The **unobservability subspace** $\mathbb{W}_{\text{unobs}} \subset \mathbb{R}^N$ is the set of all unobservable states of the system and the matrix

$$\mathcal{O}(\mathbf{C}, \mathbf{A}) = [\mathbf{C}^* \ \mathbf{A}^* \mathbf{C}^* \ \cdots \ (\mathbf{A}^*)^i \mathbf{C}^* \ \cdots]^*$$

is the **observability matrix** of the system

└ Reachability and Observability

└ Unobservability Subspace

Theorem

Given a system $(\mathbf{A}, \mathbf{B}, \mathbf{C})$,

$$\mathbb{W}_{unobs} = \text{Ker } \mathcal{O}(\mathbf{C}, \mathbf{A})$$

└ Reachability and Observability

└ Unobservability Subspace

Theorem

Given a system $(\mathbf{A}, \mathbf{B}, \mathbf{C})$,

$$\mathbb{W}_{unobs} = \text{Ker } \mathcal{O}(\mathbf{C}, \mathbf{A})$$

Corollary

(i) $\mathbf{A}\mathbb{W}_{unobs} \subset \mathbb{W}_{unobs}$

(ii) The system is completely observable if and only if $\text{rank } \mathcal{O}(\mathbf{C}, \mathbf{A}) = N$

(iii) Observability is basis independent

└ Reachability and Observability

└ Infinite Gramians

Definition

The **infinite reachability (controllability) Gramian** is defined for a **stable** LTI system as the $N \times N$ symmetric positive semi-definite matrix

$$\mathcal{P} = \int_0^{\infty} e^{\mathbf{A}t} \mathbf{B} \mathbf{B}^* e^{\mathbf{A}^* t} dt$$

└ Reachability and Observability

└ Infinite Gramians

Definition

The **infinite reachability (controllability) Gramian** is defined for a **stable** LTI system as the $N \times N$ symmetric positive semi-definite matrix

$$\mathcal{P} = \int_0^{\infty} e^{\mathbf{A}t} \mathbf{B} \mathbf{B}^* e^{\mathbf{A}^*t} dt$$

Definition

The **infinite observability Gramian** is defined for a **stable** LTI system as the $N \times N$ symmetric positive semi-definite matrix

$$\mathcal{Q} = \int_0^{\infty} e^{\mathbf{A}^*t} \mathbf{C}^* \mathbf{C} e^{\mathbf{A}t} dt$$

└ Reachability and Observability

└ Infinite Gramians

- Using Parseval's theorem, the two previously defined Gramians can be written in the frequency domain as follows

└ Reachability and Observability

└ Infinite Gramians

- Using Parseval's theorem, the two previously defined Gramians can be written in the frequency domain as follows
 - **infinite reachability Gramian**

$$\mathcal{P} = \frac{1}{2\pi} \int_{-\infty}^{\infty} (j\omega \mathbf{I}_N - \mathbf{A})^{-1} \mathbf{B} \mathbf{B}^* (-j\omega \mathbf{I}_N - \mathbf{A}^*)^{-1} d\omega$$

└ Reachability and Observability

└ Infinite Gramians

- Using Parseval's theorem, the two previously defined Gramians can be written in the frequency domain as follows

- **infinite reachability Gramian**

$$\mathcal{P} = \frac{1}{2\pi} \int_{-\infty}^{\infty} (j\omega \mathbf{I}_N - \mathbf{A})^{-1} \mathbf{B} \mathbf{B}^* (-j\omega \mathbf{I}_N - \mathbf{A}^*)^{-1} d\omega$$

- **infinite observability Gramian**

$$\mathcal{Q} = \frac{1}{2\pi} \int_{-\infty}^{\infty} (-j\omega \mathbf{I}_N - \mathbf{A}^*)^{-1} \mathbf{C}^* \mathbf{C} (j\omega \mathbf{I}_N - \mathbf{A})^{-1} d\omega$$

└ Reachability and Observability

└ Infinite Gramians

- The two infinite Gramians are solutions of the following Lyapunov equations
 - infinite reachability Gramian

$$\mathbf{A}\mathcal{P} + \mathcal{P}\mathbf{A}^* + \mathbf{B}\mathbf{B}^* = \mathbf{0}_N$$

└ Reachability and Observability

└ Infinite Gramians

- The two infinite Gramians are solutions of the following Lyapunov equations
 - infinite reachability Gramian

$$\mathbf{A}\mathcal{P} + \mathcal{P}\mathbf{A}^* + \mathbf{B}\mathbf{B}^* = \mathbf{0}_N$$

- infinite observability Gramian

$$\mathbf{A}^*\mathcal{Q} + \mathcal{Q}\mathbf{A} + \mathbf{C}^*\mathbf{C} = \mathbf{0}_N$$

└ Reachability and Observability

└ Energetic Interpretation

- \mathcal{P} and \mathcal{Q} are respective bases for the reachable and observable subspaces
 - \mathcal{P} measures how controllable each direction in state-space is
 - \mathcal{Q} measures how observable each direction is

└ Reachability and Observability

└ Energetic Interpretation

- \mathcal{P} and \mathcal{Q} are respective bases for the reachable and observable subspaces
 - \mathcal{P} measures how controllable each direction in state-space is
 - \mathcal{Q} measures how observable each direction is
- $\|\cdot\|_{\mathcal{P}^{-1}}$ and $\|\cdot\|_{\mathcal{Q}}$ are semi-norms (recall that \mathcal{P} is generally symmetric positive semi-definite and thus $\|\cdot\|_{\mathcal{P}^{-1}}$ is generally $\|\cdot\|_{\mathcal{P}^+}$)

└ Reachability and Observability

└ Energetic Interpretation

- \mathcal{P} and \mathcal{Q} are respective bases for the reachable and observable subspaces
 - \mathcal{P} measures how controllable each direction in state-space is
 - \mathcal{Q} measures how observable each direction is
- $\|\cdot\|_{\mathcal{P}^{-1}}$ and $\|\cdot\|_{\mathcal{Q}}$ are semi-norms (recall that \mathcal{P} is generally symmetric positive semi-definite and thus $\|\cdot\|_{\mathcal{P}^{-1}}$ is generally $\|\cdot\|_{\mathcal{P}^+}$)
- For a reachable state, the inner product based on \mathcal{P}^{-1} characterizes the minimal energy required to steer the state from $\mathbf{0}$ to \mathbf{w} as $t \rightarrow \infty$

$$\|\mathbf{w}\|_{\mathcal{P}^{-1}}^2 = \mathbf{w}^T \underbrace{\mathcal{P}^{-1} \mathbf{w}}_{\substack{\text{homogeneous} \\ \text{to an input}}} \quad \left(\leq \int_0^t (\mathbf{B} \mathbf{u}(\tau))^* \mathbf{B} \mathbf{u}(\tau) d\tau \right)$$

