

AA216/CME345: PROJECTION-BASED MODEL ORDER REDUCTION

Local Parametric Approaches

Charbel Farhat
Stanford University
cfarhat@stanford.edu

Outline

1 Parameterized Systems

2 Concept of a Database of Local ROBs

3 Concept of a Database of Local Linear PROMs

- Note: The material covered in this chapter is based on the following published documents:
 - D. Amsallem, C. Farhat. Interpolation method for adapting reduced-order models and application to aeroelasticity. *AIAA Journal* 2008; 46(7):1803-1813.
 - D. Amsallem, J. Cortial, C. Farhat. Towards real-time CFD-based aeroelastic computations using a database of reduced-order models. *AIAA Journal* 2010; 48(9):2029-2037.
 - D. Amsallem, C. Farhat. An online method for interpolating linear parametric reduced-order models. *SIAM Journal on Scientific Computing* 2011; 33(5): 2169-2198.
 - D. Amsallem, Interpolation on manifolds of CFD-based fluid and finite element-based structural reduced-order models for on-line aeroelastic predictions. Ph.D. Thesis, Stanford University, 2010.

└ Parameterized Systems

└ Parametric Linear and Nonlinear Systems

■ Parametric linear High-Dimensional (time-invariant) Model (HDM)

$$\begin{aligned}\frac{d\mathbf{w}}{dt}(t; \mu) &= \mathbf{A}(\mu)\mathbf{w}(t; \mu) + \mathbf{B}(\mu)\mathbf{u}(t) \\ \mathbf{y}(t; \mu) &= \mathbf{C}(\mu)\mathbf{w}(t; \mu) + \mathbf{D}(\mu)\mathbf{u}(t) \\ \mathbf{w}(0; \mu) &= \mathbf{w}_0(\mu)\end{aligned}$$

■ Parametric nonlinear HDM

$$\frac{d\mathbf{w}}{dt}(t; \mu) = \mathbf{f}(\mathbf{w}(t), t; \mu) + \mathbf{B}(\mu)\mathbf{u}(t)$$

- $\mathbf{w} \in \mathbb{R}^N$: Vector of state variables
- $\mathbf{u} \in \mathbb{R}^{in}$: Vector of input variables – typically $in \ll N$
- $\mathbf{y} \in \mathbb{R}^q$: Vector of output variables – typically $q \ll N$
- $\mu \in \mathcal{D} \subset \mathbb{R}^p$: Vector of parameters – typically $p \ll N$

└ Parameterized Systems

└ Local Petrov-Galerkin Projection-Based Reduced-Order Models

- Parametric linear (time-invariant) HDM
- goal: Construct a corresponding parametric Projection-based Reduced-Order Model (PROM) using a **local** rather than global approach

$$\begin{aligned}\frac{d\mathbf{q}}{dt}(t; \mu) &= \mathbf{A}_r(\mu)\mathbf{q}(t; \mu) + \mathbf{B}_r(\mu)\mathbf{u}(t) \\ \mathbf{y}(t; \mu) &= \mathbf{C}_r(\mu)\mathbf{q}(t; \mu) + \mathbf{D}_r(\mu)\mathbf{u}(t)\end{aligned}$$

- based on **local** Reduced-Order Bases (ROBs) $(\mathbf{V}(\mu^{(\ell)}), \mathbf{W}(\mu^{(\ell)}))$ and the approximation

$$\mathbf{w}(t; \mu) \approx \mathbf{V}(\mu)\mathbf{q}(t; \mu)$$

- $\mu^{(\ell)} \in \mathcal{D}$; $\mathbf{q} \in \mathbb{R}^k$
- all local ROBs have the same dimension $k \ll N$

- local PROM operators resulting from Petrov-Galerkin projection

$$\mathbf{A}_r(\mu) = (\mathbf{W}(\mu)^T \mathbf{V}(\mu))^{-1} \mathbf{W}(\mu)^T \mathbf{A}(\mu) \mathbf{V}(\mu) \in \mathbb{R}^{k \times k}$$

$$\mathbf{B}_r(\mu) = (\mathbf{W}(\mu)^T \mathbf{V}(\mu))^{-1} \mathbf{W}(\mu)^T \mathbf{B}(\mu) \in \mathbb{R}^{k \times p}$$

$$\mathbf{C}_r(\mu) = \mathbf{C}(\mu) \mathbf{V}(\mu) \in \mathbb{R}^{q \times k}; \quad \mathbf{D}_r(\mu) = \mathbf{D}(\mu) \in \mathbb{R}^{q \times p}$$

└ Parameterized Systems

└ Local Petrov-Galerkin Projection-Based Reduced-Order Models

■ Parametric nonlinear HDM

- goal: Construct a corresponding parametric PROM using a local rather than global approach

$$\begin{aligned}\frac{d\mathbf{q}}{dt}(t; \boldsymbol{\mu}) &= \mathbf{f}_r(\mathbf{q}(t), t; \boldsymbol{\mu}) + \mathbf{B}_r(\boldsymbol{\mu})\mathbf{u}(t) \\ \mathbf{y}(t; \boldsymbol{\mu}) &= \mathbf{C}_r(\boldsymbol{\mu})\mathbf{q}(t; \boldsymbol{\mu}) + \mathbf{D}_r(\boldsymbol{\mu})\mathbf{u}(t)\end{aligned}$$

- based on **local** ROBs $(\mathbf{V}(\boldsymbol{\mu}^{(\ell)}), \mathbf{W}(\boldsymbol{\mu}^{(\ell)}))$ and the approximation

$$\mathbf{w}(t; \boldsymbol{\mu}) \approx \mathbf{V}(\boldsymbol{\mu})\mathbf{q}(t; \boldsymbol{\mu})$$

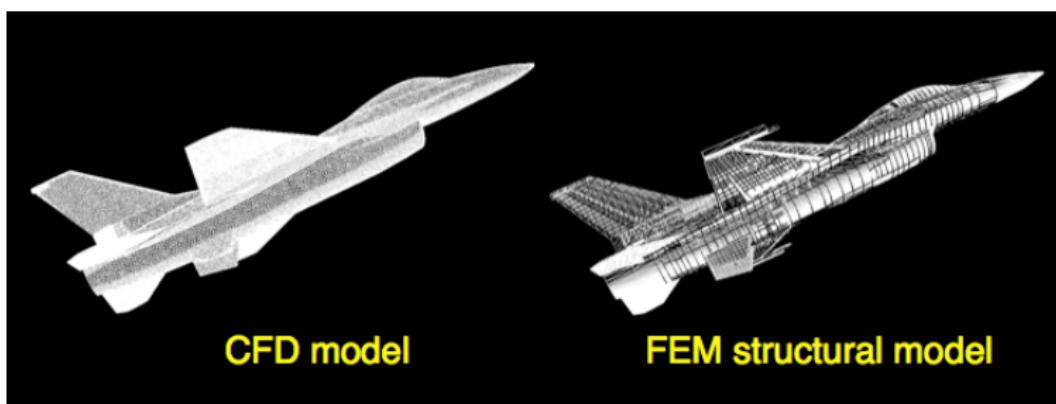
- $\boldsymbol{\mu}^{(\ell)} \in \mathcal{D}$; $\mathbf{q} \in \mathbb{R}^k$
- all local ROBs have the same dimension $k \ll N$
- local PROM resulting from Petrov-Galerkin projection

$$\mathbf{f}_r(\mathbf{q}(t), t; \boldsymbol{\mu}) = (\mathbf{W}(\boldsymbol{\mu})^T \mathbf{V}(\boldsymbol{\mu}))^{-1} \mathbf{W}(\boldsymbol{\mu})^T \mathbf{f}(\mathbf{V}(\boldsymbol{\mu})\mathbf{q}(t), t; \boldsymbol{\mu}) \in \mathbb{R}^k$$

└ Parameterized Systems

└ Case Study: Aeroelastic Analysis of a Fighter Aircraft Configuration (Circa 2008)

- Parametric, linearized, aeroelastic identification of a F-16 Block 40 aircraft in clean wing configuration (e.g., for flutter analysis in the time domain)
- Linearized coupled fluid-structure system around an aeroelastic equilibrium position
- Hundreds of flight conditions $\mu = (M_\infty, \alpha)$ for flutter clearance



- $N_{\text{fluid}} \approx 2 \times 10^6$, $N_{\text{structure}} \approx 1.6 \times 10^5$

└ Parameterized Systems

└ Lack of Robustness of Local ROBs for Parameter Changes

- Consider the following procedure
 - 1 construct local ROBs $(\mathbf{V}(\mu^{(1)}), \mathbf{W}(\mu^{(1)}))$ at the parametric flight condition $\mu^{(1)}$

└ Parameterized Systems

└ Lack of Robustness of Local ROBs for Parameter Changes

- Consider the following procedure
 - 1 construct local ROBs $(\mathbf{V}(\mu^{(1)}), \mathbf{W}(\mu^{(1)}))$ at the parametric flight condition $\mu^{(1)}$
 - 2 avoid reconstructing new local ROBs every time the flight condition is varied and thus use the local ROBs constructed at $\mu^{(1)}$ to reduce the HDM at $\mu^{(2)}$

└ Parameterized Systems

└ Lack of Robustness of Local ROBs for Parameter Changes

- Consider the following procedure

- construct local ROBs $(\mathbf{V}(\mu^{(1)}), \mathbf{W}(\mu^{(1)}))$ at the parametric flight condition $\mu^{(1)}$
- avoid reconstructing new local ROBs every time the flight condition is varied and thus use the local ROBs constructed at $\mu^{(1)}$ to reduce the HDM at $\mu^{(2)}$
- build the following local PROM

$$\frac{d\mathbf{q}}{dt}(t; \mu^{(2)}) = \mathbf{A}_r(\mu^{(2)})\mathbf{q}(t; \mu^{(2)}) + \mathbf{B}_r(\mu^{(2)})\mathbf{u}(t)$$

$$\mathbf{y}(t; \mu^{(2)}) = \mathbf{C}_r(\mu^{(2)})\mathbf{q}(t; \mu^{(2)}) + \mathbf{D}_r(\mu^{(2)})\mathbf{u}(t)$$

$$\mathbf{w}(t, \mu^{(2)}) \approx \mathbf{V}(\mu^{(1)})\mathbf{q}(t; \mu^{(2)})$$

where

$$\mathbf{A}_r(\mu^{(2)}) = \left(\mathbf{W}(\mu^{(1)})^T \mathbf{V}(\mu^{(1)}) \right)^{-1} \mathbf{W}(\mu^{(1)})^T \mathbf{A}(\mu^{(2)}) \mathbf{V}(\mu^{(1)}) \in \mathbb{R}^{k \times k}$$

$$\mathbf{B}_r(\mu^{(2)}) = \left(\mathbf{W}(\mu^{(1)})^T \mathbf{V}(\mu^{(1)}) \right)^{-1} \mathbf{W}(\mu^{(1)})^T \mathbf{B}(\mu^{(2)}) \in \mathbb{R}^{k \times p}$$

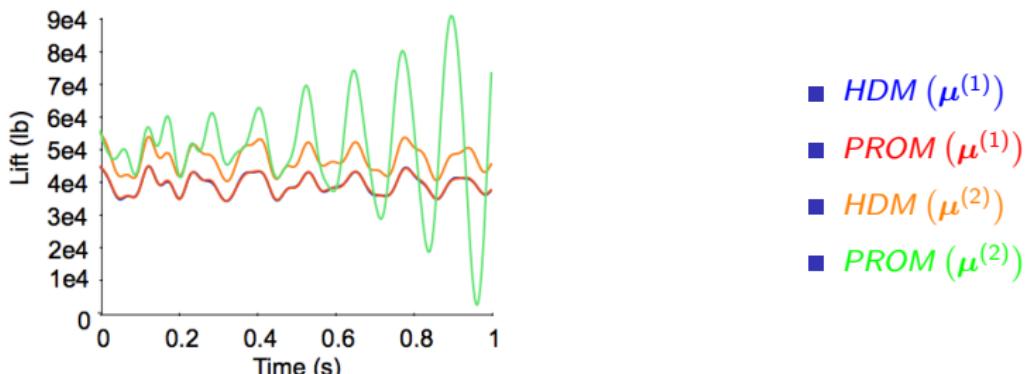
$$\mathbf{C}_r(\mu^{(2)}) = \mathbf{C}(\mu^{(2)}) \mathbf{V}(\mu^{(1)}) \in \mathbb{R}^{q \times k}; \quad \mathbf{D}_r(\mu^{(2)}) = \mathbf{D}(\mu^{(2)}) \in \mathbb{R}^{q \times p}$$

└ Parameterized Systems

└ Lack of Robustness of Local ROBs for Parameter Changes

■ Queried flight conditions

- $\mu^{(1)} = (M_\infty^{(1)}, \alpha^{(1)}) = (0.71, \alpha_{\text{trimmed}}(0.71))$
- $\mu^{(2)} = (M_\infty^{(2)}, \alpha^{(2)}) = (0.8, \alpha_{\text{trimmed}}(0.8))$



⇒ the local ROBs lack robustness with respect to parameter changes

└ Parameterized Systems

└ Direct Construction of Local ROBs

- The lack of robustness of the local ROBs with respect to parameter changes implies that they should be **reconstructed** every time the parameters are varied
- Alternative procedure: Given a queried but unsampled parameter point $\mu^* \in \mathcal{D}$
 - 1 construct the HDM operators $\mathbf{A}(\mu^*)$ (linear setting) or $\mathbf{f}(\mathbf{w}(t), t; \mu^*)$ (nonlinear setting), $\mathbf{B}(\mu^*)$, $\mathbf{C}(\mu^*)$, and $\mathbf{D}(\mu^*)$

