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m Note: The material covered in this chapter is based on the following
published documents:

m D. Amsallem, C. Farhat. Interpolation method for adapting
reduced-order models and application to aeroelasticity. AIAA Journal
2008; 46(7):1803-1813.

m D. Amsallem, J. Cortial, C. Farhat. Towards real-time CFD-based
aeroelastic computations using a database of reduced-order models.
AIAA Journal 2010; 48(9):2029-2037.

m D. Amsallem, C. Farhat. An online method for interpolating linear
parametric reduced-order models. SIAM Journal on Scientific
Computing 2011; 33(5): 2169-2198.

m D. Amsallem, Interpolation on manifolds of CFD-based fluid and
finite element-based structural reduced-order models for on-line
aeroelastic predictions. Ph.D. Thesis, Stanford University, 2010.
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L Parameterized Systems

L Parametric Linear and Nonlinear Systems

m Parametric linear High-Dimensional (time-invariant) Model (HDM)

Mitu) = AGuw(t )+ Blu(t)
y(tipn) = C(p)w(t; p)+ D(p)u(t)
w(0;p) = wo(p)

m Parametric nonlinear HDM

dw

i (1) = F(w(t). £ ) + B(p)u(t)

m w € RV: Vector of state variables

m u € R Vector of input variables — typically in < N

y € R9: Vector of output variables — typically g < N

pn € D C RP: Vector of parameters — typically p < N
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L Parameterized Systems

LLocal Petrov-Galerkin Projection-Based Reduced-Order Models

m Parametric linear (time-invariant) HDM

m goal: Construct a corresponding parametric Projection-based
Reduced-Order Model (PROM) using a local rather than global

approach
W(tiw) = Admalt )+ B.(w)u(t)
y(tip) = Cr(p)a(t; p) + Dr(n)u(t)

B based on local Reduced-Order Bases (ROBs) (V (u(9), W (u(®))
and the approximation

w(t; p) = V(p)a(t; p)
m p) eD; qgeRF
m all local ROBs have the same dimension kK < N

m local PROM operators resulting from Petrov-Galerkin projection

Ap) = (W(p)V(p) "W(p) A(p)V(p) € R
Bi(k) = (W(u) V(1)) 'W(p) B(ps) € R
C(n) = C(uV(p)€R™ D/ (n)=D(n) R
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L Parameterized Systems
LLocal Petrov-Galerkin Projection-Based Reduced-Order Models

m Parametric nonlinear HDM

m goal: Construct a corresponding parametric PROM using a local
rather than global approach

Bltp) = Flalt), t ) +Bo(u(t)

y(t;in) = Cr(p)a(t; p) + Dr(n)u(t)

m based on local ROBs (V (/L(l)) , W (u(l))) and the approximation

w(t; p) =~ V(p)a(t; )

u u(z)eD;qeRk
m all local ROBs have the same dimension k < N
m local PROM resulting from Petrov-Galerkin projection

fr(a(e), ) = (W () V (1)) W) TRV ()a(e), £ ) € B
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L parameterized Systems
LCase Study: Aeroelastic Analysis of a Fighter Aircraft Configuration (Circa 2008)
m Parametric, linearized, aeroelastic identification of a F-16 Block 40

aircraft in clean wing configuration (e.g., for flutter analysis in the
time domain)

m Linearized coupled fluid-structure system around an aeroelastic
equilibrium position

m Hundreds of flight conditions p = (M, «) for flutter clearance

CFD model FEM structural model

m Nyyig = 2 X 106: Nstructure = 1.6 X 10°
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L Parameterized Systems

LLack of Robustness of Local ROBs for Parameter Changes

m Consider the following procedure
construct local ROBs (V (u(1)> , W (u(l))) at the parametric flight

condition p®
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L Parameterized Systems
LLack of Robustness of Local ROBs for Parameter Changes
m Consider the following procedure
construct local ROBs (V (u(1)> W (u(l))) at the parametric flight
condition p®
avoid reconstructing new local ROBs every time the flight condition
is varied and thus use the local ROBs constructed at u(l) to reduce
the HDM at p®
build the following local PROM

)~ A (u)a(on) o, (47
y (t:?) ¢ (u®)a(t:6?) + D, (1) u(r)

W) = V() a(e)
where

n () -
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L Parameterized Systems