└ Reachability and Observability

└ Energetic Interpretation

- \mathcal{P} and \mathcal{Q} are respective bases for the reachable and observable subspaces
 - \mathcal{P} measures how controllable each direction in state-space is
 - \mathcal{Q} measures how observable each direction is
- $\|\cdot\|_{\mathcal{P}^{-1}}$ and $\|\cdot\|_{\mathcal{Q}}$ are semi-norms (recall that \mathcal{P} is generally symmetric positive semi-definite and thus $\|\cdot\|_{\mathcal{P}^{-1}}$ is generally $\|\cdot\|_{\mathcal{P}^+}$)
- For a reachable state, the inner product based on \mathcal{P}^{-1} characterizes the minimal energy required to steer the state from $\mathbf{0}$ to \mathbf{w} as $t \rightarrow \infty$

$$\|\mathbf{w}\|_{\mathcal{P}^{-1}}^2 = \mathbf{w}^T \underbrace{\mathcal{P}^{-1} \mathbf{w}}_{\substack{\text{homogeneous} \\ \text{to an input}}} \quad \left(\leq \int_0^t (\mathbf{B} \mathbf{u}(\tau))^* \mathbf{B} \mathbf{u}(\tau) d\tau \right)$$

- The inner product based on \mathcal{Q} indicates the maximal energy produced by observing the output of the system corresponding to an initial state \mathbf{w}_0 when no input is applied

$$\|\mathbf{w}\|_{\mathcal{Q}}^2 = \mathbf{w}^T \mathcal{Q} \mathbf{w}$$

└ Balancing

└ Model Order Reduction Based on Balancing

- If \mathcal{P} is large in some direction \mathbf{w} , $\mathbf{w}^T \mathcal{P}^{-1} \mathbf{w}$ is small, \mathbf{w} can be reached using a small control energy, **but $\mathbf{w}^T \mathcal{P} \mathbf{w}$ is large**
- If \mathcal{Q} is large in some direction \mathbf{w} , $\mathbf{w}^T \mathcal{Q} \mathbf{w}$ is large and that direction produces a large observation energy
- PMOR strategy: **Eliminate** the states \mathbf{w} that are simultaneously
 - **difficult to reach**, i.e., require a large energy $\|\mathbf{w}\|_{\mathcal{P}^{-1}}^2$ to be reached
 - **difficult to observe**, i.e., produce a small observation energy $\|\mathbf{w}\|_{\mathcal{Q}}^2$
- The above notions are **basis-dependent**
- One would like to consider a basis where both energy measures are **equal** or **balanced** – specifically, a basis where $\mathbf{w}^T \mathcal{P} \mathbf{w}$ and $\mathbf{w}^T \mathcal{Q} \mathbf{w}$ are balanced (see first two bullets)

└ Balancing

└ Effect of Basis Change on the Gramians

- Balancing requires changing the basis for the state using a transformation $\mathbf{T} \in \text{GL}(N)$

$$\bar{\mathbf{w}} = \mathbf{T}\mathbf{w}$$

└ Balancing

└ Effect of Basis Change on the Gramians

- Balancing requires changing the basis for the state using a transformation $\mathbf{T} \in \text{GL}(N)$

$$\bar{\mathbf{w}} = \mathbf{T}\mathbf{w}$$

- Then (see Chapter 5)

└ Balancing

└ Effect of Basis Change on the Gramians

- Balancing requires changing the basis for the state using a transformation $\mathbf{T} \in \text{GL}(N)$

$$\bar{\mathbf{w}} = \mathbf{T}\mathbf{w}$$

- Then (see Chapter 5)
 - $e^{\mathbf{A}t}\mathbf{B} \Rightarrow (\mathbf{T}e^{\mathbf{A}t}\mathbf{T}^{-1})(\mathbf{T}\mathbf{B}) = \mathbf{T}e^{\mathbf{A}t}\mathbf{B}$

└ Balancing

└ Effect of Basis Change on the Gramians

- Balancing requires changing the basis for the state using a transformation $\mathbf{T} \in \text{GL}(N)$

$$\bar{\mathbf{w}} = \mathbf{T}\mathbf{w}$$

- Then (see Chapter 5)
 - $e^{\mathbf{A}t}\mathbf{B} \Rightarrow (\mathbf{T}e^{\mathbf{A}t}\mathbf{T}^{-1})(\mathbf{T}\mathbf{B}) = \mathbf{T}e^{\mathbf{A}t}\mathbf{B}$
 - $\mathbf{B}^*e^{\mathbf{A}^*t} \Rightarrow (\mathbf{B}^*\mathbf{T}^*)\left(\mathbf{T}^{*-1}e^{\mathbf{A}^*t}\mathbf{T}^*\right) = \mathbf{B}^*e^{\mathbf{A}^*t}\mathbf{T}^*$

└ Balancing

└ Effect of Basis Change on the Gramians

- Balancing requires changing the basis for the state using a transformation $\mathbf{T} \in \text{GL}(N)$

$$\bar{\mathbf{w}} = \mathbf{T}\mathbf{w}$$

- Then (see Chapter 5)
 - $e^{\mathbf{A}t}\mathbf{B} \Rightarrow (\mathbf{T}e^{\mathbf{A}t}\mathbf{T}^{-1})(\mathbf{T}\mathbf{B}) = \mathbf{T}e^{\mathbf{A}t}\mathbf{B}$
 - $\mathbf{B}^*e^{\mathbf{A}^*t} \Rightarrow (\mathbf{B}^*\mathbf{T}^*)\left(\mathbf{T}^{*-1}e^{\mathbf{A}^*t}\mathbf{T}^*\right) = \mathbf{B}^*e^{\mathbf{A}^*t}\mathbf{T}^*$
 - the reachability Gramian becomes