└ Parameterized Systems

└ Direct Construction of Local ROBs

- The lack of robustness of the local ROBs with respect to parameter changes implies that they should be **reconstructed** every time the parameters are varied
- Alternative procedure: Given a queried but unsampled parameter point $\mu^* \in \mathcal{D}$
 - 1 construct the HDM operators $\mathbf{A}(\mu^*)$ (linear setting) or $\mathbf{f}(\mathbf{w}(t), t; \mu^*)$ (nonlinear setting), $\mathbf{B}(\mu^*)$, $\mathbf{C}(\mu^*)$, and $\mathbf{D}(\mu^*)$
 - 2 generate the local ROBs $(\mathbf{V}(\mu^*), \mathbf{W}(\mu^*))$ using a preferred approach

└ Parameterized Systems

└ Direct Construction of Local ROBs

- The lack of robustness of the local ROBs with respect to parameter changes implies that they should be **reconstructed** every time the parameters are varied
- Alternative procedure: Given a queried but unsampled parameter point $\mu^* \in \mathcal{D}$
 - 1 construct the HDM operators $\mathbf{A}(\mu^*)$ (linear setting) or $\mathbf{f}(\mathbf{w}(t), t; \mu^*)$ (nonlinear setting), $\mathbf{B}(\mu^*)$, $\mathbf{C}(\mu^*)$, and $\mathbf{D}(\mu^*)$
 - 2 generate the local ROBs $(\mathbf{V}(\mu^*), \mathbf{W}(\mu^*))$ using a preferred approach
 - 3 construct the local PROM operators $\mathbf{A}_r(\mu^*)$ (linear setting) or $\mathbf{f}_r(\mathbf{q}(t), t; \mu^*)$ (nonlinear setting), $\mathbf{B}_r(\mu^*)$, $\mathbf{C}_r(\mu^*)$, and $\mathbf{D}_r(\mu^*)$ using a preferred Petrov-Galerkin Projection-Based Model Order Reduction (PMOR) method

└ Parameterized Systems

└ Direct Construction of Local ROBs

- The lack of robustness of the local ROBs with respect to parameter changes implies that they should be **reconstructed** every time the parameters are varied
- Alternative procedure: Given a queried but unsampled parameter point $\mu^* \in \mathcal{D}$
 - 1 construct the HDM operators $\mathbf{A}(\mu^*)$ (linear setting) or $\mathbf{f}(\mathbf{w}(t), t; \mu^*)$ (nonlinear setting), $\mathbf{B}(\mu^*)$, $\mathbf{C}(\mu^*)$, and $\mathbf{D}(\mu^*)$
 - 2 generate the local ROBs $(\mathbf{V}(\mu^*), \mathbf{W}(\mu^*))$ using a preferred approach
 - 3 construct the local PROM operators $\mathbf{A}_r(\mu^*)$ (linear setting) or $\mathbf{f}_r(\mathbf{q}(t), t; \mu^*)$ (nonlinear setting), $\mathbf{B}_r(\mu^*)$, $\mathbf{C}_r(\mu^*)$, and $\mathbf{D}_r(\mu^*)$ using a preferred Petrov-Galerkin Projection-Based Model Order Reduction (PMOR) method
 - 4 exploit the constructed local Petrov-Galerkin PROM

└ Parameterized Systems

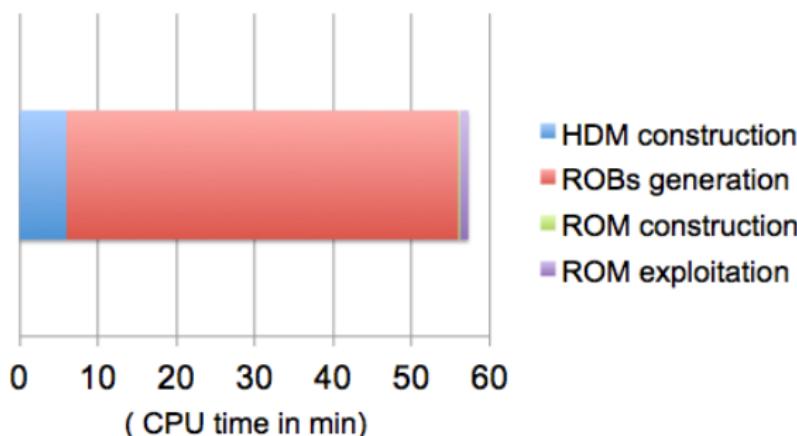
└ Direct Construction of Local ROBs

- The lack of robustness of the local ROBs with respect to parameter changes implies that they should be **reconstructed** every time the parameters are varied
- Alternative procedure: Given a queried but unsampled parameter point $\mu^* \in \mathcal{D}$
 - 1 construct the HDM operators $\mathbf{A}(\mu^*)$ (linear setting) or $\mathbf{f}(\mathbf{w}(t), t; \mu^*)$ (nonlinear setting), $\mathbf{B}(\mu^*)$, $\mathbf{C}(\mu^*)$, and $\mathbf{D}(\mu^*)$
 - 2 generate the local ROBs $(\mathbf{V}(\mu^*), \mathbf{W}(\mu^*))$ using a preferred approach
 - 3 construct the local PROM operators $\mathbf{A}_r(\mu^*)$ (linear setting) or $\mathbf{f}_r(\mathbf{q}(t), t; \mu^*)$ (nonlinear setting), $\mathbf{B}_r(\mu^*)$, $\mathbf{C}_r(\mu^*)$, and $\mathbf{D}_r(\mu^*)$ using a preferred Petrov-Galerkin Projection-Based Model Order Reduction (PMOR) method
 - 4 exploit the constructed local Petrov-Galerkin PROM
- Question: Is this procedure computationally **efficient**?

└ Parameterized Systems

└ Direct Construction of Local ROBs

- Construction and exploitation in $t \in [0, 1]$ s of a local, linearized, aeroelastic F-16 PROM



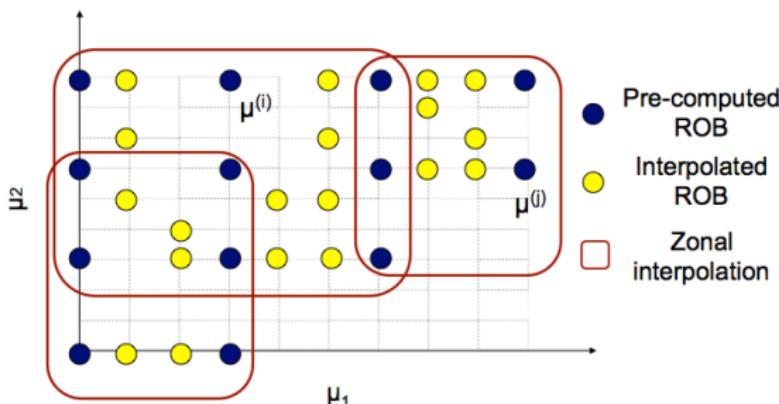
- The direct generation of a pair of local ROBs accounts for 89% of the total CPU time
- The overall procedure takes 56 minutes, which renders this approach **non-amenable to real-time parametric applications**

└ Concept of a Database of Local ROBs

└ Interpolation of Local ROBs

■ Idea

- pre-compute local ROBs at a number of sampled parameter points $\left\{ \mu^{(\ell)} \in \mathcal{D} \right\}_{\ell=1}^{N_s}$
- interpolate these ROBs to obtain a local ROB at a queried but unsampled parameter $\mu^* \notin \left\{ \mu^{(\ell)} \right\}_{\ell=1}^{N_s}$



■ Question: How does one interpolate local ROBs?

- For simplicity, assume an orthogonal Galerkin projection

└ Concept of a Database of Local ROBs

└ Direct Interpolation of Local ROBs

- Tempting idea: Interpolate the matrices $\mathbf{V}(\boldsymbol{\mu}^{(\ell)}) \in \mathbb{R}^{N \times k}$ entry-by-entry (linear interpolation on the manifold \mathbb{R}^{Nk})

└ Concept of a Database of Local ROBs

└ Direct Interpolation of Local ROBs

- Tempting idea: Interpolate the matrices $\mathbf{V}(\boldsymbol{\mu}^{(\ell)}) \in \mathbb{R}^{N \times k}$ entry-by-entry (linear interpolation on the manifold \mathbb{R}^{Nk})
- Input
 - queried parameter $\boldsymbol{\mu}^*$
 - pre-computed ROBs $\left\{ \mathbf{V}(\boldsymbol{\mu}^{(\ell)}) \right\}_{\ell=1}^{N_s}$
 - multi-variate interpolator \mathcal{I} in \mathbb{R}^p

$$a(\boldsymbol{\mu}) = \mathcal{I} \left(\boldsymbol{\mu}; \left\{ a(\boldsymbol{\mu}^{(\ell)}), \boldsymbol{\mu}^{(\ell)} \right\}_{\ell=1}^{N_s} \right)$$

└ Concept of a Database of Local ROBs

└ Direct Interpolation of Local ROBs

- Tempting idea: Interpolate the matrices $\mathbf{V}(\boldsymbol{\mu}^{(\ell)}) \in \mathbb{R}^{N \times k}$ entry-by-entry (linear interpolation on the manifold \mathbb{R}^{Nk})

- Input

- queried parameter $\boldsymbol{\mu}^*$
- pre-computed ROBs $\left\{ \mathbf{V}(\boldsymbol{\mu}^{(\ell)}) \right\}_{\ell=1}^{N_s}$
- multi-variate interpolator \mathcal{I} in \mathbb{R}^p

$$a(\boldsymbol{\mu}) = \mathcal{I} \left(\boldsymbol{\mu}; \left\{ a(\boldsymbol{\mu}^{(\ell)}), \boldsymbol{\mu}^{(\ell)} \right\}_{\ell=1}^{N_s} \right)$$

- Algorithm

- 1: **for** $i = 1 : N$ **do**
- 2: **for** $j = 1 : k$ **do**
- 3: compute $v_{ij}(\boldsymbol{\mu}^*) = \mathcal{I} \left(\boldsymbol{\mu}^*; \left\{ v_{ij}(\boldsymbol{\mu}^{(\ell)}), \boldsymbol{\mu}^{(\ell)} \right\}_{\ell=1}^{N_s} \right)$
- 4: **end for**
- 5: **end for**
- 6: form $\mathbf{V}(\boldsymbol{\mu}^*) = [v_{ij}(\boldsymbol{\mu}^*)]$

└ Concept of a Database of Local ROBs

└ Direct Interpolation Does Not Work

■ Example

- $N = 3, k = 2, p = 1$
- for $\mu^{(1)} = 0$: $\mathbf{V}(\mu^{(1)}) = \mathbf{V}(0) = (\mathbf{v}_1 \ \mathbf{v}_2)$
- for $\mu^{(2)} = 1$: $\mathbf{V}(\mu^{(2)}) = \mathbf{V}(1) = (-\mathbf{v}_1 \ \mathbf{v}_2)$
- queried but unsampled parameter $\mu = 0.5$
- linear interpolation

└ Concept of a Database of Local ROBs

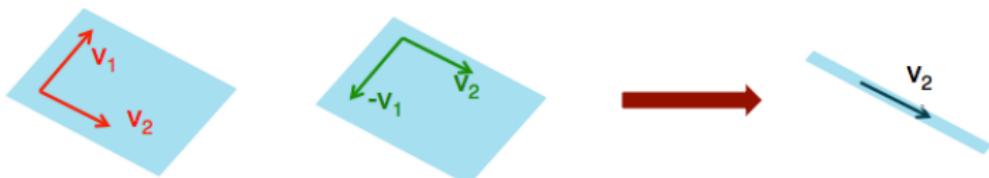
└ Direct Interpolation Does Not Work

■ Example

- $N = 3, k = 2, p = 1$
- for $\mu^{(1)} = 0$: $\mathbf{V}(\mu^{(1)}) = \mathbf{V}(0) = (\mathbf{v}_1 \ \mathbf{v}_2)$
- for $\mu^{(2)} = 1$: $\mathbf{V}(\mu^{(2)}) = \mathbf{V}(1) = (-\mathbf{v}_1 \ \mathbf{v}_2)$
- queried but unsampled parameter $\mu = 0.5$
- linear interpolation

■ Interpolatory result

$$\mathbf{V}(0.5) = 0.5(\mathbf{V}(0) + \mathbf{V}(1)) = (0.5(\mathbf{v}_1 - \mathbf{v}_1) \ 0.5(\mathbf{v}_2 + \mathbf{v}_2)) = (\mathbf{0} \ \mathbf{v}_2)$$



└ Concept of a Database of Local ROBs

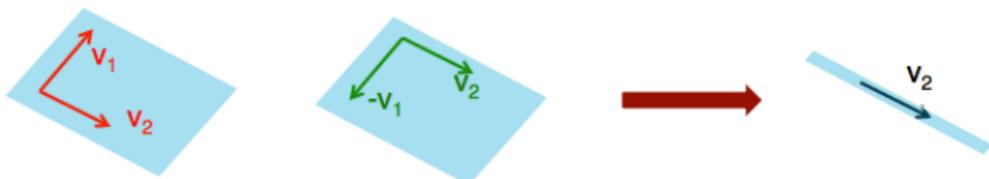
└ Direct Interpolation Does Not Work

■ Example

- $N = 3, k = 2, p = 1$
- for $\mu^{(1)} = 0$: $\mathbf{V}(\mu^{(1)}) = \mathbf{V}(0) = (\mathbf{v}_1 \mathbf{v}_2)$
- for $\mu^{(2)} = 1$: $\mathbf{V}(\mu^{(2)}) = \mathbf{V}(1) = (-\mathbf{v}_1 \mathbf{v}_2)$
- queried but unsampled parameter $\mu = 0.5$
- linear interpolation

■ Interpolatory result

$$\mathbf{V}(0.5) = 0.5(\mathbf{V}(0) + \mathbf{V}(1)) = (0.5(\mathbf{v}_1 - \mathbf{v}_1) \ 0.5(\mathbf{v}_2 + \mathbf{v}_2)) = (\mathbf{0} \ \mathbf{v}_2)$$



■ What went wrong?