LLack of Robustness of Local ROBs for Parameter Changes

m Queried flight conditions
. = (M&),a(l)) = (0.71, trimmea(0.71))
5 u(2) = (Mg),a@) = (0.8, Qtrimmed (0.8))
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= the local ROBs lack robustness with respect to parameter changes
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L Parameterized Systems
L Direct Construction of Local ROBs

m The lack of robustness of the local ROBs with respect to parameter
changes implies that they should be reconstructed every time the
parameters are varied

m Alternative procedure: Given a queried but unsampled parameter
point u* € D
construct the HDM operators A (u*) (linear setting) or
f(w(t), t; w*) (nonlinear setting), B (u*), C (™), and D (u*)
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L Direct Construction of Local ROBs

m The lack of robustness of the local ROBs with respect to parameter

changes implies that they should be reconstructed every time the
parameters are varied

m Alternative procedure: Given a queried but unsampled parameter
point u* € D

construct the HDM operators A (u*) (linear setting) or
f(w(t), t; w*) (nonlinear setting), B (u*), C (™), and D (u*)
H generate the local ROBs (V(u*), W(pe™)) using a preferred approach

construct the local PROM operators A, (™) (linear setting) or
f-(a(t), t; u*) (nonlinear setting), B, (), C; (*), and D, (*)
using a preferred Petrov-Galerkin Projection-Based Model Order
Reduction (PMOR) method

A exploit the constructed local Petrov-Galerkin PROM

m Question: Is this procedure computationally efficient?
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L Parameterized Systems
L Direct Construction of Local ROBs

m Construction and exploitation in t € [0,1] s of a local, linearized,
aeroelastic F-16 PROM

“HDM construction
“ROBs generation

—l ROM construction

“ROM exploitation

0 10 20 30 40 50 60
( CPU time in min)
m The direct generation of a pair of local ROBs accounts for 89% of
the total CPU time
m The overall procedure takes 56 minutes, which renders this approach
non-amenable to real-time parametric applications
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|—Concept of a Database of Local ROBs
LInterpc::lati(m of Local ROBs

m ldea

m pre-compute local ROBs at a number of sampled parameter points

{M“) € D}Ns

=1
m interpolate these ROBs to obtain a local ROB at a queried but
Ns
unsampled parameter p* ¢ {u(l)}
=1

|

O/@®@\O O @
O ® Pre-computed
o o ROB
[ RIONEORY ] o Interpolated
@) p@ ROB
ol\e D Zonal

interpolation

Hy

m Question: How does one interpolate local ROBs?

m For simplicity, assume an orthogonal Galerkin projection
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|—Concept of a Database of Local ROBs
L Direct Interpolation of Local ROBs

= Tempting idea: Interpolate the matrices V (p(?) € RV
entry-by-entry (linear interpolation on the manifold R")
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|—Concept of a Database of Local ROBs
L Direct Interpolation of Local ROBs

= Tempting idea: Interpolate the matrices V (p(?) € RV
entry-by-entry (linear interpolation on the manifold R")

m Input
m queried parameter p*

m pre-computed ROBs {V (“(2))}
m multi-variate interpolator Z in R”

a(p) =1 (’“‘? {2 (1) ’“m}eN;)

N

(=1
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|—Concept of a Database of Local ROBs
L Direct Interpolation of Local ROBs

= Tempting idea: Interpolate the matrices V (p(?) € RV
entry-by-entry (linear interpolation on the manifold R")

m Input
m queried parameter p*
m pre-computed ROBs {V (“(2))}
m multi-variate interpolator Z in R”

a(p) =1 (’“‘? {2 (1) ’“m}eN;)
m Algorithm

1: fori=1: N do
for j=1:kdo
N
compute v;(p*) =1 (u*: {vi (n9) ,u“’}g:l)
end for
end for

. form V(p*) = [vii(pe*)]

N

(=1

AU T

13/47



AA216/CME345: PMOR - Local ROBs and Local PROMs
|—Concept of a Database of Local ROBs
LDirect Interpolation Does Not Work

m Example
a N=3 k=2,p=1

m for p =0: V (p(l)) =V(0) = (v1 v2)
m for p® =1 Vv (“(2)) =V(1) = (—v1 v2)
m queried but unsampled parameter p = 0.5
m linear interpolation
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LDirect Interpolation Does Not Work

m Example
a N=3 k=2,p=1
m for p =0: V (p(l)) =V(0) = (v1 v2)

m for p® =1 Vv (“(2)) =V(1) = (—v1 v2)
m queried but unsampled parameter p = 0.5

m linear interpolation

m Interpolatory result
V(0.5) =0.5(V(0) + V(1)) = (0.5(vy — v1) 0.5(va + v2)) = (0 v)

