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L Reachability and Observability
LScope (Considered Family of Systems)

m Consider the following stable, high-dimensional, LTI system

dw

I(t) = Aw(t)+ Bu(t)
y(t) = Cw()
w(0) = wy

EwWE RN: State variables
m u € R™: Input variables, typically in < N
m y € R9 Output variables, typically g < N

m Recall that the solution w(t) of the above linear ODE can be
written as

t
w(t) = ¢(t, u; to, wo) = A" ®w(to) +/ ATBu(r)dr, Vit > to

(1)
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L Reachability and Observability
LReachability, Controllability, and Observability

Definition

For T < oo, a state w(T) € RV of a dynamical system is said to be
reachable (or attainable) from an initial state w(tp) if there exists an
admissible (finite energy) input function u(.) defined over [ty, T] that
drives the system from w(tp) to w(T)
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admissible (finite energy) input function u(.) defined over [ty, T] that
drives the system from w(tp) to w(T)

Definition

A state w € R" of a dynamical system is said to be controllable to the
zero state if there exists a finite-time admissible control input function
u(.) defined over [tp, T] (T < o0) that drives the system from the state
w to the zero state — that is, ¢(T,u; to,w) = Oy

Definition
A state w € RV of a dynamical system is said to be unobservable if for
all t > ty,

y(t) = Co(t,0; to,w) = 04
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L Reachability and Observability
LCompletely Controllable Dynamical System

Definition (R.E. Kalman, 1963)

A linear dynamical system (A, B, C) is said to be completely

controllable at time tg if it is not equivalent, for all t > tp, to a system
of the type

8
%"t" ACDRD 4 A0, 4 By
@)
%W A2,
t
y(t) = COWD 4 COWD
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by the inputs to the system
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L Reachability and Observability
LCompletely Observable Dynamical System

A linear dynamical system (A, B, C) is said to be completely observable
at time tg if it is not equivalent, for all t < ty, to any system of the type

1
dw ACDRD 4+ By
dt
dw®
P ACHWD 1 AW 4 By
y(t) CcOw®
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L Reachability and Observability
L Example: Simple RLC Circuit

m For C = L and R =1, the equation of the network shown above in
terms of the current wy flowing through the inductor and the

potential w, across the capacitor is given by

dwy
dt

dwa
dt

71

*ZW1 —+

7ZW2 —+

1
L

TwW — wy +

L
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L Reachability and Observability
L Example: Simple RLC Circuit

m Under the change of variable w4 = (wy + w»)/2 and
wy, = (wq — wz)/2, the previous dynamical system becomes

dwy _
e oM.
dmm  1_
@ T "

2 _
n = ZW2+U1
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L Example: Simple RLC Circuit

m Under the change of variable w4 = (wy + w»)/2 and
wy, = (wq — wz)/2, the previous dynamical system becomes

dwy _
e oM.
dmm  1_
@ T "

2 _
n = ZW2+U1

m w; is controllable but not observable
m W, is observable but not controllable

m Hence, this dynamical system is neither completely controllable nor
completely observable
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L Reachability and Observability

L Canonical Structure Theorem

Theorem (Kalman, 1961)

Consider a linear dynamical system (A, B, C). Then:
(i) There is a state space coordinate system in which the components of
the state vector can be decomposed into four parts

w = W w® W) w@]T

(ii) The sizes N,, Ny, N. and Ny of these vectors do not depend on the
choice of basis

(iii) The system matrices take the form

A@a)  Aab)  place)  Alad) B(2
(b,b) (b,d) (b)
o 0 A 0 A B—|B 7
0 0 Al Aled) 0
0 0 0 A9 0
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L Reachability and Observability

L Canonical Structure Theorem

m The four parts of w can be interpreted as follows
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L Reachability and Observability
LReachable and Controllable Subspaces

Definition
The reachable subspace W, C R" of a system (A, B, C) is the set
containing all reachable states of the system and

R(AB)=[BAB --- AV-1B]

is the reachability matrix of the system
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Definition
The reachable subspace W, C R" of a system (A, B, C) is the set
containing all reachable states of the system and

R(AB)=[BAB --- AV-1B]

is the reachability matrix of the system

Definition
The controllable subspace W .., C RV of a system (A, B, C) is the set
containing all controllable states of the system
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L Reachability and Observability
LReachable and Controllable Subspaces

Given a system (A, B, C),

Weach = Im R(A, B)

m Proof

m recall (1) then set to =0 and w(0) =0
(

m recall that =7 = 1y + A(t—7)+ M I
(A(t—1))"