- a **relevant constraint** was neither identified nor preserved
- the **wrong entity** was interpolated

└ Concept of a Database of Local ROBs

└ Subspace Interpolation

- Reduced-order equation
 - linear (time-invariant) system

$$\frac{d\mathbf{q}}{dt}(t; \mu) = \mathbf{V}(\mu)^T \mathbf{A}(\mu) \mathbf{V}(\mu) \mathbf{q}(t; \mu) + \mathbf{V}(\mu)^T \mathbf{B}(\mu) \mathbf{u}(t)$$

- nonlinear system

$$\frac{d\mathbf{q}}{dt}(t; \mu) = \mathbf{V}(\mu)^T \mathbf{f}(\tilde{\mathbf{w}}(t), t; \mu)$$

└ Concept of a Database of Local ROBs

└ Subspace Interpolation

- Reduced-order equation
 - linear (time-invariant) system

$$\frac{d\mathbf{q}}{dt}(t; \mu) = \mathbf{V}(\mu)^T \mathbf{A}(\mu) \mathbf{V}(\mu) \mathbf{q}(t; \mu) + \mathbf{V}(\mu)^T \mathbf{B}(\mu) \mathbf{u}(t)$$

- nonlinear system

$$\frac{d\mathbf{q}}{dt}(t; \mu) = \mathbf{V}(\mu)^T \mathbf{f}(\tilde{\mathbf{w}}(t), t; \mu)$$

- Equivalent high-dimensional equations for $\tilde{\mathbf{w}}(t; \mu) = \mathbf{V}(\mu) \mathbf{q}(t; \mu)$

$$\frac{d\tilde{\mathbf{w}}}{dt}(t; \mu) = \boldsymbol{\Pi}_{\mathbf{V}(\mu), \mathbf{V}(\mu)} \mathbf{A}(\mu) \tilde{\mathbf{w}}(t; \mu) + \boldsymbol{\Pi}_{\mathbf{V}(\mu), \mathbf{V}(\mu)} \mathbf{B}(\mu) \mathbf{u}(t) \quad (\text{linear})$$

$$\frac{d\tilde{\mathbf{w}}}{dt}(t; \mu) = \boldsymbol{\Pi}_{\mathbf{V}(\mu), \mathbf{V}(\mu)} \mathbf{f}(\tilde{\mathbf{w}}(t), t; \mu) + \boldsymbol{\Pi}_{\mathbf{V}(\mu), \mathbf{V}(\mu)} \mathbf{B}(\mu) \mathbf{u}(t) \quad (\text{nonlinear})$$

└ Concept of a Database of Local ROBs

└ Subspace Interpolation

- Reduced-order equation
 - linear (time-invariant) system

$$\frac{d\mathbf{q}}{dt}(t; \mu) = \mathbf{V}(\mu)^T \mathbf{A}(\mu) \mathbf{V}(\mu) \mathbf{q}(t; \mu) + \mathbf{V}(\mu)^T \mathbf{B}(\mu) \mathbf{u}(t)$$

- nonlinear system

$$\frac{d\mathbf{q}}{dt}(t; \mu) = \mathbf{V}(\mu)^T \mathbf{f}(\tilde{\mathbf{w}}(t), t; \mu)$$

- Equivalent high-dimensional equations for $\tilde{\mathbf{w}}(t; \mu) = \mathbf{V}(\mu) \mathbf{q}(t; \mu)$

$$\frac{d\tilde{\mathbf{w}}}{dt}(t; \mu) = \boldsymbol{\Pi}_{\mathbf{V}(\mu), \mathbf{V}(\mu)} \mathbf{A}(\mu) \tilde{\mathbf{w}}(t; \mu) + \boldsymbol{\Pi}_{\mathbf{V}(\mu), \mathbf{V}(\mu)} \mathbf{B}(\mu) \mathbf{u}(t) \quad (\text{linear})$$

$$\frac{d\tilde{\mathbf{w}}}{dt}(t; \mu) = \boldsymbol{\Pi}_{\mathbf{V}(\mu), \mathbf{V}(\mu)} \mathbf{f}(\tilde{\mathbf{w}}(t), t; \mu) + \boldsymbol{\Pi}_{\mathbf{V}(\mu), \mathbf{V}(\mu)} \mathbf{B}(\mu) \mathbf{u}(t) \quad (\text{nonlinear})$$

- In both cases, the PROM solution is independent of the choice of ROB associated with the projection subspace

⇒ the **correct entity to interpolate** is $S(\mu) = \text{range}(\mathbf{V}(\mu))$

└ Concept of a Database of Local ROBs

└ Interpolation of Local ROBs on the Grassmann Manifold

- A subspace \mathcal{S} is typically represented by a ROB

└ Concept of a Database of Local ROBs

└ Interpolation of Local ROBs on the Grassmann Manifold

- A subspace \mathcal{S} is typically represented by a ROB
- The appropriate choice of a ROB is not unique

$$\mathcal{S} = \text{range}(\mathbf{V}) = \text{range}(\mathbf{V}\mathbf{Q}), \quad \forall \mathbf{Q} \in \text{GL}(k)$$

└ Concept of a Database of Local ROBs

└ Interpolation of Local ROBs on the Grassmann Manifold

- A subspace \mathcal{S} is typically represented by a ROB
- The appropriate choice of a ROB is not unique

$$\mathcal{S} = \text{range}(\mathbf{V}) = \text{range}(\mathbf{V}\mathbf{Q}), \forall \mathbf{Q} \in \text{GL}(k)$$

- A subspace is a linear special case of a manifold; manifolds locally resemble vector spaces, with tangent spaces that are linear subspaces

└ Concept of a Database of Local ROBs

└ Interpolation of Local ROBs on the Grassmann Manifold

- A subspace \mathcal{S} is typically represented by a ROB
- The appropriate choice of a ROB is not unique

$$\mathcal{S} = \text{range}(\mathbf{V}) = \text{range}(\mathbf{V}\mathbf{Q}), \forall \mathbf{Q} \in \text{GL}(k)$$

- A subspace is a linear special case of a manifold; manifolds locally resemble vector spaces, with tangent spaces that are linear subspaces
- Manifolds of interest
 - $\mathcal{G}(k, N)$ (Grassmann manifold): Set of subspaces in \mathbb{R}^N of dimension k
 - $\mathcal{ST}(k, N)$ (orthogonal Stiefel manifold): Set of orthogonal ROB matrices in $\mathbb{R}^{N \times k}$
 - $\text{GL}(k)$ (general linear group): Set of nonsingular square matrices of size k
 - $\mathcal{O}(k)$: Set of orthogonal square matrices of size k

└ Concept of a Database of Local ROBs

└ Interpolation of Local ROBs on the Grassmann Manifold

- A subspace \mathcal{S} is typically represented by a ROB
- The appropriate choice of a ROB is not unique

$$\mathcal{S} = \text{range}(\mathbf{V}) = \text{range}(\mathbf{V}\mathbf{Q}), \forall \mathbf{Q} \in \text{GL}(k)$$

- A subspace is a linear special case of a manifold; manifolds locally resemble vector spaces, with tangent spaces that are linear subspaces
- Manifolds of interest
 - $\mathcal{G}(k, N)$ (Grassmann manifold): Set of subspaces in \mathbb{R}^N of dimension k
 - $\mathcal{ST}(k, N)$ (orthogonal Stiefel manifold): Set of orthogonal ROB matrices in $\mathbb{R}^{N \times k}$
 - $\text{GL}(k)$ (general linear group): Set of nonsingular square matrices of size k
 - $\mathcal{O}(k)$: Set of orthogonal square matrices of size k
- Properties
 - $\mathcal{O}(k) \subset \text{GL}(k)$
 - $\mathcal{ST}(N, N) = \mathcal{O}(N)$

└ Concept of a Database of Local ROBs

└ Interpolation of Local ROBs on the Grassmann Manifold

- Case of PMOR with orthogonal ROBs
 - $\mathbf{V}(\mu) \in \mathcal{ST}(k, N)$
 - $\text{range}(\mathbf{V}(\mu)) \in \mathcal{G}(k, N)$

└ Concept of a Database of Local ROBs

└ Interpolation of Local ROBs on the Grassmann Manifold

- Case of PMOR with orthogonal ROBs
 - $\mathbf{V}(\mu) \in \mathcal{ST}(k, N)$
 - $\text{range}(\mathbf{V}(\mu)) \in \mathcal{G}(k, N)$
- Equivalence class

└ Concept of a Database of Local ROBs

└ Interpolation of Local ROBs on the Grassmann Manifold

- Case of PMOR with orthogonal ROBs
 - $\mathbf{V}(\mu) \in \mathcal{ST}(k, N)$
 - $\text{range}(\mathbf{V}(\mu)) \in \mathcal{G}(k, N)$
- Equivalence class
 - $\mathcal{S}(\mu) = \text{range}(\mathbf{V}(\mu)) = \text{range}(\mathbf{V}(\mu)\mathbf{Q}), \forall \mathbf{Q} \in \mathcal{O}(k)$

└ Concept of a Database of Local ROBs

└ Interpolation of Local ROBs on the Grassmann Manifold

- Case of PMOR with orthogonal ROBs
 - $\mathbf{V}(\mu) \in \mathcal{ST}(k, N)$
 - $\text{range}(\mathbf{V}(\mu)) \in \mathcal{G}(k, N)$
- Equivalence class
 - $\mathcal{S}(\mu) = \text{range}(\mathbf{V}(\mu)) = \text{range}(\mathbf{V}(\mu)\mathbf{Q})$, $\forall \mathbf{Q} \in \mathcal{O}(k)$
 - an element of the Grassmann manifold defines an entire **class of equivalence on the Stiefel manifold**

└ Concept of a Database of Local ROBs

└ Interpolation of Local ROBs on the Grassmann Manifold

- Case of PMOR with orthogonal ROBs
 - $\mathbf{V}(\mu) \in \mathcal{ST}(k, N)$
 - $\text{range}(\mathbf{V}(\mu)) \in \mathcal{G}(k, N)$
- Equivalence class
 - $\mathcal{S}(\mu) = \text{range}(\mathbf{V}(\mu)) = \text{range}(\mathbf{V}(\mu)\mathbf{Q})$, $\forall \mathbf{Q} \in \mathcal{O}(k)$
 - an element of the Grassmann manifold defines an entire **class of equivalence on the Stiefel manifold**
 - this class of equivalence is defined by the range operation
$$\forall \mathbf{V}_1, \mathbf{V}_2 \in \mathcal{ST}(k, N), \mathbf{V}_1 \sim \mathbf{V}_2 \Leftrightarrow \text{range}(\mathbf{V}_1) = \text{range}(\mathbf{V}_2)$$
$$\Leftrightarrow \exists \mathbf{Q} \in \mathcal{O}(k) \text{ s.t } \mathbf{V}_1 = \mathbf{V}_2 \mathbf{Q}$$

└ Concept of a Database of Local ROBs

└ Interpolation of Local ROBs on the Grassmann Manifold

- Case of PMOR with orthogonal ROBs
 - $\mathbf{V}(\mu) \in \mathcal{ST}(k, N)$
 - $\text{range}(\mathbf{V}(\mu)) \in \mathcal{G}(k, N)$
- Equivalence class
 - $\mathcal{S}(\mu) = \text{range}(\mathbf{V}(\mu)) = \text{range}(\mathbf{V}(\mu)\mathbf{Q})$, $\forall \mathbf{Q} \in \mathcal{O}(k)$
 - an element of the Grassmann manifold defines an entire **class of equivalence on the Stiefel manifold**
 - this class of equivalence is defined by the range operation

$$\forall \mathbf{V}_1, \mathbf{V}_2 \in \mathcal{ST}(k, N), \mathbf{V}_1 \sim \mathbf{V}_2 \Leftrightarrow \text{range}(\mathbf{V}_1) = \text{range}(\mathbf{V}_2)$$

$$\Leftrightarrow \exists \mathbf{Q} \in \mathcal{O}(k) \text{ s.t } \mathbf{V}_1 = \mathbf{V}_2 \mathbf{Q}$$
- therefore, the Grassmann manifold is a **quotient manifold** denoted as

$$\mathcal{G}(k, N) = \mathcal{ST}(k, N) / \mathcal{O}(k)$$

└ Concept of a Database of Local ROBs

└ Interpolation of Local ROBs on the Grassmann Manifold

- Case of PMOR with orthogonal ROBs
 - $\mathbf{V}(\mu) \in \mathcal{ST}(k, N)$
 - $\text{range}(\mathbf{V}(\mu)) \in \mathcal{G}(k, N)$
- Equivalence class
 - $\mathcal{S}(\mu) = \text{range}(\mathbf{V}(\mu)) = \text{range}(\mathbf{V}(\mu)\mathbf{Q})$, $\forall \mathbf{Q} \in \mathcal{O}(k)$
 - an element of the Grassmann manifold defines an entire **class of equivalence on the Stiefel manifold**
 - this class of equivalence is defined by the range operation

$$\forall \mathbf{V}_1, \mathbf{V}_2 \in \mathcal{ST}(k, N), \mathbf{V}_1 \sim \mathbf{V}_2 \Leftrightarrow \text{range}(\mathbf{V}_1) = \text{range}(\mathbf{V}_2)$$

$$\Leftrightarrow \exists \mathbf{Q} \in \mathcal{O}(k) \text{ s.t } \mathbf{V}_1 = \mathbf{V}_2 \mathbf{Q}$$
 - therefore, the Grassmann manifold is a **quotient manifold** denoted as

$$\mathcal{G}(k, N) = \mathcal{ST}(k, N) / \mathcal{O}(k)$$
- Hence, one should interpolate subspaces, but has access in practice to (orthogonal) ROBs