vy
< Vo 4\\’2 — \Vf

m What went wrong?
m a relevant constraint was neither identified nor preserved
= the wrong entity was interpolated
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|—Concept of a Database of Local ROBs
LSubspace Interpolation
m Reduced-order equation
m linear (time-invariant) system
dq

e (1) = V() AV (m)a(t: 1) + V(1) "B(p)u(t)

m nonlinear system
dq

— () = V() F(@(0), £ )
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|—Concept of a Database of Local ROBs
LSubspace Interpolation

m Reduced-order equation
m linear (time-invariant) system

dq

e (1) = V() AV (m)a(t: 1) + V(1) "B(p)u(t)
m nonlinear system

99 t14) = V() F(0) & )

m Equivalent high-dimensional equations for w(t; ) = V(p)q(t; )
O (£54) = v AGR(E ) + Ty v B()u(t) - (inear)
dw

o (G 1) = M) v FOW(E), £ 1)+ v () v B(re)u(t) - (nonlinear)
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|—Concept of a Database of Local ROBs
LSubspace Interpolation
m Reduced-order equation

m linear (time-invariant) system

99 1) = V() AV (wa(t 1) + V(1) B(s1)u(t)

m nonlinear system

99 1) = V(1) F (1), £ )

m Equivalent high-dimensional equations for w(t; ) = V(p)q(t; )
dw . .
E(t; 1) = My, v A()W(E; 1) + Ay v B(p)u(t)  (linear)

dw - .

o (G 1) = M) v FOW(E), £ 1)+ v () v B(re)u(t) - (nonlinear)

m In both cases, the PROM solution is independent of the choice of
ROB associated with the projection subspace

— the correct entity to interpolate is S(u) = range(V(u))
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|—Concept of a Database of Local ROBs

LInterpc::lati(m of Local ROBs on the Grassmann Manifold

m A subspace S is typically represented by a ROB
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m A subspace S is typically represented by a ROB

m The appropriate choice of a ROB is not unique
S = range(V) = range(VQ), VQ € GL(k)

m A subspace is a linear special case of a manifold; manifolds locally
resemble vector spaces, with tangent spaces that are linear subspaces
m Manifolds of interest

m G(k, N) (Grassmann manifold): Set of subspaces in RV of dimension
k

m ST (k, N) (orthogonal Stiefel manifold): Set of orthogonal ROB
matrices in RV**

m GL(k) (general linear group): Set of nonsingular square matrices of
size k
m O(k): Set of orthogonal square matrices of size k
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LInterpc::lati(m of Local ROBs on the Grassmann Manifold

m A subspace S is typically represented by a ROB

m The appropriate choice of a ROB is not unique
S = range(V) = range(VQ), VQ € GL(k)

m A subspace is a linear special case of a manifold; manifolds locally
resemble vector spaces, with tangent spaces that are linear subspaces
m Manifolds of interest
m G(k, N) (Grassmann manifold): Set of subspaces in RV of dimension
k

m ST (k, N) (orthogonal Stiefel manifold): Set of orthogonal ROB
matrices in RV**

m GL(k) (general linear group): Set of nonsingular square matrices of
size k

m O(k): Set of orthogonal square matrices of size k

Properties
m O(k) C GL(k)
s ST(N,N) = O(N)
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|—Concept of a Database of Local ROBs

LInterpc::lati(m of Local ROBs on the Grassmann Manifold

m Case of PMOR with orthogonal ROBs
m V(u) € ST(k,N)
= range(V(p)) € G(k, N)
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m Case of PMOR with orthogonal ROBs
m V() € ST(k,N)
m range(V(u)) € G(k, N)
m Equivalence class
= S(p) = range(V(p)) = range(V(1)Q), VQ € O(k)
m an element of the Grassmann manifold defines an entire class of
equivalence on the Stiefel manifold
m this class of equivalence is defined by the range operation
VYVi,Vo € ST(k,N), Vi ~V, <& range(V1) = range(V2)

< dQe O(k) st Vi =VoQ
m therefore, the Grassmann manifold is a quotient manifold denoted as
G(k,N) = ST(k, N)/O(k)

m Hence, one should interpolate subspaces, but has access in practice
to (orthogonal) ROBs

m Solution: Perform interpolation on the Grasmann manifold using
entities belonging to the (orthogonal) Stiefel manifold
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|—Concept of a Database of Local ROBs
L Matrix Manifolds

m Quotient matrix manifold
m the Grassmann manifold

m Embedded matrix manifolds!
m the sphere

S(N) = {w ERV st |wl = 1} CRV

m the manifold of orthogonal matrices

O(N) = {M eRVN st MTM = |N} c RNV
B the general linear group

GL(N) = {M € RY*V st det (M) # 0} C RV*N
m the manifold of symmetric positive definite matrices