= then w(t) = /O (IN+A(t—T)+ (t = T))2 )Bu(T)dT

K
t—rT1
m for any finite t, / u u(7)dT acts as an in-long vector

multiplying A*B to the rlght
= linear combination of {B AB --- AY~'B,A"B,A""'B, ...}

m recall Cayley-Hamilton: enAY v AV b A Iy =0
= linear combination of the columns of [B AB --- AVN~!B] O
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L Reachability and Observability
LReachable and Controllable Subspaces

Corollary

(i) If R has full rank, AW reach C W reach
(ii) The system is completely reachable if and only if rank R(A,B) = N
(iii) Reachability is basis independent

m Proof
m only the term AVB € RV*™" requires special attention
m Cayley-Hamilton: cyAV + cy_1AN"1 4+ ... 4 A+ cly =0

= cyAVB + cy_1AN"IB+ .-+ tAB+c,B =0

= AVB = _N-ipnN-1g ... “ag_Dp 0
N (9] N
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L Reachability and Observability
LReachability and Observability Gramians

The reachability (controllability) Gramian at time T < oo is defined
as the NV x N symmetric positive semi-definite matrix

;
P(T) = / eA"BB*e? Tdr
0

where % designates the transpose of the complex conjugate
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The reachability (controllability) Gramian at time T < oo is defined
as the NV x N symmetric positive semi-definite matrix

;
P(T) = / eA"BB*e? Tdr
0

where % designates the transpose of the complex conjugate

Definition
The observability Gramian at time T < oo is defined as the N x N
symmetric positive semi-definite matrix

.
oT) = / A TCr Cerdr
0
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LReachability and Observability Gramians

The columns of P(T) span the reachability subspace
Wreach = Im R(A, B)

Corollary

A system (A, B, C) is reachable if and only if P(T) is Symmetric Positive
Definite (SPD) at some time T > 0

m Proof
m if P(T) is SPD, define the input u(t) = B*e* (T-9P 1w,
telo, T]

m starting from w(0) = 0, the resulting final state is w(t) =
T T
/ AT Bu(r)dr = (/ TRt Uﬁf)dr) P 'w(T)

0 0
T
= (/ A" BBt Td7'> P_lw(T) =w(T)
0

P
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L Reachability and Observability
LEquivalence Between Reachability and Controllability

For continuous linear dynamical systems, the notions of controllability
and reachability are equivalent — that s,

Wreach - Wcontr
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L Reachability and Observability
LUm::bservability Subspace

Definition

The unobservability subspace W,ops C RV is the set of all
unobservable states of the system and the matrix

O(C,A) = [C* A*C* ... (A*)/iC* ... ]*

is the observability matrix of the system
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L Reachability and Observability
LUnobservability Subspace

Given a system (A,B,C),

Wunobs = Ker O(C, A)
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Given a system (A,B,C),

Wunobs = Ker O(C, A)

Corollary

(’) A%/Vunobs (- Wunobs
(ii) The system is completely observable if and only if rank O(C,A) = N
(iii) Observability is basis independent
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L Reachability and Observability

L Infinite Gramians

The infinite reachability (controllability) Gramian is defined for a
stable LTI system as the NN x N symmetric positive semi-definite matrix

€ *
P:/ M BB*e? tdt
0
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L Infinite Gramians

The infinite reachability (controllability) Gramian is defined for a
stable LTI system as the NN x N symmetric positive semi-definite matrix

o0 *
P:/ eA'BB* e dt
0

Definition

The infinite observability Gramian is defined for a stable LTI system
as the N x N symmetric positive semi-definite matrix

Q= / A tC CePdt
0
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L Reachability and Observability

L Infinite Gramians

m Using Parseval’s theorem, the two previously defined Gramians can
be written in the frequency domain as follows
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m Using Parseval’s theorem, the two previously defined Gramians can
be written in the frequency domain as follows

m infinite reachability Gramian

P— 2i/ (jwly — A)"'BB*(—jwly — A*) 'dw
vis

— o0

= infinite observability Gramian

0= - [ ety — AY)IC Cliaty — A)

—0o0
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L Reachability and Observability