$$\bar{\mathcal{P}} = \mathbf{T}\mathcal{P}\mathbf{T}^*$$

└ Balancing

└ Effect of Basis Change on the Gramians

- Balancing requires changing the basis for the state using a transformation $\mathbf{T} \in \text{GL}(N)$

$$\bar{\mathbf{w}} = \mathbf{T}\mathbf{w}$$

- Then (see Chapter 5)
 - $e^{\mathbf{A}t}\mathbf{B} \Rightarrow (\mathbf{T}e^{\mathbf{A}t}\mathbf{T}^{-1})(\mathbf{T}\mathbf{B}) = \mathbf{T}e^{\mathbf{A}t}\mathbf{B}$
 - $\mathbf{B}^*e^{\mathbf{A}^*t} \Rightarrow (\mathbf{B}^*\mathbf{T}^*)\left(\mathbf{T}^{*-1}e^{\mathbf{A}^*t}\mathbf{T}^*\right) = \mathbf{B}^*e^{\mathbf{A}^*t}\mathbf{T}^*$
 - the reachability Gramian becomes

$$\bar{\mathcal{P}} = \mathbf{T}\mathcal{P}\mathbf{T}^*$$

- $e^{\mathbf{A}^*t}\mathbf{C}^* \Rightarrow \left(\mathbf{T}^{*-1}e^{\mathbf{A}^*t}\mathbf{T}^*\right)\left(\mathbf{T}^{*-1}\mathbf{C}^*\right) = \mathbf{T}^{*-1}e^{\mathbf{A}^*t}\mathbf{C}^*$

└ Balancing

└ Effect of Basis Change on the Gramians

- Balancing requires changing the basis for the state using a transformation $\mathbf{T} \in \text{GL}(N)$

$$\bar{\mathbf{w}} = \mathbf{T}\mathbf{w}$$

- Then (see Chapter 5)

- $e^{\mathbf{A}t}\mathbf{B} \Rightarrow (\mathbf{T}e^{\mathbf{A}t}\mathbf{T}^{-1})(\mathbf{T}\mathbf{B}) = \mathbf{T}e^{\mathbf{A}t}\mathbf{B}$
- $\mathbf{B}^*e^{\mathbf{A}^*t} \Rightarrow (\mathbf{B}^*\mathbf{T}^*)\left(\mathbf{T}^{*-1}e^{\mathbf{A}^*t}\mathbf{T}^*\right) = \mathbf{B}^*e^{\mathbf{A}^*t}\mathbf{T}^*$
- the reachability Gramian becomes

$$\boxed{\bar{\mathcal{P}} = \mathbf{T}\mathcal{P}\mathbf{T}^*}$$

- $e^{\mathbf{A}^*t}\mathbf{C}^* \Rightarrow \left(\mathbf{T}^{*-1}e^{\mathbf{A}^*t}\mathbf{T}^*\right)\left(\mathbf{T}^{*-1}\mathbf{C}^*\right) = \mathbf{T}^{*-1}e^{\mathbf{A}^*t}\mathbf{C}^*$
- $\mathbf{C}e^{\mathbf{A}t} \Rightarrow (\mathbf{C}\mathbf{T}^{-1})(\mathbf{T}e^{\mathbf{A}t}\mathbf{T}^{-1}) = \mathbf{C}e^{\mathbf{A}t}\mathbf{T}^{-1}$

└ Balancing

└ Effect of Basis Change on the Gramians

- Balancing requires changing the basis for the state using a transformation $\mathbf{T} \in \text{GL}(N)$

$$\bar{\mathbf{w}} = \mathbf{T}\mathbf{w}$$

- Then (see Chapter 5)

- $e^{\mathbf{A}t}\mathbf{B} \Rightarrow (\mathbf{T}e^{\mathbf{A}t}\mathbf{T}^{-1})(\mathbf{T}\mathbf{B}) = \mathbf{T}e^{\mathbf{A}t}\mathbf{B}$
- $\mathbf{B}^*e^{\mathbf{A}^*t} \Rightarrow (\mathbf{B}^*\mathbf{T}^*)\left(\mathbf{T}^{*-1}e^{\mathbf{A}^*t}\mathbf{T}^*\right) = \mathbf{B}^*e^{\mathbf{A}^*t}\mathbf{T}^*$
- the reachability Gramian becomes

$$\bar{\mathcal{P}} = \mathbf{T}\mathcal{P}\mathbf{T}^*$$

- $e^{\mathbf{A}^*t}\mathbf{C}^* \Rightarrow \left(\mathbf{T}^{*-1}e^{\mathbf{A}^*t}\mathbf{T}^*\right)\left(\mathbf{T}^{*-1}\mathbf{C}^*\right) = \mathbf{T}^{*-1}e^{\mathbf{A}^*t}\mathbf{C}^*$
- $\mathbf{C}e^{\mathbf{A}t} \Rightarrow (\mathbf{C}\mathbf{T}^{-1})(\mathbf{T}e^{\mathbf{A}t}\mathbf{T}^{-1}) = \mathbf{C}e^{\mathbf{A}t}\mathbf{T}^{-1}$
- the observability Gramian becomes

$$\bar{\mathcal{Q}} = \mathbf{T}^{*-1}\mathcal{Q}\mathbf{T}^{-1}$$

└ Balancing

└ Balancing Transformation

- Balancing transformations \mathbf{T}_{bal} and $\mathbf{T}_{\text{bal}}^{-1}$ can be computed as follows
 - 1 compute the Cholesky factorization $\mathcal{P} = \mathbf{U}\mathbf{U}^*$
 - 2 compute the eigenvalue decomposition of $\mathbf{U}^* \mathcal{Q} \mathbf{U}$

$$\mathbf{U}^* \mathcal{Q} \mathbf{U} = \mathbf{K} \boldsymbol{\Sigma}^2 \mathbf{K}^*$$

where the entries in $\boldsymbol{\Sigma}$ are ordered decreasingly

- 3 compute the transformations

$$\mathbf{T}_{\text{bal}} = \boldsymbol{\Sigma}^{\frac{1}{2}} \mathbf{K}^* \mathbf{U}^{-1}$$

$$\mathbf{T}_{\text{bal}}^{-1} = \mathbf{U} \mathbf{K} \boldsymbol{\Sigma}^{-\frac{1}{2}}$$