SPD(N) = {M ERVN st M=MT& w Mw >0 Vw # 0} c RNXN

B the orthogonal Stiefel manifold

ST(k,N) = {M e RN st MTM =1, } C RNk

Un differential geometry, a manifold is said to be embedded if it can be placed in a
higher-dimensional space such that the topology and smooth structure of the manifold
are preserved within that space
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|—Concept of a Database of Local ROBs

L Interpolation on Matrix Manifolds

m Example: The circle (sphere S(N) for N = 2)

P()

P()
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L Interpolation on Matrix Manifolds

m Example: The circle (sphere S(N) for N = 2)

P()

P(u@)

m Standard interpolation fails to preserve a nonlinear manifold
(essentially because standard interpolation applies only in vector
spaces)
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|—Concept of a Database of Local ROBs

L Interpolation on Matrix Manifolds

m Example: The circle (sphere S(N) for N = 2)

P()

P()

m Standard interpolation fails to preserve a nonlinear manifold
(essentially because standard interpolation applies only in vector
spaces)

m Idea: perform interpolation in a linear space = on a tangent space
of the manifold
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|—Concept of a Database of Local ROBs
LInterpc::lati(m on the Tangent Space of a Matrix Manifold

® Input

Ns
m pre-computed matrices {A (u(4)> e RVxM
=1
® map ma from the manifold M to the tangent space of M at the
point A

m multi-variate interpolator Z in R”

o= 1o 7).} )

m inverse map m;l from the tangent space of M at the point A to the
manifold M
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LInterpc::lati(m on the Tangent Space of a Matrix Manifold

® Input

c RNXM
=1
map ma from the manifold M to the tangent space of M at the

point A
multi-variate interpolator Z in RP

o= 1o 7).} )

inverse map m;l from the tangent space of M at the point A to the
manifold M

pre-computed matrices {A (u“)

m Requirement: The interpolation operator Z must preserve the
tangent space = linear operator — for example,

a(u*)—I(u*;{a(u“)) u(‘} > Z@g a( >)
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|—Concept of a Database of Local ROBs
LInterpolation on the Tangent Space of a Matrix Manifold

m Algorithm
- for ¢ =1:N; do

[y

2 compute I (u(é)) = ma (A (uw)))

3: end for

4: fori=1:Ndo

5: forj=1:Mdo

6: compute [;i(p*) =1 (u*; {rj (u®) ”u(z)};\’;l)

7. end for

8: end for

9: form T(p*) = [[;(p*)] and compute A(p*) = my(F(u*))
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LDifferential Geometry

m How does one find mp and its inverse m;l?
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LDifferential Geometry
m How does one find ma and its inverse m;l?
m Idea: Use concepts from differential geometry
m Geodesic
m is a generalization of a “straight line” to “curved spaces” (manifolds)

m is uniquely defined given a point x on the manifold and a tangent
vector £ at this point

Y(t;x,€) 1 [0,1] = M
7(0;x,6) = x, 7(0,x,6) =&

T; ,
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m How does one find ma and its inverse m;l?
m Idea: Use concepts from differential geometry
m Geodesic
m is a generalization of a “straight line” to “curved spaces” (manifolds)

m is uniquely defined given a point x on the manifold and a tangent
vector £ at this point

Y(t;x,€) 1 [0,1] = M
7(0;x,6) = x, 7(0,x,6) =&

T; ,

Exp, : TxM = M € — v(1;x,€)

m Exponential map
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AA216/CME345: PMOR - Local ROBs and Local PROMs
|—Concept of a Database of Local ROBs
LDifferential Geometry

m How does one find mp and its inverse m;l?
m Idea: Use concepts from differential geometry
m Geodesic
m is a generalization of a “straight line” to “curved spaces” (manifolds)
m is uniquely defined given a point x on the manifold and a tangent
vector £ at this point

Y(t;x,€) 1 [0,1] = M
7(0;x,6) = x, 7(0,x,6) =&

T; ,

Expy : M = M € — (15 x,€)
m Logarithm map at base point x (defined in neighborhood U, of x)
Log, : Uy C M = TeM y — Exp*(y) = Log,(v) = 7(0,x,6) = ¢

m Exponential map
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|—Concept of a Database of Local ROBs

LInterpc::lati(m on a Tangent Space of a Matrix Manifold

m Application to the interpolation of two points on a circle

LogpuayP (n") =0z

Logp P (M) =0
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|—Concept of a Database of Local ROBs