L Infinite Gramians

m The two infinite Gramians are solutions of the following Lyapunov
equations

m infinite reachability Gramian

AP + PA* + BB* =0y
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L Infinite Gramians

m The two infinite Gramians are solutions of the following Lyapunov
equations

m infinite reachability Gramian

|AP + PA* +BB" =0y

m infinite observability Gramian

[A"Q+ QA+ CC=0y]
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L Reachability and Observability
LEnergetic Interpretation
m P and Q are respective bases for the reachable and observable
subspaces

m P measures how controllable each direction in state-space is
m O measures how observable each direction is
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LEnergetic Interpretation

m P and Q are respective bases for the reachable and observable
subspaces
m P measures how controllable each direction in state-space is
m O measures how observable each direction is
m || ||p-1 and || ||g are semi-norms (recall that P is generally
symmetric positive semi-definite and thus || ||p-1 is generally || ||p+)
m For a reachable state, the inner product based on P~ characterizes
the minimal energy required to steer the state from 0 to w as t — oo

w52 =w’ Ej_vg (s /Ot(Bu(T))* Bu(T)dT)

homogeneous
to an input

m The inner product based on Q indicates the maximal energy
produced by observing the output of the system corresponding to an
initial state wg when no input is applied

;
Iw|[a =w'Qw
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|—Balancing
L Model Order Reduction Based on Balancing

m If P is large in some direction w, w!P~lw is small, w can be
reached using a small control energy, but w’ Pw is large

m If Q is large in some direction w, w’Ow is large and that direction
produces a large observation energy

m PMOR strategy: Eliminate the states w that are simultaneously

m difficult to reach, i.e., require a large energy ||w||%_, to be reached
m difficult to observe, i.e., produce a small observation energy |lw||%
m The above notions are basis-dependent

m One would like to consider a basis where both energy measures are
equal or balanced - specifically, a basis where w’ Pw and w” Ow
are balanced (see first two bullets)
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|—Balancing
LEffect of Basis Change on the Gramians

m Balancing requires changing the basis for the state using a
transformation T € GL(N)

w=Tw
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m Balancing requires changing the basis for the state using a
transformation T € GL(N)

w=Tw
m Then (see Chapter 5)
m B = (TMT ) (TB) = TeMB
- B*eA*t = (B*T*) <T*’1eA*tT*) — B*eA*tT*
m the reachability Gramian becomes

At = (T**leA*tT*> (T**lc*) _ T**leA*tC*

CeM = (CT ) (TMT ) =ceMT !
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|—Balancing

LBalancing Transformation

m Balancing transformations Ty, and Tl;j can be computed as follows
compute the Cholesky factorization P = UU*
H compute the eigenvalue decomposition of U*QU

U*QU = KX°K*
where the entries in X are ordered decreasingly
compute the transformations

Tow = Z:K'U!
T, = UKZ?

25/43



AA216/CME345: PMOR - BT
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LBalancing Transformation

m Balancing transformations Ty, and Tl;j can be computed as follows
compute the Cholesky factorization P = UU*
H compute the eigenvalue decomposition of U*QU

U*QU = KX°K*
where the entries in X are ordered decreasingly
compute the transformations
L
T = X2K'U
Tyl = UKZ?

m Then, one can check that balancing is achieved

ToaPTi =T QT =%

Definition (Hankel Singular Values)

Y =diag(oy,- - ,on) contains the N Hankel singular values of the
system (a Hankel singular value is computed from the Hankel operator
or the product of Gramian matrices (PQ) associated with a LTI system
and measures the energy of a corresponding internal state)
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|—Balancing

LVariational Interpretation

m Computing the balancing transformation Ty, is equivalent to
minimizing the following function

min f(T)=_min trace(TPT*+T* QT 1)
TEGL(N) TEeGL(N)
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|—Balancing

LVariational Interpretation

m Computing the balancing transformation Ty, is equivalent to
minimizing the following function

min f(T)=_min trace(TPT*+T* QT 1)
TEGL(N) TEeGL(N)

m For the optimal transformation Ty, the function takes the value
N
F(Toal) = 2tr(X) =2 o;
i=1

where {0}, are the Hankel singular values
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I—Balanced Truncation Method
L Block Partitioning of the System

m Applying the change of variable w = Tpaw transforms the given

dynamical system into (A, B, C) where

A =T,AT,}, B=Ty,B, C=CT_;

m Let 1 < k < N, the system can be partitioned in blocks as

— A Ap - B; — —
A Zu 2 B=| ' |, C=[C, C
[A21 Azz} {Bz] [C C ]

m The subscripts 1 and 2 denote the dimensions k and N — k,

respectively
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I—Balanced Truncation Method
L Block Partitioning of the System

m The blocks with the subscript 1 correspond to the most observable
and reachable states
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m The blocks with the subscript 2 correspond to the least observable
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m Then, the following lower-dimensional model of size k
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I—Balanced Truncation Method
L Block Partitioning of the System

m The blocks with the subscript 1 correspond to the most observable
and reachable states

m The blocks with the subscript 2 correspond to the least observable
and reachable states

m Then, the following lower-dimensional model of size k
(Ar’ Bh cr) — (Kllaﬁhél) c kak % kain x quk

is the PROM constructed by Balanced Truncation (BT)
m The left and right ROBs are