└ Concept of a Database of Local ROBs

└ Interpolation of Local ROBs on the Grassmann Manifold

- Case of PMOR with orthogonal ROBs
 - $\mathbf{V}(\mu) \in \mathcal{ST}(k, N)$
 - $\text{range}(\mathbf{V}(\mu)) \in \mathcal{G}(k, N)$
- Equivalence class
 - $\mathcal{S}(\mu) = \text{range}(\mathbf{V}(\mu)) = \text{range}(\mathbf{V}(\mu)\mathbf{Q})$, $\forall \mathbf{Q} \in \mathcal{O}(k)$
 - an element of the Grassmann manifold defines an entire **class of equivalence on the Stiefel manifold**
 - this class of equivalence is defined by the range operation

$$\forall \mathbf{V}_1, \mathbf{V}_2 \in \mathcal{ST}(k, N), \mathbf{V}_1 \sim \mathbf{V}_2 \Leftrightarrow \text{range}(\mathbf{V}_1) = \text{range}(\mathbf{V}_2)$$

$$\Leftrightarrow \exists \mathbf{Q} \in \mathcal{O}(k) \text{ s.t } \mathbf{V}_1 = \mathbf{V}_2 \mathbf{Q}$$
 - therefore, the Grassmann manifold is a **quotient manifold** denoted as

$$\mathcal{G}(k, N) = \mathcal{ST}(k, N) / \mathcal{O}(k)$$

- Hence, one should interpolate subspaces, but has access in practice to (orthogonal) ROBs
- Solution: Perform interpolation on the Grassmann manifold using entities belonging to the (orthogonal) Stiefel manifold

└ Concept of a Database of Local ROBs

└ Matrix Manifolds

- Quotient matrix manifold
 - the Grassmann manifold
- Embedded matrix manifolds¹
 - the sphere

$$\mathbb{S}(N) = \left\{ \mathbf{w} \in \mathbb{R}^N \text{ s.t. } \|\mathbf{w}\|_2 = 1 \right\} \subset \mathbb{R}^N$$

- the manifold of orthogonal matrices

$$\mathcal{O}(N) = \left\{ \mathbf{M} \in \mathbb{R}^{N \times N} \text{ s.t. } \mathbf{M}^T \mathbf{M} = \mathbf{I}_N \right\} \subset \mathbb{R}^{N \times N}$$

- the general linear group

$$\text{GL}(N) = \left\{ \mathbf{M} \in \mathbb{R}^{N \times N} \text{ s.t. } \det(\mathbf{M}) \neq 0 \right\} \subset \mathbb{R}^{N \times N}$$

- the manifold of symmetric positive definite matrices

$$\text{SPD}(N) = \left\{ \mathbf{M} \in \mathbb{R}^{N \times N} \text{ s.t. } \mathbf{M} = \mathbf{M}^T \& \mathbf{w}^T \mathbf{M} \mathbf{w} > 0 \ \forall \mathbf{w} \neq \mathbf{0} \right\} \subset \mathbb{R}^{N \times N}$$

- the orthogonal Stiefel manifold

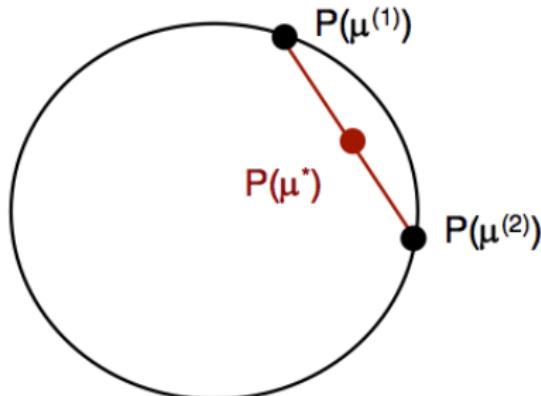
$$\mathcal{ST}(k, N) = \left\{ \mathbf{M} \in \mathbb{R}^{N \times k} \text{ s.t. } \mathbf{M}^T \mathbf{M} = \mathbf{I}_k \right\} \subset \mathbb{R}^{N \times k}$$

¹In differential geometry, a manifold is said to be embedded if it can be placed in a higher-dimensional space such that the topology and smooth structure of the manifold are preserved within that space

└ Concept of a Database of Local ROBs

└ Interpolation on Matrix Manifolds

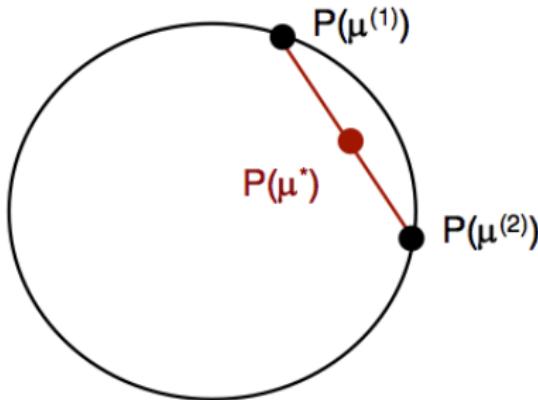
- Example: The circle (sphere $\mathbb{S}(N)$ for $N = 2$)



└ Concept of a Database of Local ROBs

└ Interpolation on Matrix Manifolds

- Example: The circle (sphere $\mathbb{S}(N)$ for $N = 2$)

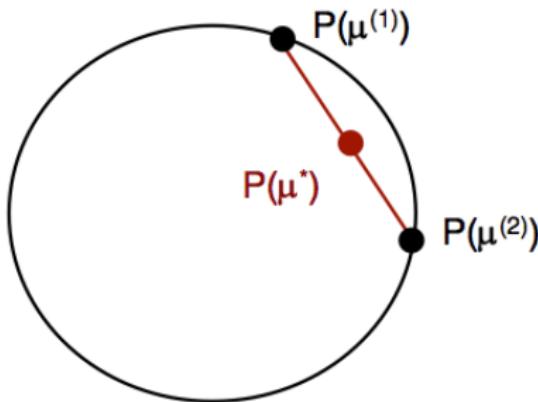


- Standard interpolation fails to preserve a nonlinear manifold (essentially because standard interpolation applies only in vector spaces)

└ Concept of a Database of Local ROBs

└ Interpolation on Matrix Manifolds

- Example: The circle (sphere $\mathbb{S}(N)$ for $N = 2$)



- Standard interpolation fails to preserve a nonlinear manifold (essentially because standard interpolation applies only in vector spaces)
- Idea: perform interpolation in a linear space \Rightarrow on a **tangent space of the manifold**

└ Concept of a Database of Local ROBs

└ Interpolation on the Tangent Space of a Matrix Manifold

■ Input

- pre-computed matrices $\left\{ \mathbf{A} \left(\boldsymbol{\mu}^{(\ell)} \right) \in \mathbb{R}^{N \times M} \right\}_{\ell=1}^{N_s}$
- map $m_{\mathbf{A}}$ from the manifold \mathcal{M} to the tangent space of \mathcal{M} at the point \mathbf{A}
- multi-variate interpolator \mathcal{I} in \mathbb{R}^p
$$a(\boldsymbol{\mu}) = \mathcal{I} \left(\boldsymbol{\mu}; \left\{ a \left(\boldsymbol{\mu}^{(\ell)} \right), \boldsymbol{\mu}^{(\ell)} \right\}_{\ell=1}^{N_s} \right)$$
- inverse map $m_{\mathbf{A}}^{-1}$ from the tangent space of \mathcal{M} at the point \mathbf{A} to the manifold \mathcal{M}

└ Concept of a Database of Local ROBs

└ Interpolation on the Tangent Space of a Matrix Manifold

■ Input

- pre-computed matrices $\left\{ \mathbf{A} \left(\boldsymbol{\mu}^{(\ell)} \right) \in \mathbb{R}^{N \times M} \right\}_{\ell=1}^{N_s}$
- map $m_{\mathbf{A}}$ from the manifold \mathcal{M} to the tangent space of \mathcal{M} at the point \mathbf{A}
- multi-variate interpolator \mathcal{I} in \mathbb{R}^p

$$a(\boldsymbol{\mu}) = \mathcal{I} \left(\boldsymbol{\mu}; \left\{ a \left(\boldsymbol{\mu}^{(\ell)} \right), \boldsymbol{\mu}^{(\ell)} \right\}_{\ell=1}^{N_s} \right)$$
- inverse map $m_{\mathbf{A}}^{-1}$ from the tangent space of \mathcal{M} at the point \mathbf{A} to the manifold \mathcal{M}

- Requirement: The interpolation operator \mathcal{I} must preserve the tangent space \Rightarrow linear operator – for example,

$$a(\boldsymbol{\mu}^*) = \mathcal{I} \left(\boldsymbol{\mu}^*; \left\{ a \left(\boldsymbol{\mu}^{(\ell)} \right), \boldsymbol{\mu}^{(\ell)} \right\}_{\ell=1}^{N_s} \right) = \sum_{\ell=1}^{N_s} \theta_{\ell}(\boldsymbol{\mu}^*) a \left(\boldsymbol{\mu}^{(\ell)} \right)$$

└ Concept of a Database of Local ROBs

└ Interpolation on the Tangent Space of a Matrix Manifold

■ Algorithm

```
1: for  $\ell = 1 : N_s$  do
2:   compute  $\Gamma(\mu^{(\ell)}) = m_{\mathbf{A}}(\mathbf{A}(\mu^{(\ell)}))$ 
3: end for
4: for  $i = 1 : N$  do
5:   for  $j = 1 : M$  do
6:     compute  $\Gamma_{ij}(\mu^*) = \mathcal{I}\left(\mu^*; \{\Gamma_{ij}(\mu^{(\ell)}), \mu^{(\ell)}\}_{\ell=1}^{N_s}\right)$ 
7:   end for
8: end for
9: form  $\Gamma(\mu^*) = [\Gamma_{ij}(\mu^*)]$  and compute  $\mathbf{A}(\mu^*) = m_{\mathbf{A}}^{-1}(\Gamma(\mu^*))$ 
```

└ Concept of a Database of Local ROBs

└ Differential Geometry

- How does one find m_A and its inverse m_A^{-1} ?

└ Concept of a Database of Local ROBs

└ Differential Geometry

- How does one find m_A and its inverse m_A^{-1} ?
- Idea: Use concepts from differential geometry

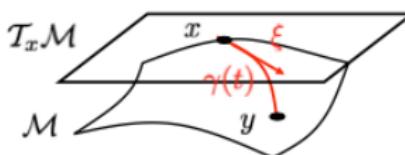
└ Concept of a Database of Local ROBs

└ Differential Geometry

- How does one find m_A and its inverse m_A^{-1} ?
- Idea: Use concepts from differential geometry
- Geodesic
 - is a generalization of a “straight line” to “curved spaces” (manifolds)
 - is uniquely defined given a point x on the manifold and a tangent vector ξ at this point

$$\gamma(t; x, \xi) : [0, 1] \rightarrow \mathcal{M}$$

$$\gamma(0; x, \xi) = x, \quad \dot{\gamma}(0; x, \xi) = \xi$$



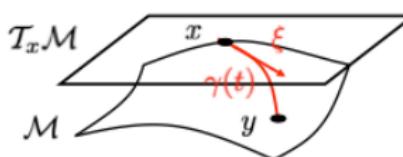
└ Concept of a Database of Local ROBs

└ Differential Geometry

- How does one find m_A and its inverse m_A^{-1} ?
- Idea: Use concepts from differential geometry
- Geodesic
 - is a generalization of a “straight line” to “curved spaces” (manifolds)
 - is uniquely defined given a point x on the manifold and a tangent vector ξ at this point

$$\gamma(t; x, \xi) : [0, 1] \rightarrow \mathcal{M}$$

$$\gamma(0; x, \xi) = x, \quad \dot{\gamma}(0; x, \xi) = \xi$$



- Exponential map

$$\text{Exp}_x : T_x \mathcal{M} \rightarrow \mathcal{M} \quad \xi \longmapsto \gamma(1; x, \xi)$$

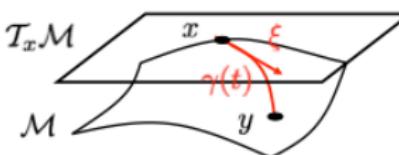
└ Concept of a Database of Local ROBs

└ Differential Geometry

- How does one find m_A and its inverse m_A^{-1} ?
- Idea: Use concepts from differential geometry
- Geodesic
 - is a generalization of a “straight line” to “curved spaces” (manifolds)
 - is uniquely defined given a point x on the manifold and a tangent vector ξ at this point

$$\gamma(t; x, \xi) : [0, 1] \rightarrow \mathcal{M}$$

$$\gamma(0; x, \xi) = x, \quad \dot{\gamma}(0; x, \xi) = \xi$$



- Exponential map

$$\text{Exp}_x : T_x \mathcal{M} \rightarrow \mathcal{M} \quad \xi \mapsto \gamma(1; x, \xi)$$