LInterpc::lati(m on a Tangent Space of the Grassmann Manifold

m Logarithm map
compute a thin SVD

(1= VoVg )Vi(Vg Vi)t =uxz’

compute
r=Utan (£)Z2" e RV**

re LogSO(S;) € Ts,G(k, N)
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LInterpc::lati(m on a Tangent Space of the Grassmann Manifold

m Logarithm map
compute a thin SVD

(1= VoVg )Vi(Vg Vi)t =uxz’
compute
r=Utan (£)Z2" e RV**
I < Logs, (Si) € Ts,G(k, N)

= Exponential map of € € T5,G(k, N) <+ T
compute a thin SVD B
r=uxz’

H compute
V = (VoZcosX + UsinX) € ST (k, N)

range(V) = Bxps, (€) € G (k. N)
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|—Concept of a Database of Local ROBs

LInterpc::lati(m on a Tangent Space of the Grassmann Manifold

m Logarithm map
compute a thin SVD

(1= VoVg )Vi(Vg Vi)t =uxz’
compute
r=Utan (£)Z2" e RV**
I < Logs, (Si) € Ts,G(k, N)

= Exponential map of € € T5,G(k, N) <+ T
compute a thin SVD B
r=uxz’

H compute
V = (VoZcosX + UsinX) € ST (k, N)

range(V) = Bxps, (€) € G (k. N)

m Note: The trigonometric operators apply only to the diagonal entries
of the relevant matrices
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I—Concept of a Database of Local ROBs

I—Interpolation on a Tangent Space of the Grassmann Manifold

m Interpolation on the tangent space of G(k, N)

Logg, (S2)

Logg, (Sa)
3 -
Ts,9(k. N)

Q (
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AA216/CME345: PMOR - Local ROBs and Local PROMs
|—Concept of a Database of Local ROBs

L case Study: Aeroelastic Analysis of a Fighter Aircraft Configuration (Circa 2008)

m Parametric, linearized, aeroelastic identification of a F-16 Block 40
aircraft in clean wing configuration (e.g., for flutter analysis in the

time domain)

3.0 ® . Pre-computed ROB
o L
70,000 ©  Interpolated ROB
[«] [ ]
65,000 & 7
077 079 081 083
60,000
55,000
ROM (90 . "
50,000 ~— Directly computed ROB
)
% 45,000 — Pre-computed ROB #1
|
40,000 :/\ Pre-computed ROB #2
\
35,000 h Pre-computed ROB #3
30,000 — Pre-computed ROB #4
25,000 —— Interpolated ROB
(Grassmann manifold)
20,000
0.00 0.20 0.40 0.60 0.80 1.00

Time (s)
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AA216/CME345: PMOR - Local ROBs and Local PROMs

|—Concept of a Database of Local ROBs

L case Study: Aeroelastic Analysis of a Fighter Aircraft Configuration (Circa 2008)
m Parametric, linearized, aeroelastic identification of a F/A-18 aircraft
in clean wing configuration (e.g., for flutter analysis in the time
domain): Effect of the choice of the tangent plane

A .
5.20E+04 \ Interpolated ROM
[ N /‘ \ Tangent space at
J - M=0.5

— Direct ROM

< 5.10E+04 ,-
£ v | — M=0.7
M=0.75
5.00E+04 / M=0.8
4,90E+04 " ‘ :
0 0.1 0.2 0.3
Time (s)
0.725
M, ® o—C—0—@ ROM (51)
07 075 08

0.5
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AA216/CME345: PMOR - Local ROBs and Local PROMs
|—Concept of a Database of Local ROBs
L case Study: Aeroelastic Analysis of a Commercial Aircraft Configuration (2011)

m Prediction of the linearized, aeroelastic behavior of the wing of a
commercial aircraft (Airbus)

Airbus AMP model Unsteady pressure distribution
Upper surface Lower surface

A/ / : //
Interpolated
ROB
Grassmann)
-0.04

Pressure (x105 Pa)

30

g Mode 2

|- _E’ _ Mode 2

c o

s |- Mode 1 £ .

g a} Mode 1

& 0.16 e
S .