W="T[,(:,1:k) and V =Spu(:,1: k), respectively,

1
where Sp = T,
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|—Error Analysis

LError Criterion

Definition (The Hardy space H.)
The Ho-norm associated with a system characterized by a transfer

function G(-) is defined as

1Gll#.. = sup [|G(2)]loc = sup omax (G(2))

zeCy zeCy

where z € C; if z € C and Jm(z) > 0.

Proposition

(1) 1G]l = sup [[G(iw)llec = sup omax (G(iw))
weR weR

: (t)]3dt
(i) 1G], = sup X2 _ g foillg
uz0 Ju(-)ll2 u£0 fO t)||3dt

m The H,, norm of the error between the HDM- and PROM-based
solutions will be used as an error criterion
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|—Error Analysis
LTheorem

Theorem (Error Bounds)

The BT procedure yields the following error bound for the output of
interest.
Let {3;}NsV C {0}V, denote the distinct Hankel singular values of the
system and {6;},{\’:5,‘(,k 41 the ones that have been truncated. Then
Nsy
ly(:) =y (<2 D &l

i=Nk+1

Equivalently, the above result can be written in terms of the H.-norm of
the system error as follows
Nsy
I6() =G (e <2 Y &

i=Nk+1

where G and G, are the full- and reduced-order transfer functions.
Equality holds when Gy, +1 = dng, (all truncated singular values are
equal).

30/43



AA216/CME345: PMOR - BT
|—Error Analysis
LTheorem

Proof. The proof proceeds in 3 steps:

Consider the system error E(s) = G(s) — G,(s)
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|—Error Analysis
LTheorem

Proof. The proof proceeds in 3 steps:
Consider the system error E(s) = G(s) — G,(s)
H Show that if all truncated singular values are equal to o, then

IEC) 1o =2 (Nsy — Nk) o

E Use this result to show that in the general case

Nsy

IO <2 Y 5

iI=Ng+1
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L Stability Analysis
LTheorem

Theorem (Stability Preservation)
Consider (A,,B,,C,) = (A11,B1,C1), a PROM obtained by BT. Then

(i) A, = Ay; has no eigenvalues in the open right half plane

(ii) Furthermore, if the systems (A11,B1,Cy) and (A2, Bz, Cy) have no
Hankel singular values in common, A, has no eigenvalues on the
imaginary axis
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|—Computational Complexity
L Numerical Methods

m Because of numerical stability issues, computing the transformations
1 1
Tha = Z2K*U™L, T, | = UKZ 2

is usually ill-advised (computation of inverses)
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1 1
Tha = Z2K*U™L, T, | = UKZ 2

is usually ill-advised (computation of inverses)

m Instead, it is better advised to use the following procedure

start from the Cholesky decompositions of the Gramians

P=UU" and Q=27%
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m Instead, it is better advised to use the following procedure

start from the Cholesky decompositions of the Gramians
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compute the SVD
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|—Computational Complexity
L Numerical Methods

m Because of numerical stability issues, computing the transformations
1 1
Tha = Z2K*U™L, T, | = UKZ 2

is usually ill-advised (computation of inverses)
m Instead, it is better advised to use the following procedure
start from the Cholesky decompositions of the Gramians
P=UU" and Q=27%
compute the SVD
Uz =wzxv"~

construct the matrices

T =X 2V*Z* and Tp} = UWE :

B Proof: Recall that X is always real-valued then compute Ty PThy
and TE;QT;; using the above SVD
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|—Computational Complexity

L Cost and Limitations

m BT leads to PROMs with quality and stability guarantees; however

m the computation of a Gramian is intensive as it requires the solution
of a Lyapunov equation (O(N?) operations)

m for this reason, BT is in general impractical for large systems — say
N > 10° (but monitor progress in the literature if interested)
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|—Comparison with the POD Method
LpoD

Recall the theorem underlying the construction of a POD basis

|

Theorem

Let K € RN*N pe the real symmetric semi-definite positive matrix

defined as -
K= / w(t)w(t)" dt
0
L Al > 5\ 2 3\ > 0 denote the ordered eigenvalues of K and let
d) eRV, i= N, denote the associated eigenvectors