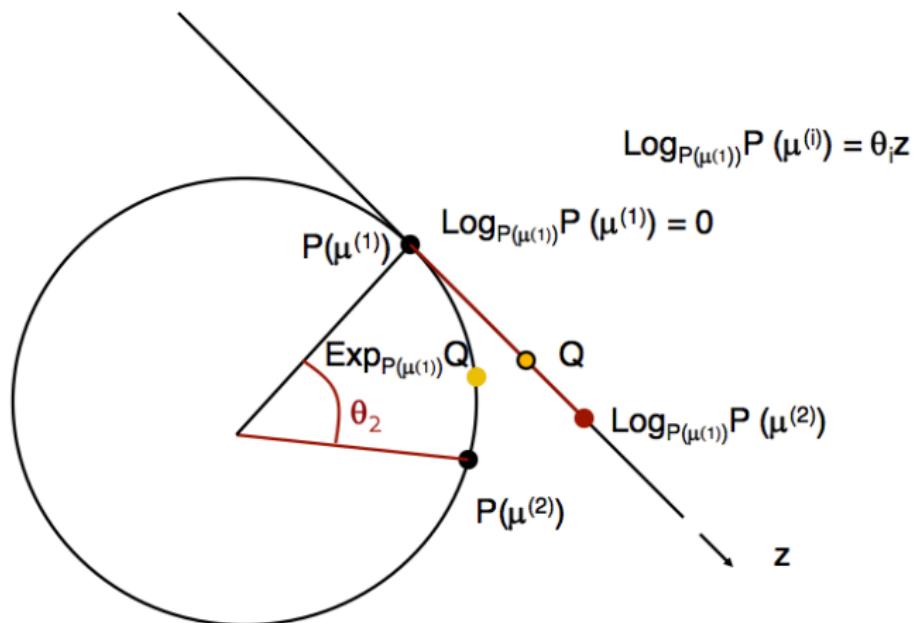
- Logarithm map at base point x (defined in neighborhood \mathcal{U}_x of x)

$$\text{Log}_x : \mathcal{U}_x \subset \mathcal{M} \rightarrow T_x \mathcal{M} \quad y \mapsto \text{Exp}_x^{-1}(y) = \text{Log}_x(y) = \dot{\gamma}(0; x, \xi) = \xi$$

└ Concept of a Database of Local ROBs

└ Interpolation on a Tangent Space of a Matrix Manifold

- Application to the interpolation of two points on a circle



└ Concept of a Database of Local ROBs

└ Interpolation on a Tangent Space of the Grassmann Manifold

■ Logarithm map

- 1 compute a thin SVD

$$(\mathbf{I} - \mathbf{V}_0 \mathbf{V}_0^T) \mathbf{V}_i (\mathbf{V}_0^T \mathbf{V}_i)^{-1} = \mathbf{U} \boldsymbol{\Sigma} \mathbf{Z}^T$$

- 2 compute

$$\boldsymbol{\Gamma} = \mathbf{U} \tan^{-1}(\boldsymbol{\Sigma}) \mathbf{Z}^T \in \mathbb{R}^{N \times k}$$

- 3
- $\boldsymbol{\Gamma} \leftrightarrow \text{Log}_{\mathcal{S}_0}(\mathcal{S}_i) \in \mathcal{T}_{\mathcal{S}_0} \mathcal{G}(k, N)$

└ Concept of a Database of Local ROBs

└ Interpolation on a Tangent Space of the Grassmann Manifold

■ Logarithm map

- 1 compute a thin SVD

$$(\mathbf{I} - \mathbf{V}_0 \mathbf{V}_0^T) \mathbf{V}_i (\mathbf{V}_0^T \mathbf{V}_i)^{-1} = \mathbf{U} \boldsymbol{\Sigma} \mathbf{Z}^T$$

- 2 compute

$$\boldsymbol{\Gamma} = \mathbf{U} \tan^{-1}(\boldsymbol{\Sigma}) \mathbf{Z}^T \in \mathbb{R}^{N \times k}$$

- 3 $\boldsymbol{\Gamma} \leftrightarrow \text{Log}_{\mathcal{S}_0}(\mathcal{S}_i) \in \mathcal{T}_{\mathcal{S}_0} \mathcal{G}(k, N)$

■ Exponential map of $\tilde{\boldsymbol{\xi}} \in \mathcal{T}_{\mathcal{S}_0} \mathcal{G}(k, N) \leftrightarrow \tilde{\boldsymbol{\Gamma}}$

- 1 compute a thin SVD

$$\tilde{\boldsymbol{\Gamma}} = \mathbf{U} \boldsymbol{\Sigma} \mathbf{Z}^T$$

- 2 compute

$$\mathbf{V} = (\mathbf{V}_0 \mathbf{Z} \cos \boldsymbol{\Sigma} + \mathbf{U} \sin \boldsymbol{\Sigma}) \in \mathcal{ST}(k, N)$$

- 3 $\text{range}(\mathbf{V}) = \text{Exp}_{\mathcal{S}_0}(\tilde{\boldsymbol{\xi}}) \in \mathcal{G}(k, N)$

└ Concept of a Database of Local ROBs

└ Interpolation on a Tangent Space of the Grassmann Manifold

■ Logarithm map

- 1 compute a thin SVD

$$(\mathbf{I} - \mathbf{V}_0 \mathbf{V}_0^T) \mathbf{V}_i (\mathbf{V}_0^T \mathbf{V}_i)^{-1} = \mathbf{U} \boldsymbol{\Sigma} \mathbf{Z}^T$$

- 2 compute

$$\boldsymbol{\Gamma} = \mathbf{U} \tan^{-1}(\boldsymbol{\Sigma}) \mathbf{Z}^T \in \mathbb{R}^{N \times k}$$

- 3 $\boldsymbol{\Gamma} \leftrightarrow \text{Log}_{\mathcal{S}_0}(\mathcal{S}_i) \in \mathcal{T}_{\mathcal{S}_0} \mathcal{G}(k, N)$

■ Exponential map of $\tilde{\boldsymbol{\xi}} \in \mathcal{T}_{\mathcal{S}_0} \mathcal{G}(k, N) \leftrightarrow \tilde{\boldsymbol{\Gamma}}$

- 1 compute a thin SVD

$$\tilde{\boldsymbol{\Gamma}} = \mathbf{U} \boldsymbol{\Sigma} \mathbf{Z}^T$$

- 2 compute

$$\mathbf{V} = (\mathbf{V}_0 \mathbf{Z} \cos \boldsymbol{\Sigma} + \mathbf{U} \sin \boldsymbol{\Sigma}) \in \mathcal{ST}(k, N)$$

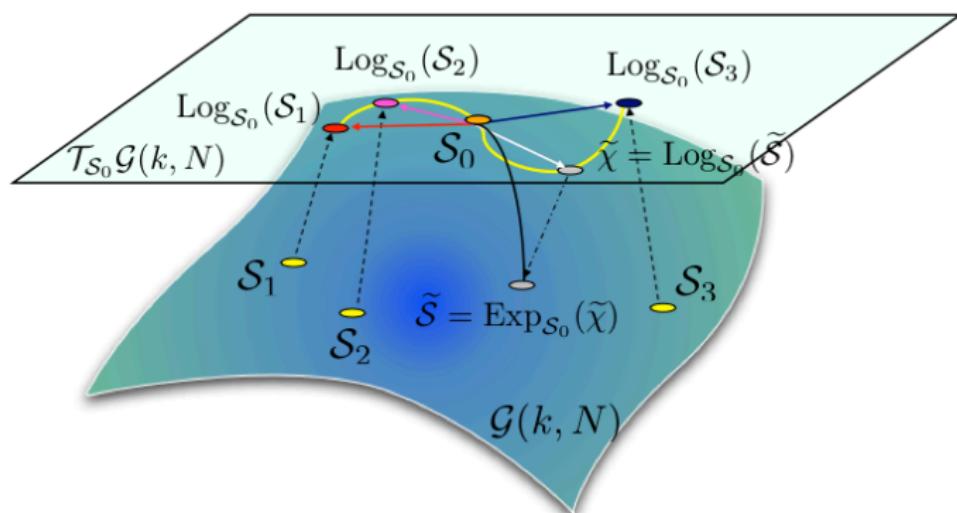
- 3 $\text{range}(\mathbf{V}) = \text{Exp}_{\mathcal{S}_0}(\tilde{\boldsymbol{\xi}}) \in \mathcal{G}(k, N)$

■ Note: The trigonometric operators apply only to the diagonal entries of the relevant matrices

└ Concept of a Database of Local ROBs

└ Interpolation on a Tangent Space of the Grassmann Manifold

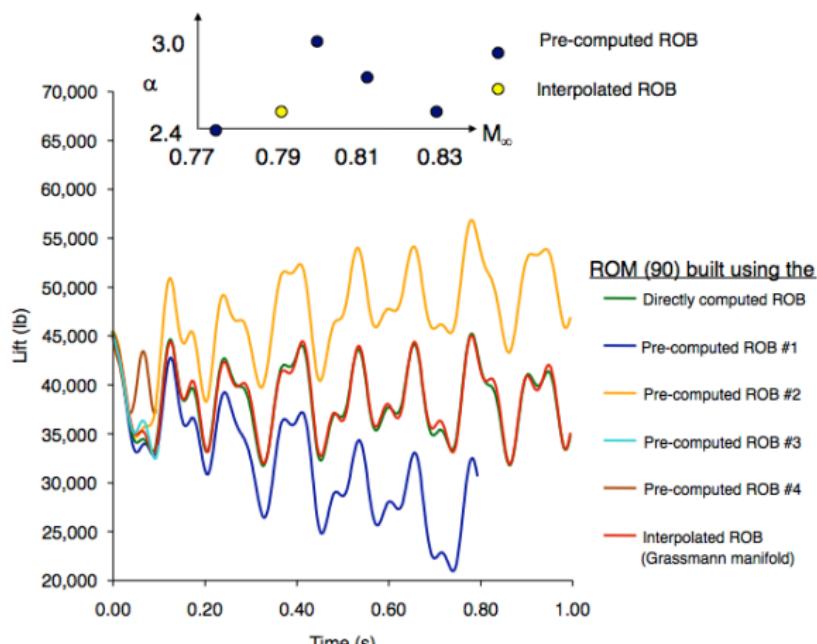
- Interpolation on the tangent space of $\mathcal{G}(k, N)$



└ Concept of a Database of Local ROBs

└ Case Study: Aeroelastic Analysis of a Fighter Aircraft Configuration (Circa 2008)

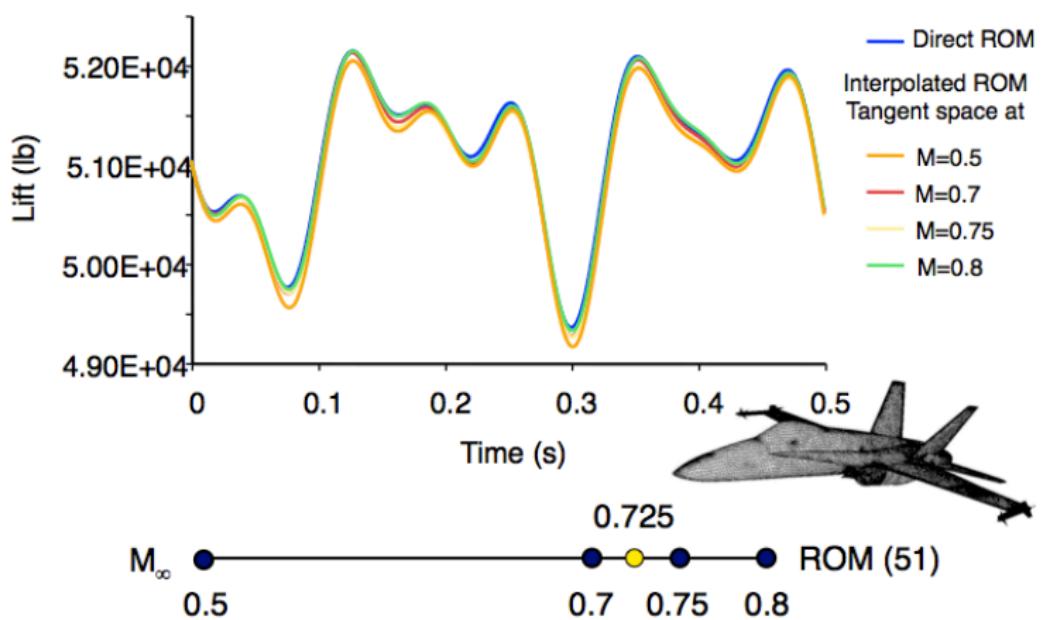
- Parametric, linearized, aeroelastic identification of a F-16 Block 40 aircraft in clean wing configuration (e.g., for flutter analysis in the time domain)



└ Concept of a Database of Local ROBs

└ Case Study: Aeroelastic Analysis of a Fighter Aircraft Configuration (Circa 2008)

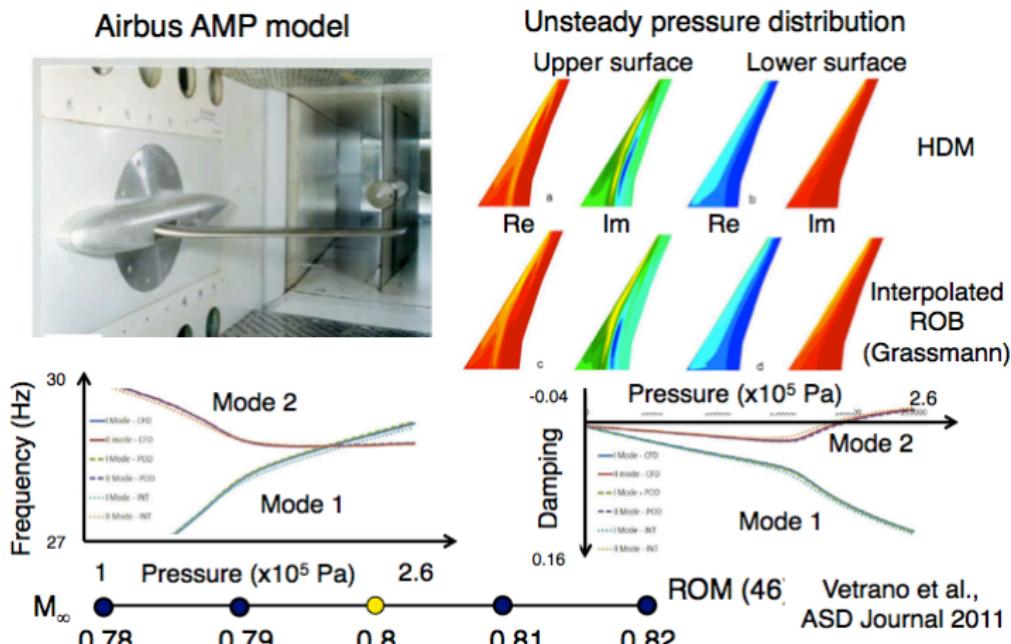
- Parametric, linearized, aeroelastic identification of a F/A-18 aircraft in clean wing configuration (e.g., for flutter analysis in the time domain): Effect of the choice of the tangent plane