M 1. F'ressure.(xw Pa) 26 ° ROM (46 Vetrano et al.,
= ASD Journal 2011
0.78 0.79 0.8 0.81 0.82
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AA216/CME345: PMOR - Local ROBs and Local PROMs
|—Concept of a Database of Local ROBs
L case Study: Aeroelastic Analysis of a Fighter Aircraft Configuration (Circa 2008)

m Parametric, linearized, aeroelastic identification of a F-16 Block 40
aircraft in clean wing configuration (e.g., for flutter analysis in the
time domain): Construction and exploitation in t € [0,1] s of a
linearized, aeroelastic PROM

0 20 40 60
Direct HDM construction
construction
“ROBs generation
ROM construction
Interpolation

(Grassmann) | ROM exploitation

m Overall CPU time is decreased from 55 minutes to 8 minutes
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m Parametric, linearized, aeroelastic identification of a F-16 Block 40
aircraft in clean wing configuration (e.g., for flutter analysis in the
time domain): Construction and exploitation in t € [0,1] s of a
linearized, aeroelastic PROM

0 20 40 60
Direct HDM construction
construction
“ROBs generation
ROM construction
Interpolation

(Grassmann) | ROM exploitation

m Overall CPU time is decreased from 55 minutes to 8 minutes

m New dominant cost: Construction of the HDM operators
(A(w*), B(p*), C(p*), D(p"))
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AA216/CME345: PMOR - Local ROBs and Local PROMs
|—Concept of a Database of Local ROBs
L case Study: Aeroelastic Analysis of a Fighter Aircraft Configuration (Circa 2008)

m Parametric, linearized, aeroelastic identification of a F-16 Block 40
aircraft in clean wing configuration (e.g., for flutter analysis in the
time domain): Construction and exploitation in t € [0,1] s of a
linearized, aeroelastic PROM

0 20 40 60

Direct HDM construction
construction

“ROBs generation

ROM construction

Interpolation

(Grassmann) ROM exploitation
—

m Overall CPU time is decreased from 55 minutes to 8 minutes
m New dominant cost: Construction of the HDM operators
(A(p*), B(p"), C(1"), D(1"))

m This suggests the following alternative approach: Interpolate the
reduced-order operators (A, (u®),B, (p®),C, (1) ,D, (1)) since
they are linear in this application = concept of a database of local
linear PROMs
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AA216/CME345: PMOR - Local ROBs and Local PROMs
|—Concept of a Database of Local Linear PROMs
LInterpc::lati(m of Linear PROMs on Embedded Manifolds

m Applicable only to linear systems characterized by operators such as
(A (1), B, (1), Cr(1s), D,(s)) that are pre-computed and stored in a
database of local PROMs

m for each individual set of local operators — e.g., {A; (u*) 2’;1 -
identify the appropriate matrix manifold M and interpolate the
aforementioned set of local operators on M

30/47



AA216/CME345: PMOR - Local ROBs and Local PROMs
|—Concept of a Database of Local Linear PROMs
L case Study: Structural Analysis of a Simple Mass-Spring System

m Simple example: Mass-spring system with two degrees of freedom

M (0) + K(uw() = Bu(e).

kl ;;; kg
my1 —\N\N\— M2

P

T To
wo) = [260)

m the values of my, my, k, and ko are fixed to some constants

m the value of k; is set to k; = 0.1+, and y is treated as a parameter

31/47



AA216/CME345: PMOR - Local ROBs and Local PROMs
|—Concept of a Database of Local Linear PROMs
L Case Study: Structural Analysis of a Simple Mass-Spring System

m PMOR by modal truncation: V() is the matrix of the two
eigenmodes of the structural system

K(k)vj(p) = Aj(p)Mv;(p)
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m PMOR by modal truncation: V() is the matrix of the two
eigenmodes of the structural system

K(k)vj(p) = Aj(p)Mv;(p)
m Matrix of eigenvalues: K,(u) = V(u)TK(p)V (1) = A(pe)
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|—Concept of a Database of Local Linear PROMs
L case Study: Structural Analysis of a Simple Mass-Spring System

m PMOR by modal truncation: V() is the matrix of the two
eigenmodes of the structural system

K(k)vj(p) = Aj(p)Mv;(p)

m Matrix of eigenvalues: K,(u) = V(u)TK(p)V (1) = A(pe)

m Variations of the eigenvalues and eigenmodes with the parameter p
(first eigenmode is shown in blue color, second is shown in red color)

A

_ b

1
OSAN»I.Z: /((/; 0.9)% + 0.01

() 05 1 15 2 25
Vi

SRRt Sl B S R
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|—Concept of a Database of Local Linear PROMs

L Interpolation on a Matrix Manifold

m Note that A(u) belongs to the manifold of (diagonal) symmetric
positive definite matrices, SPD(2)
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|—Concept of a Database of Local Linear PROMs