Rai:}\\i(};ia l:17aN

The subspace V = range( ) of dimension k minimizing J(I'IV v) is the
invariant subspace of K associated with the eigenvalues )\1, ,)\k

35/43



AA216/CME345: PMOR - BT
|—Comparison with the POD Method
L POD for an Impulse Response

m The response of an LTI system to a single impulse input with a zero
initial condition is
w(t) = eA'B
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|—Comparison with the POD Method
L POD for an Impulse Response

m The response of an LTI system to a single impulse input with a zero
initial condition is
w(t) = eA'B

m Consequently, the reachability Gramian is
T - T N
P:/ eA'BBT M tdt:/ w(t)w(t)Tdt = K
0 0

m Unlike the BT method, the POD method does not take into account
the observability Gramian to determine the PROM: therefore, every
observable state may be truncated
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I—Application
Lecp Player System (B. Salimbahrami and B. Lohmann, 2003)

m Objective: model the position of the lens controlled by a swing arm
m System with in = 2 inputs
m control voltage commanding the lens to move up and down to
maintain the laser beam's focus on the disc’s information layer
m control voltage commanding the entire swing arm to move radially to
keep the laser spot precisely on the data track
and g = 2 outputs
m focus error signal (degree and direction of vertical misalignment)
m tracking error signal (degree and direction of radial misalignment)
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I—Application

Lcp Player System (B. Salimbahrami and B. Lohmann, 2003)

Bode plots associated with the HDM-based solution (N = 120): Each
column represents one input and each row represents a different output
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I—Application

Lecp Player System (B. Salimbahrami and B. Lohmann, 2003)

Bode plots associated with the PROM-based (BT) solution: Each
column represents one input and each row represents a different output
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L Balanced POD Method

m The Balanced POD (BPOD) method generates two sets of
snapshots: The standard POD solution snapshots; and the dual
POD snapshots introduced below

S = [(jwil-A)"'B - (jwn,,|—A)'B]
Squal = [(—jwil — A)7IC* - (—jwn,,, | — A*)TICY]
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snapshots: The standard POD solution snapshots; and the dual
POD snapshots introduced below

S = [(jwil-A)"'B - (jwn,,|—A)'B]
Squal = [(—jwil — A)7IC* - (—jwn,,, | — A*)TICY]

m Next, BPOD computes right and left ROBs as follows
S/.S = UXZ’™ (SvD)
vV = sz,x.'/?
W = SduaIUkZ;1/2

where the subscript k designates the first k terms of the singular
value decomposition
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L Balanced POD Method

m The Balanced POD (BPOD) method generates two sets of
snapshots: The standard POD solution snapshots; and the dual
POD snapshots introduced below

S = [(jwil-A)"'B - (jwn,,|—A)'B]
Squal = [(—jwil — A)7IC* - (—jwn,,, | — A*)TICY]

m Next, BPOD computes right and left ROBs as follows

S/.S = UXZ’™ (SvD)
vV = sz,x.'/?
W = SduaIUkZ;1/2

where the subscript k designates the first k terms of the singular
value decomposition

m If no truncation is performed, the result is equivalent to two-sided
moment matching at s; € {w1,--- ,wn,,, } (see later)
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LBalanced POD Method
LBT and POD in the Time Domain

m The POD method in the time domain is based solely on the
reachability concept

m However, the BPOD method
m adds the notion of observability in the construction of a PROM
m is tractable for very large-scale systems
m provides an approximation to the BT method

m does not guarantee in general the stability of the resulting PROM
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L Balanced POD Method
L Application

m Supersonic Inlet Problem (part of the Oberwolfach Model Reduction
Benchmark Collection repository)

Incoming flow

T
=, |
My, =22 Inlet throat | Shock
1
1
1

—

Inlet disturbance —/\_

dw
EE(t) = Aw(t) + Bu(t)

y(t) = Cw(t)
m N = 11370 (2D Euler equations)
m in =1 input (density disturbance of the inlet flow)
m g = 1 output (average Mach number at the diffuser throat)
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L Balanced POD Method
L Application
m PMOR in the frequency domain using
= POD
= BPOD
m In both cases, same frequency sampling for the computation of
solution snapshots
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L Balanced POD Method
L Application
m PMOR in the frequency domain using
= POD
= BPOD
m In both cases, same frequency sampling for the computation of
solution snapshots
m Plot of the magnitude of the relative error in the transfer function
(within the sampled frequency interval) as a function of the
dimension k of the constructed PROM

2

10

100 »//\—\

—POD
— Balanced POD
n

-8 . 1 .
10 12 14 16 18 20
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