└ Balancing

└ Balancing Transformation

- Balancing transformations \mathbf{T}_{bal} and $\mathbf{T}_{\text{bal}}^{-1}$ can be computed as follows
 - 1 compute the Cholesky factorization $\mathcal{P} = \mathbf{U}\mathbf{U}^*$
 - 2 compute the eigenvalue decomposition of $\mathbf{U}^* \mathcal{Q} \mathbf{U}$

$$\mathbf{U}^* \mathcal{Q} \mathbf{U} = \mathbf{K} \boldsymbol{\Sigma}^2 \mathbf{K}^*$$

where the entries in $\boldsymbol{\Sigma}$ are ordered decreasingly

- 3 compute the transformations

$$\begin{aligned}\mathbf{T}_{\text{bal}} &= \boldsymbol{\Sigma}^{\frac{1}{2}} \mathbf{K}^* \mathbf{U}^{-1} \\ \mathbf{T}_{\text{bal}}^{-1} &= \mathbf{U} \mathbf{K} \boldsymbol{\Sigma}^{-\frac{1}{2}}\end{aligned}$$

- Then, one can check that balancing is achieved

$$\mathbf{T}_{\text{bal}} \mathcal{P} \mathbf{T}_{\text{bal}}^* = \mathbf{T}_{\text{bal}}^* \mathcal{Q} \mathbf{T}_{\text{bal}}^{-1} = \boldsymbol{\Sigma}$$

Definition (Hankel Singular Values)

$\boldsymbol{\Sigma} = \text{diag}(\sigma_1, \dots, \sigma_N)$ contains the **N Hankel singular values of the system** (a Hankel singular value is computed from the Hankel operator or the product of Gramian matrices ($\mathcal{P}\mathcal{Q}$) associated with a LTI system and measures the energy of a corresponding internal state)

└ Balancing

└ Variational Interpretation

- Computing the balancing transformation \mathbf{T}_{bal} is equivalent to minimizing the following function

$$\min_{\mathbf{T} \in \text{GL}(N)} f(\mathbf{T}) = \min_{\mathbf{T} \in \text{GL}(N)} \text{trace}(\mathbf{T} \mathcal{P} \mathbf{T}^* + \mathbf{T}^{*-1} \mathcal{Q} \mathbf{T}^{-1})$$

└ Balancing

└ Variational Interpretation

- Computing the balancing transformation \mathbf{T}_{bal} is equivalent to minimizing the following function

$$\min_{\mathbf{T} \in \text{GL}(N)} f(\mathbf{T}) = \min_{\mathbf{T} \in \text{GL}(N)} \text{trace}(\mathbf{T} \mathcal{P} \mathbf{T}^* + \mathbf{T}^{*-1} \mathcal{Q} \mathbf{T}^{-1})$$

- For the optimal transformation \mathbf{T}_{bal} , the function takes the value

$$f(\mathbf{T}_{\text{bal}}) = 2\text{tr}(\mathbf{\Sigma}) = 2 \sum_{i=1}^N \sigma_i$$

where $\{\sigma_i\}_{i=1}^N$ are the Hankel singular values

└ Balanced Truncation Method

└ Block Partitioning of the System

- Applying the change of variable $\bar{\mathbf{w}} = \mathbf{T}_{\text{bal}}\mathbf{w}$ transforms the given dynamical system into $(\bar{\mathbf{A}}, \bar{\mathbf{B}}, \bar{\mathbf{C}})$ where

$$\bar{\mathbf{A}} = \mathbf{T}_{\text{bal}} \mathbf{A} \mathbf{T}_{\text{bal}}^{-1}, \quad \bar{\mathbf{B}} = \mathbf{T}_{\text{bal}} \mathbf{B}, \quad \bar{\mathbf{C}} = \mathbf{C} \mathbf{T}_{\text{bal}}^{-1}$$

- Let $1 \leq k \leq N$; the system can be partitioned in blocks as

$$\bar{\mathbf{A}} = \begin{bmatrix} \bar{\mathbf{A}}_{11} & \bar{\mathbf{A}}_{12} \\ \bar{\mathbf{A}}_{21} & \bar{\mathbf{A}}_{22} \end{bmatrix}, \quad \bar{\mathbf{B}} = \begin{bmatrix} \bar{\mathbf{B}}_1 \\ \bar{\mathbf{B}}_2 \end{bmatrix}, \quad \bar{\mathbf{C}} = \begin{bmatrix} \bar{\mathbf{C}}_1 & \bar{\mathbf{C}}_2 \end{bmatrix}$$

- The subscripts 1 and 2 denote the dimensions k and $N - k$, respectively

- The blocks with the subscript 1 correspond to the most observable and reachable states

└ **Balanced Truncation Method**└ **Block Partitioning of the System**

- The blocks with the subscript 1 correspond to the most observable and reachable states
- The blocks with the subscript 2 correspond to the least observable and reachable states

└ Balanced Truncation Method

└ Block Partitioning of the System

- The blocks with the subscript 1 correspond to the most observable and reachable states
- The blocks with the subscript 2 correspond to the least observable and reachable states
- Then, the following lower-dimensional model of size k

$$(\mathbf{A}_r, \mathbf{B}_r, \mathbf{C}_r) = (\bar{\mathbf{A}}_{11}, \bar{\mathbf{B}}_1, \bar{\mathbf{C}}_1) \in \mathbb{R}^{k \times k} \times \mathbb{R}^{k \times \text{in}} \times \mathbb{R}^{q \times k}$$

is the PROM constructed by Balanced Truncation (BT)

- The blocks with the subscript 1 correspond to the most observable and reachable states
- The blocks with the subscript 2 correspond to the least observable and reachable states
- Then, the following lower-dimensional model of size k

$$(\mathbf{A}_r, \mathbf{B}_r, \mathbf{C}_r) = (\bar{\mathbf{A}}_{11}, \bar{\mathbf{B}}_1, \bar{\mathbf{C}}_1) \in \mathbb{R}^{k \times k} \times \mathbb{R}^{k \times \text{in}} \times \mathbb{R}^{q \times k}$$

is the PROM constructed by Balanced Truncation (BT)

- The **left and right** ROBs are

$$\mathbf{W} = \mathbf{T}_{\text{bal}}^*(:, 1:k) \quad \text{and} \quad \mathbf{V} = \mathbf{S}_{\text{bal}}(:, 1:k), \text{ respectively,}$$

where $\mathbf{S}_{\text{bal}} = \mathbf{T}_{\text{bal}}^{-1}$

└ Error Analysis

└ Error Criterion

Definition (The Hardy space \mathcal{H}_∞)

The \mathcal{H}_∞ -norm associated with a system characterized by a *transfer function* $\mathbf{G}(\cdot)$ is defined as

$$\|\mathbf{G}\|_{\mathcal{H}_\infty} = \sup_{z \in \mathbb{C}_+} \|\mathbf{G}(z)\|_\infty = \sup_{z \in \mathbb{C}_+} \sigma_{\max}(\mathbf{G}(z))$$

where $z \in \mathbb{C}_+$ if $z \in \mathbb{C}$ and $\Im(z) > 0$.