L Interpolation on a Matrix Manifold

m Note that A(u) belongs to the manifold of (diagonal) symmetric
positive definite matrices, SPD(2)

m Perform interpolation of A(p) on this manifold using (A(0), A(2.9))

m Result is shown in magenta color

3.5

Step B Only
d by Steps A and B

3|aana
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AA216/CME345: PMOR - Local ROBs and Local PROMs
|—Concept of a Database of Local Linear PROMs

L Interpolation on a Matrix Manifold
m Note that A(u) belongs to the manifold of (diagonal) symmetric
positive definite matrices, SPD(2)

m Perform interpolation of A(p) on this manifold using (A(0), A(2.9))
m Result is shown in magenta color

3.5

3|anaa Step B Only

d by Steps A and B

0 0.5 1 1.5 2 25 3
I

m Observe that the result is wrong, even for such a simple system
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AA216/CME345: PMOR - Local ROBs and Local PROMs
|—Concept of a Database of Local Linear PROMs
I—Mode Veering and Mode Crossing

m The issue is the lack of consistency between the coordinates of the
reduced-order matrices, triggered in this case by mode veering

3
;“2
2s
<
15
44_.f//’ M
1
05 pn+127F /(( —0.9)2 +0.01
A2(p) = 5
o ) . ) A 2
o 0s 1 15 2 2s

Vi
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AA216/CME345: PMOR - Local ROBs and Local PROMs
|—Concept of a Database of Local Linear PROMs
LMode Veering and Mode Crossing

m The issue is the lack of consistency between the coordinates of the
reduced-order matrices, triggered in this case by mode veering

A

- M

05 pn+127F /(( —0.9)2 +0.01
2

m Mode crossing would trigger a similar issue (the eigenfrequencies are
ordered increasingly in A(p))
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AA216/CME345: PMOR - Local ROBs and Local PROMs
|—Concept of a Database of Local Linear PROMs

LConsistent Interpolation on Matrix Manifolds

Two-step solution

m step A: Pre-process the reduced-order matrices

m enforce consistency by solving the following N, orthogonal
Procrustes problems

min
Qe /Q[ Q=1

V)@ () e
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LConsistent Interpolation on Matrix Manifolds

Two-step solution

m step A: Pre-process the reduced-order matrices

m enforce consistency by solving the following N, orthogonal
Procrustes problems

min
Qe /Q[ Q=1

V()@ (u) e

m compute analytical solutions of above problems as follows
compute Py gy =V (p,(e)) Tv (“(50))

H compute the SVD ngo = Ugﬁeo}:g’gOZ,T’,o

_ T
E compute Qg = Uy, Z, 4
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AA216/CME345: PMOR - Local ROBs and Local PROMs
|—Concept of a Database of Local Linear PROMs

LConsistent Interpolation on Matrix Manifolds

Two-step solution

m step A: Pre-process the reduced-order matrices

m enforce consistency by solving the following N, orthogonal
Procrustes problems

min
Qe /Q[ Q=1

V()@ (u) e

m compute analytical solutions of above problems as follows
compute Py gy =V (p,(e)) Tv (“(50))

_ T
H compute the SVD ngo = Ug$40257402,7,0
_ T
El compute Q; = U[ﬂgozz,zo
m the associated computational cost scales with k
— step A can be performed either online or offline
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|—Concept of a Database of Local Linear PROMs

LConsistent Interpolation on Matrix Manifolds

Two-step solution (continue)

m step B: Note that (assuming a Galerkin PROM and orthogonal local
ROBs)

T, (Mw)) v (Mw) Q, = aJA (u‘“) a
T (“M)) -aqJs, (“m)

()20 - <

S~
<
~
T
s

< ~— ~—

and therefore

m first, transform directly each PROM

(n () 5. (1) ()., ()

(@7, (u7) 7B, (1) . (u) 2.5, ()
m then, identify for each element of the transformed tuple an

appropriate matrix manifold and perform the interpolation on this
matrix manifold
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AA216/CME345: PMOR - Local ROBs and Local PROMs

|—Concept of a Database of Local Linear PROMs

|—Consistent Interpolation on Matrix Manifolds

m Two-step result is shown in cyan color

3.5

[ ] W Pre-computed Points
% %% Exact Eigenvalues
3| AaaA Eigenvalues Obtained by Step B Only