└ Concept of a Database of Local ROBs

└ Case Study: Aeroelastic Analysis of a Commercial Aircraft Configuration (2011)

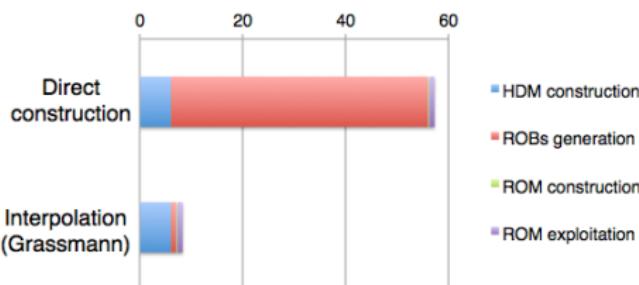
- Prediction of the linearized, aeroelastic behavior of the wing of a commercial aircraft (Airbus)



└ Concept of a Database of Local ROBs

└ Case Study: Aeroelastic Analysis of a Fighter Aircraft Configuration (Circa 2008)

- Parametric, linearized, aeroelastic identification of a F-16 Block 40 aircraft in clean wing configuration (e.g., for flutter analysis in the time domain): Construction and exploitation in $t \in [0, 1]$ s of a linearized, aeroelastic PROM

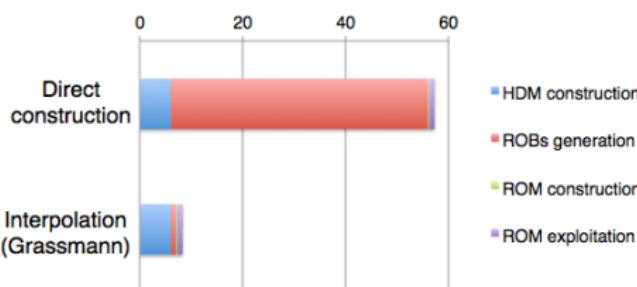


- Overall CPU time is decreased from 55 minutes to 8 minutes

└ Concept of a Database of Local ROBs

└ Case Study: Aeroelastic Analysis of a Fighter Aircraft Configuration (Circa 2008)

- Parametric, linearized, aeroelastic identification of a F-16 Block 40 aircraft in clean wing configuration (e.g., for flutter analysis in the time domain): Construction and exploitation in $t \in [0, 1]$ s of a linearized, aeroelastic PROM

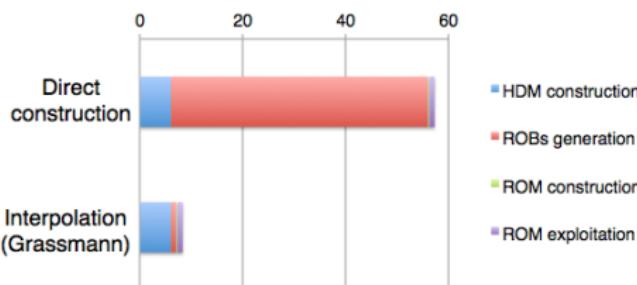


- Overall CPU time is decreased from 55 minutes to 8 minutes
- New dominant cost: Construction of the HDM operators
 $(\mathbf{A}(\mu^*), \mathbf{B}(\mu^*), \mathbf{C}(\mu^*), \mathbf{D}(\mu^*))$

└ Concept of a Database of Local ROBs

└ Case Study: Aeroelastic Analysis of a Fighter Aircraft Configuration (Circa 2008)

- Parametric, linearized, aeroelastic identification of a F-16 Block 40 aircraft in clean wing configuration (e.g., for flutter analysis in the time domain): Construction and exploitation in $t \in [0, 1]$ s of a linearized, aeroelastic PROM



- Overall CPU time is decreased from 55 minutes to 8 minutes
- New dominant cost: Construction of the HDM operators $(\mathbf{A}(\mu^*), \mathbf{B}(\mu^*), \mathbf{C}(\mu^*), \mathbf{D}(\mu^*))$
- This suggests the following alternative approach: Interpolate the reduced-order operators $(\mathbf{A}_r(\mu^{(\ell)}), \mathbf{B}_r(\mu^{(\ell)}), \mathbf{C}_r(\mu^{(\ell)}), \mathbf{D}_r(\mu^{(\ell)}))$ since they are linear in this application \Rightarrow concept of a database of local *linear* PROMs

└ Concept of a Database of Local Linear PROMs

└ Interpolation of Linear PROMs on Embedded Manifolds

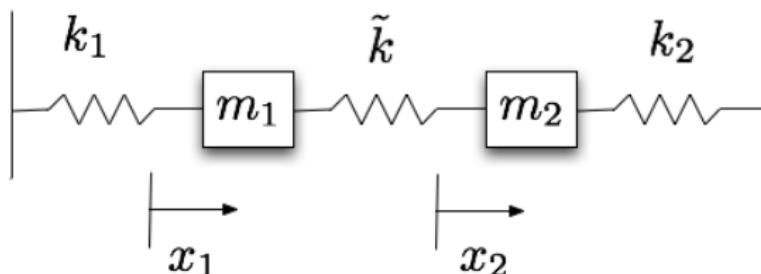
- Applicable only to linear systems characterized by operators such as $(\mathbf{A}_r(\mu), \mathbf{B}_r(\mu), \mathbf{C}_r(\mu), \mathbf{D}_r(\mu))$ that are pre-computed and stored in a database of local PROMs
 - for each individual set of local operators – e.g., $\{\mathbf{A}_r(\mu^\ell)\}_{\ell=1}^{N_s}$ – identify the appropriate matrix manifold \mathcal{M} and interpolate the aforementioned set of local operators on \mathcal{M}

└ Concept of a Database of Local Linear PROMs

└ Case Study: Structural Analysis of a Simple Mass-Spring System

- Simple example: Mass-spring system with two degrees of freedom

$$\mathbf{M} \frac{d^2 \mathbf{w}}{dt^2}(t) + \mathbf{K}(\mu) \mathbf{w}(t) = \mathbf{B} \mathbf{u}(t), \quad \boxed{\mu = k_1 - 0.1}$$



$$\mathbf{w}(t) = \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}$$

- the values of m_1 , m_2 , \tilde{k} , and k_2 are fixed to some constants
- the value of k_1 is set to $k_1 = 0.1 + \mu$, and μ is treated as a parameter

└ Concept of a Database of Local Linear PROMs

└ Case Study: Structural Analysis of a Simple Mass-Spring System

- PMOR by modal truncation: $\mathbf{V}(\mu)$ is the matrix of the two eigenmodes of the structural system

$$\mathbf{K}(\mu)\mathbf{v}_j(\mu) = \lambda_j(\mu)\mathbf{M}\mathbf{v}_j(\mu)$$

└ Concept of a Database of Local Linear PROMs

└ Case Study: Structural Analysis of a Simple Mass-Spring System

- PMOR by modal truncation: $\mathbf{V}(\mu)$ is the matrix of the two eigenmodes of the structural system

$$\mathbf{K}(\mu)\mathbf{v}_j(\mu) = \lambda_j(\mu)\mathbf{M}\mathbf{v}_j(\mu)$$

- Matrix of eigenvalues: $\mathbf{K}_r(\mu) = \mathbf{V}(\mu)^T \mathbf{K}(\mu) \mathbf{V}(\mu) = \Lambda(\mu)$

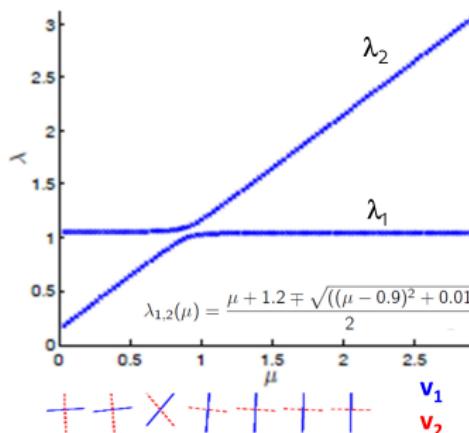
└ Concept of a Database of Local Linear PROMs

└ Case Study: Structural Analysis of a Simple Mass-Spring System

- PMOR by modal truncation: $\mathbf{V}(\mu)$ is the matrix of the two eigenmodes of the structural system

$$\mathbf{K}(\mu)\mathbf{v}_j(\mu) = \lambda_j(\mu)\mathbf{M}\mathbf{v}_j(\mu)$$

- Matrix of eigenvalues: $\mathbf{K}_r(\mu) = \mathbf{V}(\mu)^T \mathbf{K}(\mu) \mathbf{V}(\mu) = \Lambda(\mu)$
- Variations of the eigenvalues and eigenmodes with the parameter μ (first eigenmode is shown in blue color, second is shown in red color)



└ Concept of a Database of Local Linear PROMs

└ Interpolation on a Matrix Manifold

- Note that $\Lambda(\mu)$ belongs to the manifold of (diagonal) symmetric positive definite matrices, $\text{SPD}(2)$

└ Concept of a Database of Local Linear PROMs

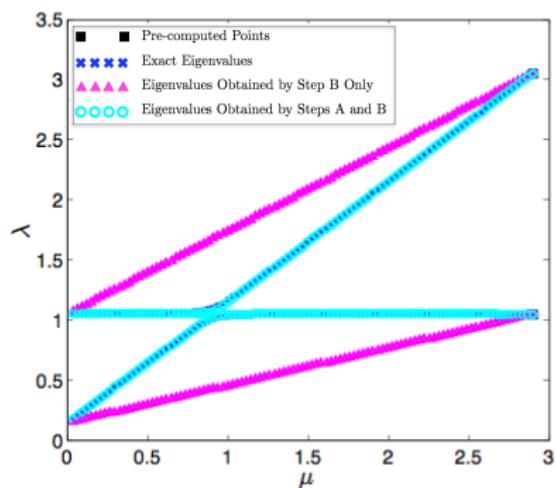
└ Interpolation on a Matrix Manifold

- Note that $\Lambda(\mu)$ belongs to the manifold of (diagonal) symmetric positive definite matrices, $\text{SPD}(2)$
- Perform interpolation of $\Lambda(\mu)$ on this manifold using $(\Lambda(0), \Lambda(2.9))$

└ Concept of a Database of Local Linear PROMs

└ Interpolation on a Matrix Manifold

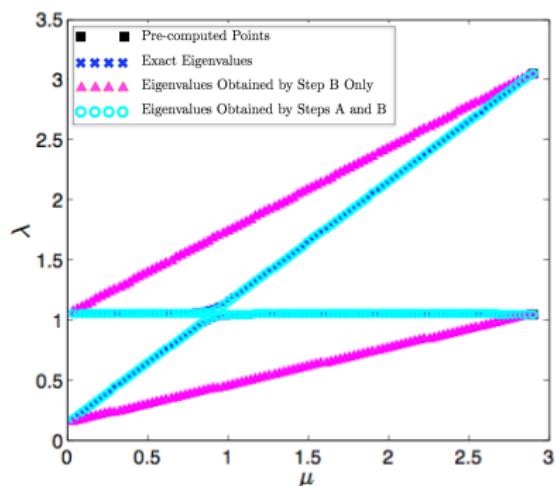
- Note that $\Lambda(\mu)$ belongs to the manifold of (diagonal) symmetric positive definite matrices, $\text{SPD}(2)$
- Perform interpolation of $\Lambda(\mu)$ on this manifold using $(\Lambda(0), \Lambda(2.9))$
- Result is shown in magenta color



└ Concept of a Database of Local Linear PROMs

└ Interpolation on a Matrix Manifold

- Note that $\Lambda(\mu)$ belongs to the manifold of (diagonal) symmetric positive definite matrices, $\text{SPD}(2)$
- Perform interpolation of $\Lambda(\mu)$ on this manifold using $(\Lambda(0), \Lambda(2.9))$
- Result is shown in magenta color