Proposition

$$(i) \quad \|\mathbf{G}\|_{\mathcal{H}_\infty} = \sup_{\omega \in \mathbb{R}} \|\mathbf{G}(i\omega)\|_\infty = \sup_{\omega \in \mathbb{R}} \sigma_{\max}(\mathbf{G}(i\omega))$$

$$(ii) \quad \|\mathbf{G}\|_{\mathcal{H}_\infty} = \sup_{\mathbf{u} \neq 0} \frac{\|\mathbf{y}(\cdot)\|_2}{\|\mathbf{u}(\cdot)\|_2} = \sup_{\mathbf{u} \neq 0} \sqrt{\frac{\int_0^\infty \|\mathbf{y}(t)\|_2^2 dt}{\int_0^\infty \|\mathbf{u}(t)\|_2^2 dt}}$$

- The \mathcal{H}_∞ norm of the error between the HDM- and PROM-based solutions will be used as an error criterion

└ Error Analysis

└ Theorem

Theorem (Error Bounds)

The BT procedure yields the following error bound for the output of interest.

Let $\{\bar{\sigma}_i\}_{i=1}^{N_{SV}} \subseteq \{\sigma_i\}_{i=1}^N$ denote the **distinct** Hankel singular values of the system and $\{\bar{\sigma}_i\}_{i=N_k+1}^{N_{SV}}$ the ones that have been truncated. Then

$$\|\mathbf{y}(\cdot) - \mathbf{y}_r(\cdot)\|_2 \leq 2 \sum_{i=N_k+1}^{N_{SV}} \bar{\sigma}_i \|\mathbf{u}(\cdot)\|_2$$

Equivalently, the above result can be written in terms of the \mathcal{H}_∞ -norm of the system error as follows

$$\|\mathbf{G}(\cdot) - \mathbf{G}_r(\cdot)\|_{\mathcal{H}_\infty} \leq 2 \sum_{i=N_k+1}^{N_{SV}} \bar{\sigma}_i$$

where \mathbf{G} and \mathbf{G}_r are the full- and reduced-order transfer functions. Equality holds when $\bar{\sigma}_{N_k+1} = \bar{\sigma}_{N_{SV}}$ (all truncated singular values are equal).

└ Error Analysis

└ Theorem

Proof. The proof proceeds in 3 steps:

- 1 Consider the system error $\mathbf{E}(s) = \mathbf{G}(s) - \mathbf{G}_r(s)$

Proof. The proof proceeds in 3 steps:

- 1 Consider the system error $\mathbf{E}(s) = \mathbf{G}(s) - \mathbf{G}_r(s)$
- 2 Show that if all truncated singular values are equal to σ , then

$$\|\mathbf{E}(\cdot)\|_{\mathcal{H}_\infty} = 2(N_{\text{SV}} - N_k) \sigma$$

└ Error Analysis

└ Theorem

Proof. The proof proceeds in 3 steps:

- 1 Consider the system error $\mathbf{E}(s) = \mathbf{G}(s) - \mathbf{G}_r(s)$
- 2 Show that if all truncated singular values are equal to σ , then

$$\|\mathbf{E}(\cdot)\|_{\mathcal{H}_\infty} = 2(N_{\text{SV}} - N_k) \sigma$$

- 3 Use this result to show that in the general case

$$\|\mathbf{E}(\cdot)\|_{\mathcal{H}_\infty} \leq 2 \sum_{i=N_k+1}^{N_{\text{SV}}} \bar{\sigma}_i$$

└ Stability Analysis

└ Theorem

Theorem (Stability Preservation)

Consider $(\mathbf{A}_r, \mathbf{B}_r, \mathbf{C}_r) = (\bar{\mathbf{A}}_{11}, \bar{\mathbf{B}}_1, \bar{\mathbf{C}}_1)$, a PROM obtained by BT. Then

- (i) $\mathbf{A}_r = \bar{\mathbf{A}}_{11}$ has no eigenvalues in the open right half plane
- (ii) Furthermore, if the systems $(\bar{\mathbf{A}}_{11}, \bar{\mathbf{B}}_1, \bar{\mathbf{C}}_1)$ and $(\bar{\mathbf{A}}_{22}, \bar{\mathbf{B}}_2, \bar{\mathbf{C}}_2)$ have no Hankel singular values in common, \mathbf{A}_r has no eigenvalues on the imaginary axis

└ Computational Complexity

└ Numerical Methods

- Because of numerical stability issues, computing the transformations

$$\mathbf{T}_{\text{bal}} = \boldsymbol{\Sigma}^{\frac{1}{2}} \mathbf{K}^* \mathbf{U}^{-1}, \quad \mathbf{T}_{\text{bal}}^{-1} = \mathbf{U} \mathbf{K} \boldsymbol{\Sigma}^{-\frac{1}{2}}$$

is usually ill-advised (computation of inverses)

└ Computational Complexity

└ Numerical Methods

- Because of numerical stability issues, computing the transformations

$$\mathbf{T}_{\text{bal}} = \boldsymbol{\Sigma}^{\frac{1}{2}} \mathbf{K}^* \mathbf{U}^{-1}, \quad \mathbf{T}_{\text{bal}}^{-1} = \mathbf{U} \mathbf{K} \boldsymbol{\Sigma}^{-\frac{1}{2}}$$

is usually ill-advised (computation of inverses)