Eigenvalues Obtained by Steps A and B

0 0.5 1 1.5 2
I

m Observe that the result is very accurate

25
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AA216/CME345: PMOR - Local ROBs and Local PROMs
|—Concept of a Database of Local Linear PROMs
LCase Study: Structural Analysis of a Wing-Tank Configuration (Circa 2008)

m More challenging example: Wing with tank and sloshing effects
m The hydro-elastic effects affect the eigenfrequencies and eigenmodes
of the structure

m The parameter p defines the fuel fill level in the tank 0 < 1 < 100%
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|—Concept of a Database of Local Linear PROMs
L case Study: Structural Analysis of a Wing-Tank Configuration (Circa 2008)
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AA216/CME345: PMOR - Local ROBs and Local PROMs
|—Concept of a Database of Local Linear PROMs
L case Study: Structural Analysis of a Wing-Tank Configuration (Circa 2008)

220 r r T r T T
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|—Concept of a Database of Local Linear PROMs

L Link with Modal Assurance Criterion
m Modal Assurance Criterion (MAC) between two modes ¢ and v
T2
[P 9|

MACL®9) = (5T ) wTw)
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L Link with Modal Assurance Criterion
m Modal Assurance Criterion (MAC) between two modes ¢ and v
LS
(@7 @) (¥ )
m What is the MAC between the vectors in the ROBs V (u(z)) and
V (u(®)) before and after Step A?

MAC(¢, 9) =
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AA216/CME345: PMOR - Local ROBs and Local PROMs
|—Concept of a Database of Local Linear PROMs

L Link with Modal Assurance Criterion

m Modal Assurance Criterion (MAC) between two modes ¢ and v
LS
(@7 D)W %)
m What is the MAC between the vectors in the ROBs V (u(z)) and
V (u(®)) before and after Step A?

MAC(¢, 9) =

m Py =V (H(e)) ! \ (N%)) is the matrix of square roots of the
MACs between the modes contained in V (u(e)) and those
contained in V (u(fo))
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|—Concept of a Database of Local Linear PROMs

L Link with Modal Assurance Criterion

m Modal Assurance Criterion (MAC) between two modes ¢ and v
LS
(@7 D)W %)
m What is the MAC between the vectors in the ROBs V (u(z)) and
V (u(®)) before and after Step A?

MAC(¢, 9) =

mPyy=V (u(e))TV (p%)) is the matrix of square roots of the
MACs between the modes contained in V (u(e)) and those
contained in V (pu(%))

m This is the Modal Assurance Criterion Square Root.(MACSR)
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AA216/CME345: PMOR - Local ROBs and Local PROMs
|—Concept of a Database of Local Linear PROMs
L case Study: Aeroelastic Analysis of a Wing-Tank Configuration (Circa 2008)

m Aeroelastic study of a wing-tank system

m 2 parameters, namely, the fuel fill level and the free-stream Mach
number M.,

m Database approach

100 @ ® o o o

75
_ @ Database 1
§
T% 50 @ ® o o ¢ ! @ Database 2
g @ Database 3

25

oe * o o o

0.6 0.7 0.8 0.9 1 1.1

Mach number
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AA216/CME345: PMOR - Local ROBs and Local PROMs
|—Concept of a Database of Local Linear PROMs
L case Study: Aeroelastic Analysis of a Wing-Tank Configuration (Circa 2008)

HFM Database

Fill Level % 0 o8 Mach Number Fill Level % 0 08 Mach Number

Response Surface ROM Interpolation - Choice 1

Fill Level % 008 Mach Number Fill Level % 0 08 Mach Number
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AA216/CME345: PMOR - Local ROBs and Local PROMs
|—Concept of a Database of Local Linear PROMs
L case Study: Aeroelastic Analysis of a Wing-Tank Configuration (Circa 2008)

m Effect of Step A

ROM Interpolation - Choice 1 ROM Interpolation - Choice 1

Fill Level % Mach Number Fill Level % 0 08 Mach Number

m Skipping Step A leads to inaccurate interpolation results (left figure)

m Performing Step A ensures a consistent interpolation (right figure)
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AA216/CME345: PMOR - Local ROBs and Local PROMs
|—Concept of a Database of Local Linear PROMs
LCase Study: Aeroelastic Analysis of a Wing-Tank Configuration (Circa 2008)

m CPU performance

Approach Offline phase Online phase
CPU time (# procs) CPU time (# procs)
HDM - () 9152000 s ~ 106 days (32)
Response surface 28000 s ~ 7 h (32) 2s (1)
PROM interpolation | 28000 s ~ 7 h (32) 30s (1)

m Online speedup factor = 305000
m Offline + Online speedup factor = 327
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AA216/CME345: PMOR - Local ROBs and Local PROMs
|—Concept of a Database of Local Linear PROMs
LMobile Computing

m Mobile computing using a database of PROMs
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