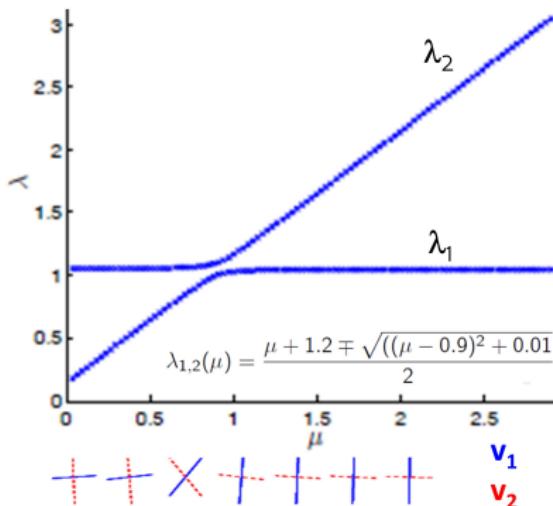


- Observe that the result is wrong, even for such a simple system

└ Concept of a Database of Local Linear PROMs

└ Mode Veering and Mode Crossing

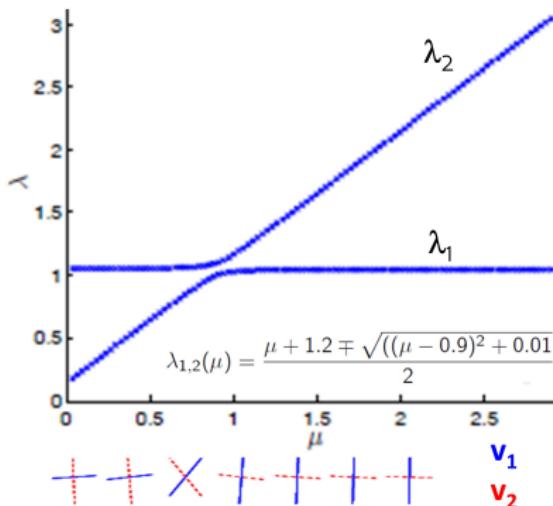
- The issue is the lack of consistency between the coordinates of the reduced-order matrices, triggered in this case by **mode veering**



└ Concept of a Database of Local Linear PROMs

└ Mode Veering and Mode Crossing

- The issue is the lack of consistency between the coordinates of the reduced-order matrices, triggered in this case by **mode veering**



- Mode crossing would trigger a similar issue (the eigenfrequencies are ordered increasingly in $\Lambda(\mu)$)

└ Concept of a Database of Local Linear PROMs

└ Consistent Interpolation on Matrix Manifolds

Two-step solution

- step A: Pre-process the reduced-order matrices
 - enforce consistency by solving the following N_s **orthogonal Procrustes problems**

$$\min_{\mathbf{Q}_\ell / \mathbf{Q}_\ell^T \mathbf{Q}_\ell = \mathbf{I}_k} \left\| \mathbf{V} \left(\boldsymbol{\mu}^{(\ell)} \right) \mathbf{Q}_\ell - \mathbf{V} \left(\boldsymbol{\mu}^{(\ell_0)} \right) \right\|_F, \quad \forall \ell = 1, \dots, N_s$$

└ Concept of a Database of Local Linear PROMs

└ Consistent Interpolation on Matrix Manifolds

Two-step solution

- step A: Pre-process the reduced-order matrices
 - enforce consistency by solving the following N_s **orthogonal Procrustes problems**

$$\min_{\mathbf{Q}_\ell / \mathbf{Q}_\ell^T \mathbf{Q}_\ell = \mathbf{I}_k} \left\| \mathbf{V}(\boldsymbol{\mu}^{(\ell)}) \mathbf{Q}_\ell - \mathbf{V}(\boldsymbol{\mu}^{(\ell_0)}) \right\|_F, \quad \forall \ell = 1, \dots, N_s$$

- compute analytical solutions of above problems as follows
 - 1 compute $\mathbf{P}_{\ell, \ell_0} = \mathbf{V}(\boldsymbol{\mu}^{(\ell)})^T \mathbf{V}(\boldsymbol{\mu}^{(\ell_0)})$
 - 2 compute the SVD $\mathbf{P}_{\ell, \ell_0} = \mathbf{U}_{\ell, \ell_0} \boldsymbol{\Sigma}_{\ell, \ell_0} \mathbf{Z}_{\ell, \ell_0}^T$
 - 3 compute $\mathbf{Q}_\ell = \mathbf{U}_{\ell, \ell_0} \mathbf{Z}_{\ell, \ell_0}^T$

└ Concept of a Database of Local Linear PROMs

└ Consistent Interpolation on Matrix Manifolds

Two-step solution

- step A: Pre-process the reduced-order matrices
 - enforce consistency by solving the following N_s **orthogonal Procrustes problems**

$$\min_{\mathbf{Q}_\ell / \mathbf{Q}_\ell^T \mathbf{Q}_\ell = \mathbf{I}_k} \left\| \mathbf{V}(\boldsymbol{\mu}^{(\ell)}) \mathbf{Q}_\ell - \mathbf{V}(\boldsymbol{\mu}^{(\ell_0)}) \right\|_F, \quad \forall \ell = 1, \dots, N_s$$

- compute analytical solutions of above problems as follows
 - 1 compute $\mathbf{P}_{\ell, \ell_0} = \mathbf{V}(\boldsymbol{\mu}^{(\ell)})^T \mathbf{V}(\boldsymbol{\mu}^{(\ell_0)})$
 - 2 compute the SVD $\mathbf{P}_{\ell, \ell_0} = \mathbf{U}_{\ell, \ell_0} \boldsymbol{\Sigma}_{\ell, \ell_0} \mathbf{Z}_{\ell, \ell_0}^T$
 - 3 compute $\mathbf{Q}_\ell = \mathbf{U}_{\ell, \ell_0} \mathbf{Z}_{\ell, \ell_0}^T$
- the associated computational cost scales with k

⇒ step A can be performed either online or offline

└ Concept of a Database of Local Linear PROMs

└ Consistent Interpolation on Matrix Manifolds

Two-step solution (continue)

- step B: Note that (assuming a Galerkin PROM and orthogonal local ROBs)

$$\begin{aligned} \left(\mathbf{v}(\boldsymbol{\mu}^{(\ell)}) \mathbf{q}_\ell \right)^T \mathbf{A}(\boldsymbol{\mu}^{(\ell)}) \left(\mathbf{v}(\boldsymbol{\mu}^{(\ell)}) \mathbf{q}_\ell \right) &= \mathbf{q}_\ell^T \mathbf{v}(\boldsymbol{\mu}^{(\ell)})^T \mathbf{A}(\boldsymbol{\mu}^{(\ell)}) \mathbf{v}(\boldsymbol{\mu}^{(\ell)}) \mathbf{q}_\ell = \mathbf{q}_\ell^T \mathbf{A}_r(\boldsymbol{\mu}^{(\ell)}) \mathbf{q}_\ell \\ \left(\mathbf{v}(\boldsymbol{\mu}^{(\ell)}) \mathbf{q}_\ell \right)^T \mathbf{B}(\boldsymbol{\mu}^{(\ell)}) &= \mathbf{q}_\ell^T \mathbf{v}(\boldsymbol{\mu}^{(\ell)})^T \mathbf{B}(\boldsymbol{\mu}^{(\ell)}) = \mathbf{q}_\ell^T \mathbf{B}_r(\boldsymbol{\mu}^{(\ell)}) \\ \mathbf{c}(\boldsymbol{\mu}^{(\ell)}) \left(\mathbf{v}(\boldsymbol{\mu}^{(\ell)}) \mathbf{q}_\ell \right) &= \left(\mathbf{c}(\boldsymbol{\mu}^{(\ell)}) \mathbf{v}(\boldsymbol{\mu}^{(\ell)}) \right) \mathbf{q}_\ell = \mathbf{c}_r \mathbf{q}_\ell \end{aligned}$$

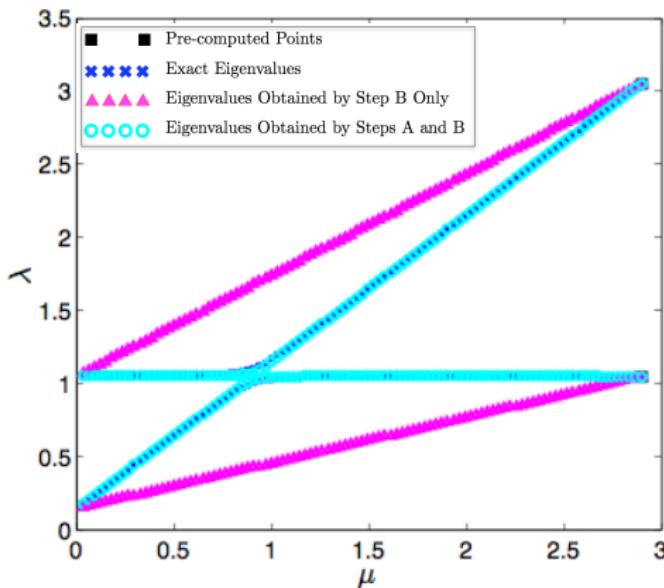
and therefore

- first, transform *directly* each PROM $(\mathbf{A}_r(\boldsymbol{\mu}^{(\ell)}), \mathbf{B}_r(\boldsymbol{\mu}^{(\ell)}), \mathbf{C}_r(\boldsymbol{\mu}^{(\ell)}), \mathbf{D}_r(\boldsymbol{\mu}^{(\ell)}))$ to $(\mathbf{Q}_\ell^T \mathbf{A}_r(\boldsymbol{\mu}^{(\ell)}) \mathbf{Q}_\ell, \mathbf{Q}_\ell^T \mathbf{B}_r(\boldsymbol{\mu}^{(\ell)}), \mathbf{C}_r(\boldsymbol{\mu}^{(\ell)}) \mathbf{Q}_\ell, \mathbf{D}_r(\boldsymbol{\mu}^{(\ell)}))$
- then, identify for each element of the transformed tuple an appropriate matrix manifold and perform the interpolation on this matrix manifold

└ Concept of a Database of Local Linear PROMs

└ Consistent Interpolation on Matrix Manifolds

- Two-step result is shown in cyan color

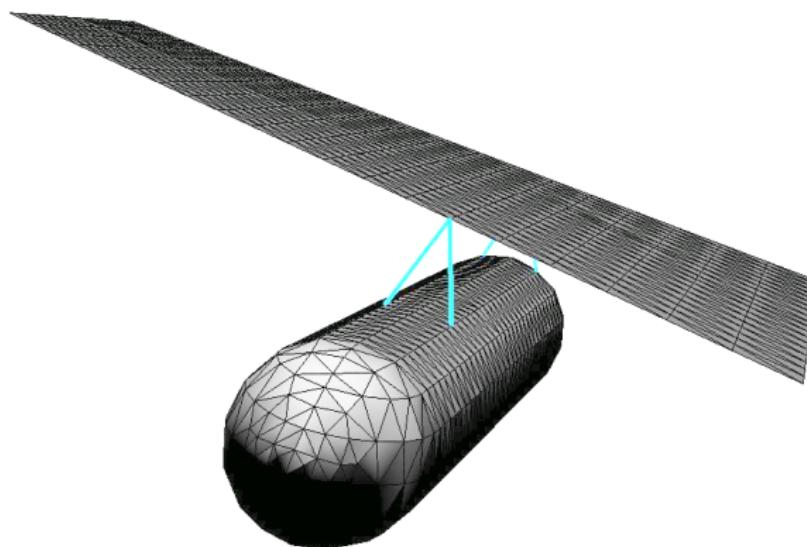


- Observe that the result is very accurate

└ Concept of a Database of Local Linear PROMs

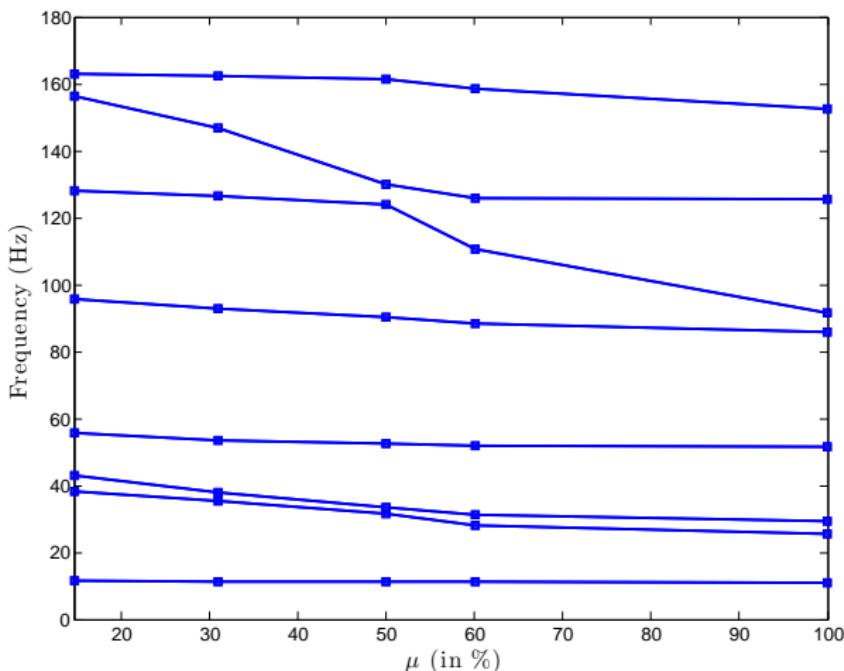
└ Case Study: Structural Analysis of a Wing-Tank Configuration (Circa 2008)

- More challenging example: Wing with tank and sloshing effects
- The hydro-elastic effects affect the eigenfrequencies and eigenmodes of the structure
- The parameter μ defines the fuel fill level in the tank $0 \leq \mu \leq 100\%$