- Instead, it is better advised to use the following procedure

└ Computational Complexity

└ Numerical Methods

- Because of numerical stability issues, computing the transformations

$$\mathbf{T}_{\text{bal}} = \boldsymbol{\Sigma}^{\frac{1}{2}} \mathbf{K}^* \mathbf{U}^{-1}, \quad \mathbf{T}_{\text{bal}}^{-1} = \mathbf{U} \mathbf{K} \boldsymbol{\Sigma}^{-\frac{1}{2}}$$

- is usually ill-advised (computation of inverses)
- Instead, it is better advised to use the following procedure
 - 1 start from the Cholesky decompositions of the Gramians

$$\mathcal{P} = \mathbf{U} \mathbf{U}^* \quad \text{and} \quad \mathcal{Q} = \mathbf{Z} \mathbf{Z}^*$$

└ Computational Complexity

└ Numerical Methods

- Because of numerical stability issues, computing the transformations

$$\mathbf{T}_{\text{bal}} = \boldsymbol{\Sigma}^{\frac{1}{2}} \mathbf{K}^* \mathbf{U}^{-1}, \quad \mathbf{T}_{\text{bal}}^{-1} = \mathbf{U} \mathbf{K} \boldsymbol{\Sigma}^{-\frac{1}{2}}$$

is usually ill-advised (computation of inverses)

- Instead, it is better advised to use the following procedure
 - 1 start from the Cholesky decompositions of the Gramians

$$\mathcal{P} = \mathbf{U} \mathbf{U}^* \quad \text{and} \quad \mathcal{Q} = \mathbf{Z} \mathbf{Z}^*$$

- 2 compute the SVD

$$\mathbf{U}^* \mathbf{Z} = \mathbf{W} \boldsymbol{\Sigma} \mathbf{V}^*$$

└ Computational Complexity

└ Numerical Methods

- Because of numerical stability issues, computing the transformations

$$\mathbf{T}_{\text{bal}} = \boldsymbol{\Sigma}^{\frac{1}{2}} \mathbf{K}^* \mathbf{U}^{-1}, \quad \mathbf{T}_{\text{bal}}^{-1} = \mathbf{U} \mathbf{K} \boldsymbol{\Sigma}^{-\frac{1}{2}}$$

is usually ill-advised (computation of inverses)

- Instead, it is better advised to use the following procedure
 - start from the Cholesky decompositions of the Gramians

$$\mathcal{P} = \mathbf{U} \mathbf{U}^* \quad \text{and} \quad \mathcal{Q} = \mathbf{Z} \mathbf{Z}^*$$

- compute the SVD

$$\mathbf{U}^* \mathbf{Z} = \mathbf{W} \boldsymbol{\Sigma} \mathbf{V}^*$$

- construct the matrices

$$\mathbf{T}_{\text{bal}} = \boldsymbol{\Sigma}^{-\frac{1}{2}} \mathbf{V}^* \mathbf{Z}^* \quad \text{and} \quad \mathbf{T}_{\text{bal}}^{-1} = \mathbf{U} \mathbf{W} \boldsymbol{\Sigma}^{-\frac{1}{2}}$$

└ Computational Complexity

└ Numerical Methods

- Because of numerical stability issues, computing the transformations

$$\mathbf{T}_{\text{bal}} = \boldsymbol{\Sigma}^{\frac{1}{2}} \mathbf{K}^* \mathbf{U}^{-1}, \quad \mathbf{T}_{\text{bal}}^{-1} = \mathbf{U} \mathbf{K} \boldsymbol{\Sigma}^{-\frac{1}{2}}$$

is usually ill-advised (computation of inverses)

- Instead, it is better advised to use the following procedure
 - start from the Cholesky decompositions of the Gramians

$$\mathcal{P} = \mathbf{U} \mathbf{U}^* \quad \text{and} \quad \mathcal{Q} = \mathbf{Z} \mathbf{Z}^*$$

- compute the SVD

$$\mathbf{U}^* \mathbf{Z} = \mathbf{W} \boldsymbol{\Sigma} \mathbf{V}^*$$

- construct the matrices

$$\mathbf{T}_{\text{bal}} = \boldsymbol{\Sigma}^{-\frac{1}{2}} \mathbf{V}^* \mathbf{Z}^* \quad \text{and} \quad \mathbf{T}_{\text{bal}}^{-1} = \mathbf{U} \mathbf{W} \boldsymbol{\Sigma}^{-\frac{1}{2}}$$

- Proof: Recall that $\boldsymbol{\Sigma}$ is always real-valued then compute $\mathbf{T}_{\text{bal}} \mathcal{P} \mathbf{T}_{\text{bal}}^*$ and $\mathbf{T}_{\text{bal}}^* \mathcal{Q} \mathbf{T}_{\text{bal}}^{-1}$ using the above SVD

└ Computational Complexity

└ Cost and Limitations

- BT leads to PROMs with quality and stability guarantees; however
 - the computation of a Gramian is intensive as it requires the solution of a Lyapunov equation ($\mathcal{O}(N^3)$ operations)
 - for this reason, BT is in general impractical for large systems – say $N \gtrsim 10^5$ (but monitor progress in the literature if interested)

└ Comparison with the POD Method

└ POD

Recall the theorem underlying the construction of a POD basis

Theorem

Let $\hat{\mathbf{K}} \in \mathbb{R}^{N \times N}$ be the real symmetric semi-definite positive matrix defined as

$$\hat{\mathbf{K}} = \int_0^T \mathbf{w}(t) \mathbf{w}(t)^T dt$$

Let $\hat{\lambda}_1 \geq \hat{\lambda}_2 \geq \dots \geq \hat{\lambda}_N \geq 0$ denote the ordered eigenvalues of $\hat{\mathbf{K}}$ and let $\hat{\phi}_i \in \mathbb{R}^N$, $i = 1, \dots, N$, denote the associated eigenvectors

$$\hat{\mathbf{K}} \hat{\phi}_i = \hat{\lambda}_i \hat{\phi}_i, \quad i = 1, \dots, N.$$

The subspace $\hat{\mathcal{V}} = \text{range}(\hat{\mathbf{V}})$ of dimension k minimizing $J(\Pi_{\mathcal{V}}, \mathbf{v})$ is the invariant subspace of $\hat{\mathbf{K}}$ associated with the eigenvalues $\hat{\lambda}_1, \dots, \hat{\lambda}_k$