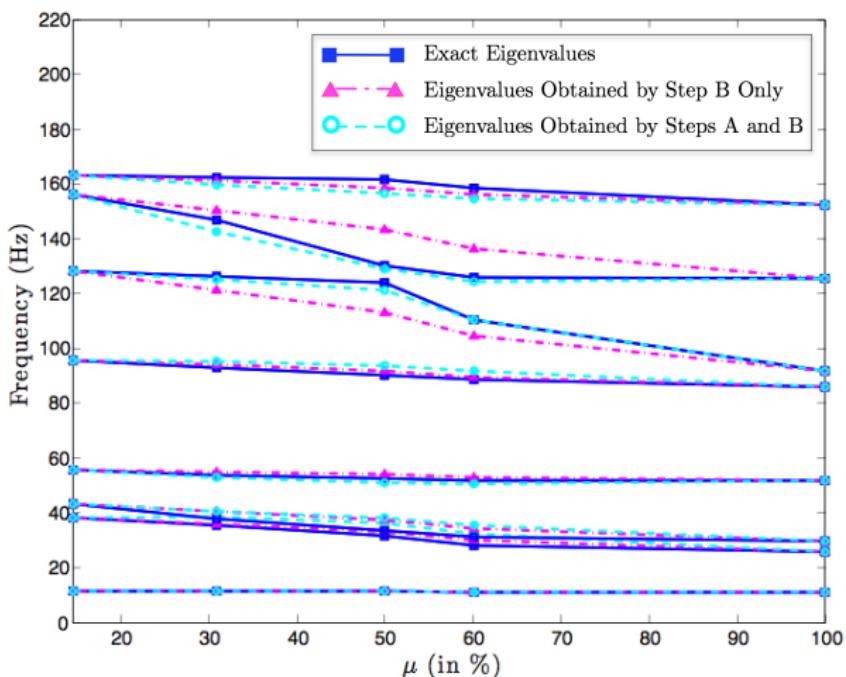
└ Concept of a Database of Local Linear PROMs

└ Case Study: Structural Analysis of a Wing-Tank Configuration (Circa 2008)



└ Concept of a Database of Local Linear PROMs

└ Case Study: Structural Analysis of a Wing-Tank Configuration (Circa 2008)



└ Concept of a Database of Local Linear PROMs

└ Link with Modal Assurance Criterion

- Modal Assurance Criterion (MAC) between two modes ϕ and ψ

$$\text{MAC}(\phi, \psi) = \frac{|\phi^T \psi|^2}{(\phi^T \phi)(\psi^T \psi)}$$

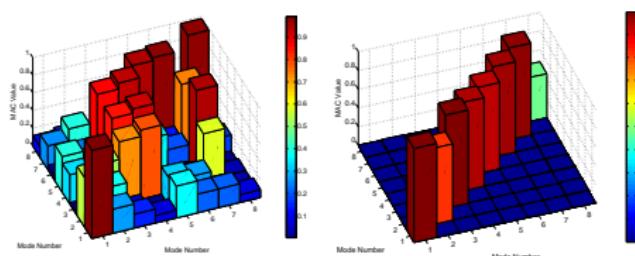
└ Concept of a Database of Local Linear PROMs

└ Link with Modal Assurance Criterion

- Modal Assurance Criterion (MAC) between two modes ϕ and ψ

$$\text{MAC}(\phi, \psi) = \frac{|\phi^T \psi|^2}{(\phi^T \phi)(\psi^T \psi)}$$

- What is the MAC between the vectors in the ROBs $\mathbf{V}(\mu^{(\ell)})$ and $\mathbf{V}(\mu^{(\ell_0)})$ before and after Step A?



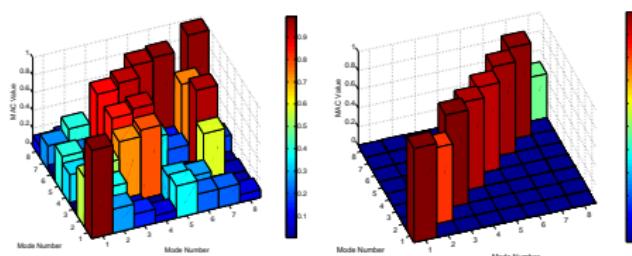
└ Concept of a Database of Local Linear PROMs

└ Link with Modal Assurance Criterion

- Modal Assurance Criterion (MAC) between two modes ϕ and ψ

$$\text{MAC}(\phi, \psi) = \frac{|\phi^T \psi|^2}{(\phi^T \phi)(\psi^T \psi)}$$

- What is the MAC between the vectors in the ROBs $\mathbf{V}(\mu^{(\ell)})$ and $\mathbf{V}(\mu^{(\ell_0)})$ before and after Step A?



- When ϕ and ψ are normalized, $\text{MAC}(\phi, \psi) = |\phi^T \psi|^2$

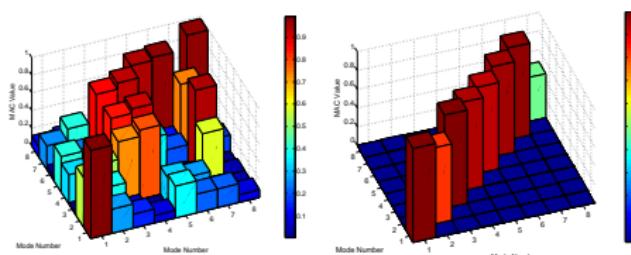
└ Concept of a Database of Local Linear PROMs

└ Link with Modal Assurance Criterion

- Modal Assurance Criterion (MAC) between two modes ϕ and ψ

$$\text{MAC}(\phi, \psi) = \frac{|\phi^T \psi|^2}{(\phi^T \phi)(\psi^T \psi)}$$

- What is the MAC between the vectors in the ROBs $\mathbf{V}(\mu^{(\ell)})$ and $\mathbf{V}(\mu^{(\ell_0)})$ before and after Step A?



- When ϕ and ψ are normalized, $\text{MAC}(\phi, \psi) = |\phi^T \psi|^2$
- $\mathbf{P}_{\ell, \ell_0} = \mathbf{V}(\mu^{(\ell)})^T \mathbf{V}(\mu^{(\ell_0)})$ is the matrix of square roots of the MACs between the modes contained in $\mathbf{V}(\mu^{(\ell)})$ and those contained in $\mathbf{V}(\mu^{(\ell_0)})$

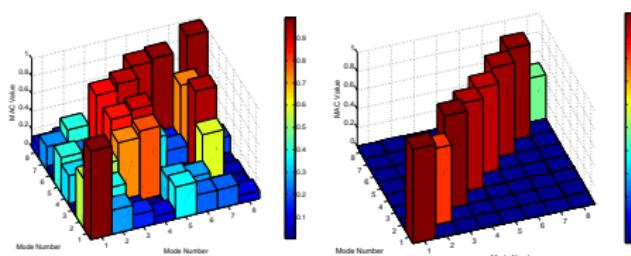
└ Concept of a Database of Local Linear PROMs

└ Link with Modal Assurance Criterion

- Modal Assurance Criterion (MAC) between two modes ϕ and ψ

$$\text{MAC}(\phi, \psi) = \frac{|\phi^T \psi|^2}{(\phi^T \phi)(\psi^T \psi)}$$

- What is the MAC between the vectors in the ROBs $\mathbf{V}(\mu^{(\ell)})$ and $\mathbf{V}(\mu^{(\ell_0)})$ before and after Step A?

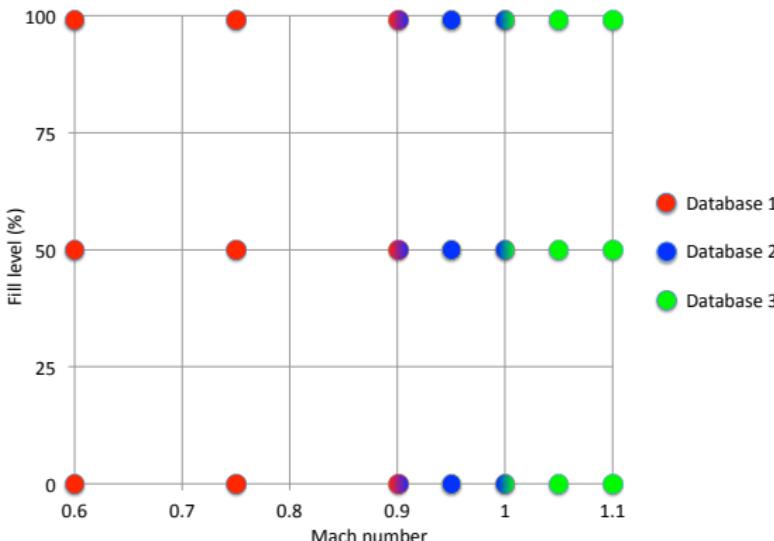


- When ϕ and ψ are normalized, $\text{MAC}(\phi, \psi) = |\phi^T \psi|^2$
- $\mathbf{P}_{\ell, \ell_0} = \mathbf{V}(\mu^{(\ell)})^T \mathbf{V}(\mu^{(\ell_0)})$ is the matrix of square roots of the MACs between the modes contained in $\mathbf{V}(\mu^{(\ell)})$ and those contained in $\mathbf{V}(\mu^{(\ell_0)})$
- This is the Modal Assurance Criterion Square Root (MACSR)

└ Concept of a Database of Local Linear PROMs

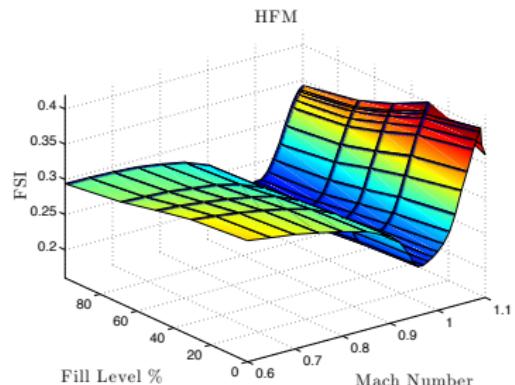
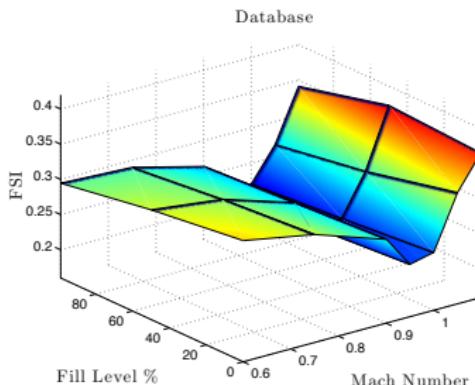
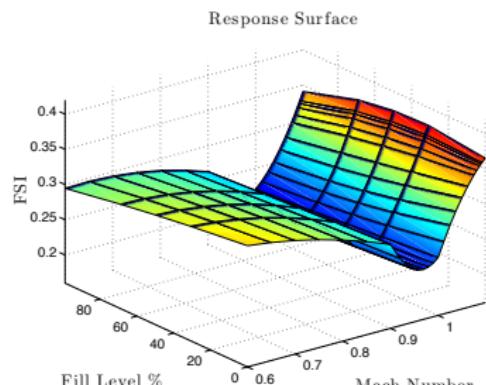
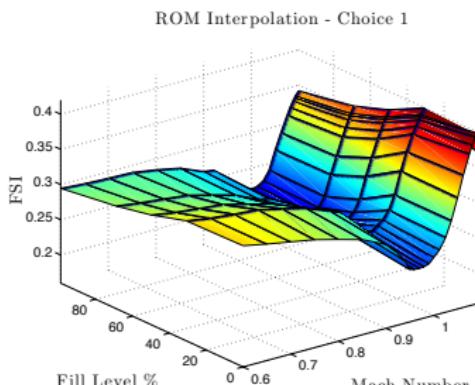
└ Case Study: Aeroelastic Analysis of a Wing-Tank Configuration (Circa 2008)

- Aeroelastic study of a wing-tank system
- 2 parameters, namely, the fuel fill level and the free-stream Mach number M_∞
- Database approach



└ Concept of a Database of Local Linear PROMs

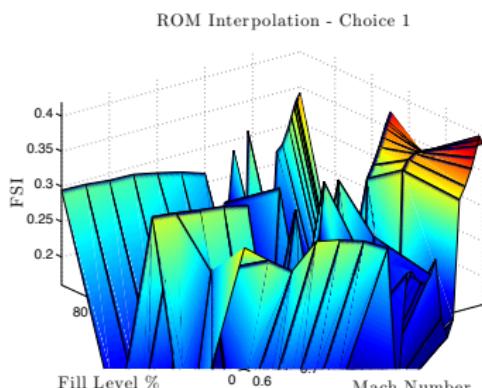
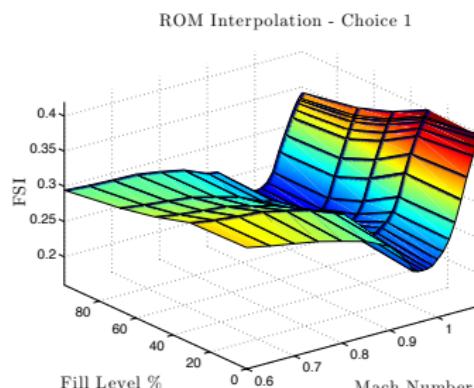
└ Case Study: Aeroelastic Analysis of a Wing-Tank Configuration (Circa 2008)



└ Concept of a Database of Local Linear PROMs

└ Case Study: Aeroelastic Analysis of a Wing-Tank Configuration (Circa 2008)

■ Effect of Step A



- Skipping Step A leads to inaccurate interpolation results (left figure)
- Performing Step A ensures a consistent interpolation (right figure)

└ Concept of a Database of Local Linear PROMs

└ Case Study: Aeroelastic Analysis of a Wing-Tank Configuration (Circa 2008)

■ CPU performance

Approach	Offline phase CPU time (# procs)	Online phase CPU time (# procs)
HDM	- (-)	9 152 000 s \approx 106 days (32)
Response surface	28 000 s \approx 7 h (32)	2 s (1)
PROM interpolation	28 000 s \approx 7 h (32)	30 s (1)

- Online speedup factor = 305 000
- Offline + Online speedup factor = 327

└ Concept of a Database of Local Linear PROMs

└ Mobile Computing

- Mobile computing using a database of PROMs