- └ Comparison with the POD Method
 - └ POD for an Impulse Response

- The response of an LTI system to a single impulse input with a zero initial condition is

$$\mathbf{w}(t) = e^{\mathbf{A}t} \mathbf{B}$$

- Comparison with the POD Method
 - POD for an Impulse Response

- The response of an LTI system to a single impulse input with a zero initial condition is

$$\mathbf{w}(t) = e^{\mathbf{A}t} \mathbf{B}$$

- Consequently, the reachability Gramian is

$$\mathcal{P} = \int_0^{\mathcal{T}} e^{\mathbf{A}t} \mathbf{B} \mathbf{B}^T e^{\mathbf{A}^T t} dt = \int_0^{\mathcal{T}} \mathbf{w}(t) \mathbf{w}(t)^T dt = \hat{\mathbf{K}}$$

└ Comparison with the POD Method

└ POD for an Impulse Response

- The response of an LTI system to a single impulse input with a zero initial condition is

$$\mathbf{w}(t) = e^{\mathbf{A}t} \mathbf{B}$$

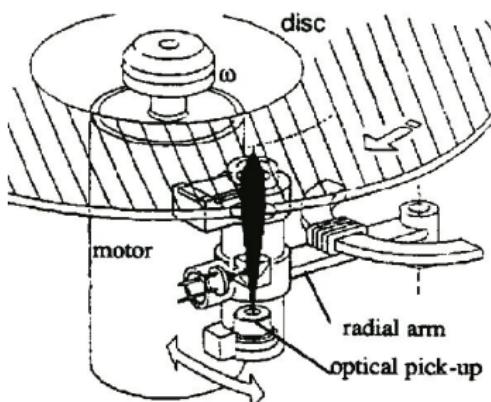
- Consequently, the reachability Gramian is

$$\mathcal{P} = \int_0^T e^{\mathbf{A}t} \mathbf{B} \mathbf{B}^T e^{\mathbf{A}^T t} dt = \int_0^T \mathbf{w}(t) \mathbf{w}(t)^T dt = \hat{\mathbf{K}}$$

- Unlike the BT method, the POD method does not take into account the observability Gramian to determine the PROM: therefore, every observable state may be truncated

Application

CD Player System (B. Salimbahrami and B. Lohmann, 2003)



- Objective: model the position of the lens controlled by a swing arm
- System with $in = 2$ inputs
 - control voltage commanding the lens to move up and down to maintain the laser beam's focus on the disc's information layer
 - control voltage commanding the entire swing arm to move radially to keep the laser spot precisely on the data track

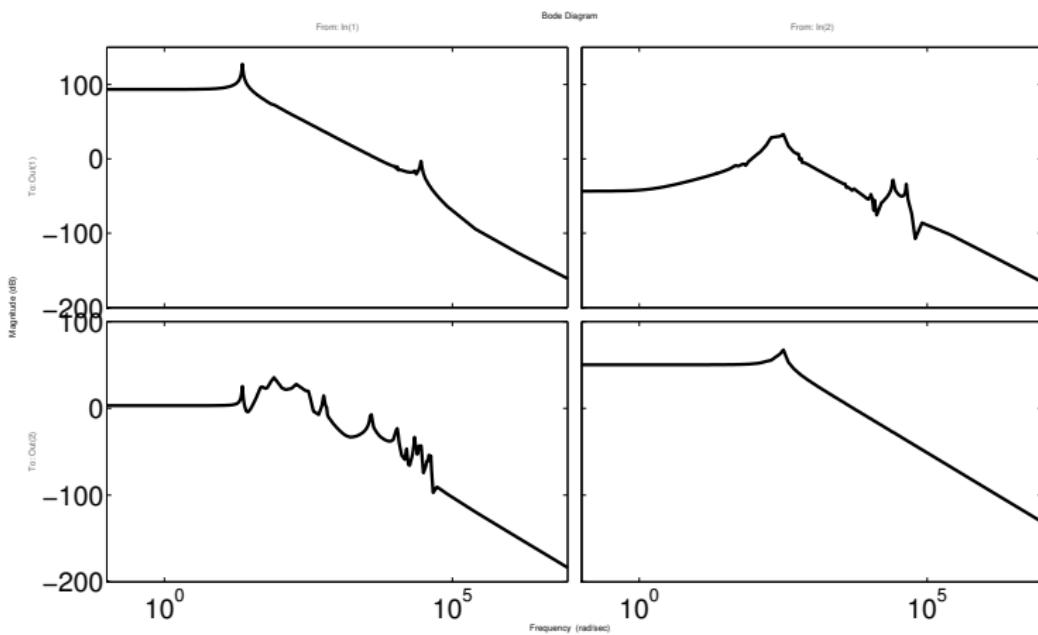
and $q = 2$ outputs

- focus error signal (degree and direction of vertical misalignment)
- tracking error signal (degree and direction of radial misalignment)

Application

CD Player System (B. Salimbahrami and B. Lohmann, 2003)

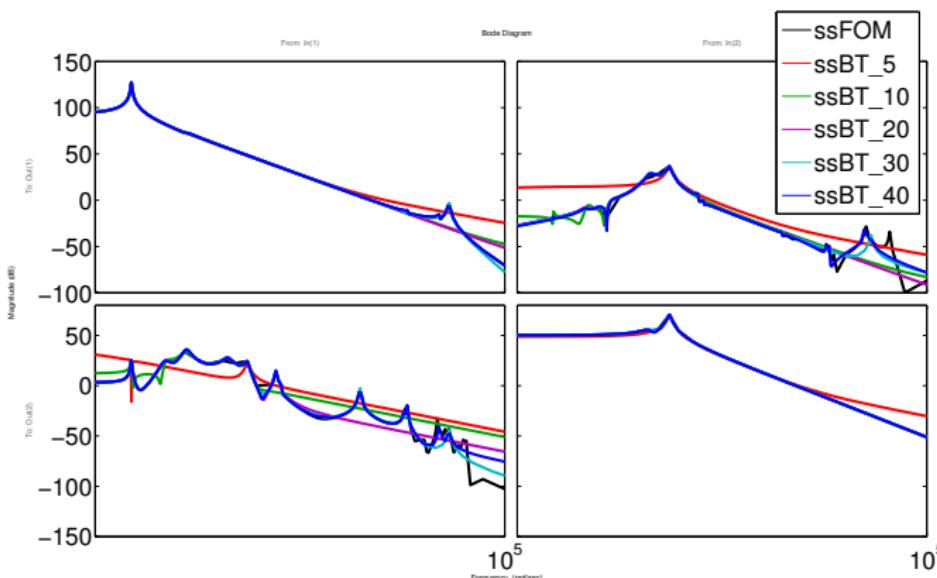
Bode plots associated with the HDM-based solution ($N = 120$): Each column represents one input and each row represents a different output



Application

CD Player System (B. Salimbahrami and B. Lohmann, 2003)

Bode plots associated with the PROM-based (BT) solution: Each column represents one input and each row represents a different output



└ Balanced POD Method

└ Balanced POD Method

- The Balanced POD (BPOD) method generates two sets of snapshots: The standard POD solution snapshots; and the dual POD snapshots introduced below

$$\mathbf{S} = [(j\omega_1 \mathbf{I} - \mathbf{A})^{-1} \mathbf{B} \ \cdots \ (j\omega_{N_{\text{snap}}} \mathbf{I} - \mathbf{A})^{-1} \mathbf{B}]$$
$$\mathbf{S}_{\text{dual}} = [(-j\omega_1 \mathbf{I} - \mathbf{A}^*)^{-1} \mathbf{C}^* \ \cdots \ (-j\omega_{N_{\text{snap}}} \mathbf{I} - \mathbf{A}^*)^{-1} \mathbf{C}^*]$$

└ Balanced POD Method

└ Balanced POD Method

- The Balanced POD (BPOD) method generates two sets of snapshots: The standard POD solution snapshots; and the dual POD snapshots introduced below

$$\begin{aligned}\mathbf{S} &= [(j\omega_1 \mathbf{I} - \mathbf{A})^{-1} \mathbf{B} \cdots (j\omega_{N_{\text{snap}}} \mathbf{I} - \mathbf{A})^{-1} \mathbf{B}] \\ \mathbf{S}_{\text{dual}} &= [(-j\omega_1 \mathbf{I} - \mathbf{A}^*)^{-1} \mathbf{C}^* \cdots (-j\omega_{N_{\text{snap}}} \mathbf{I} - \mathbf{A}^*)^{-1} \mathbf{C}^*]\end{aligned}$$

- Next, BPOD computes right and left ROBs as follows

$$\begin{aligned}\mathbf{S}_{\text{dual}}^T \mathbf{S} &= \mathbf{U} \mathbf{\Sigma} \mathbf{Z}^T \quad (\text{SVD}) \\ \mathbf{V} &= \mathbf{S} \mathbf{Z}_k \mathbf{\Sigma}_k^{-1/2} \\ \mathbf{W} &= \mathbf{S}_{\text{dual}} \mathbf{U}_k \mathbf{\Sigma}_k^{-1/2}\end{aligned}$$

where the subscript k designates the first k terms of the singular value decomposition

└ Balanced POD Method

└ Balanced POD Method

- The Balanced POD (BPOD) method generates two sets of snapshots: The standard POD solution snapshots; and the dual POD snapshots introduced below

$$\mathbf{S} = [(j\omega_1 \mathbf{I} - \mathbf{A})^{-1} \mathbf{B} \cdots (j\omega_{N_{\text{snap}}} \mathbf{I} - \mathbf{A})^{-1} \mathbf{B}]$$

$$\mathbf{S}_{\text{dual}} = [(-j\omega_1 \mathbf{I} - \mathbf{A}^*)^{-1} \mathbf{C}^* \cdots (-j\omega_{N_{\text{snap}}} \mathbf{I} - \mathbf{A}^*)^{-1} \mathbf{C}^*]$$

- Next, BPOD computes right and left ROBs as follows

$$\mathbf{S}_{\text{dual}}^T \mathbf{S} = \mathbf{U} \Sigma \mathbf{Z}^T \quad (\text{SVD})$$

$$\mathbf{V} = \mathbf{S} \mathbf{Z}_k \Sigma_k^{-1/2}$$

$$\mathbf{W} = \mathbf{S}_{\text{dual}} \mathbf{U}_k \Sigma_k^{-1/2}$$

where the subscript k designates the first k terms of the singular value decomposition

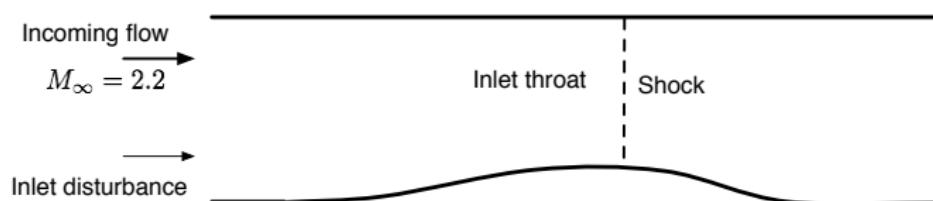
- If no truncation is performed, the result is equivalent to two-sided moment matching at $s_i \in \{\omega_1, \dots, \omega_{N_{\text{snap}}}\}$ (see later)

└ Balanced POD Method

└ BT and POD in the Time Domain

- The POD method in the time domain is based solely on the reachability concept
- However, the BPOD method
 - adds the notion of observability in the construction of a PROM
 - is tractable for very large-scale systems
 - provides an approximation to the BT method
 - does not guarantee in general the stability of the resulting PROM

- Supersonic Inlet Problem (part of the Oberwolfach Model Reduction Benchmark Collection repository)



$$\begin{aligned}\mathbf{E} \frac{d\mathbf{w}}{dt}(t) &= \mathbf{A}\mathbf{w}(t) + \mathbf{B}\mathbf{u}(t) \\ \mathbf{y}(t) &= \mathbf{C}\mathbf{w}(t)\end{aligned}$$

- $N = 11\,370$ (2D Euler equations)
- $in = 1$ input (density disturbance of the inlet flow)
- $q = 1$ output (average Mach number at the diffuser throat)

└ Balanced POD Method

└ Application

- PMOR in the frequency domain using
 - POD
 - BPOD
- In both cases, same frequency sampling for the computation of solution snapshots

└ Balanced POD Method

└ Application

- PMOR in the frequency domain using
 - POD
 - BPOD
- In both cases, same frequency sampling for the computation of solution snapshots
- Plot of the magnitude of the relative error in the transfer function (within the sampled frequency interval) as a function of the dimension k of the constructed PROM

