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Note: The material covered in this chapter is based on the following
published documents:

D. Amsallem, C. Farhat. Interpolation method for adapting
reduced-order models and application to aeroelasticity. AIAA Journal
2008; 46(7):1803-1813.
D. Amsallem, J. Cortial, C. Farhat. Towards real-time CFD-based
aeroelastic computations using a database of reduced-order models.
AIAA Journal 2010; 48(9):2029-2037.
D. Amsallem, C. Farhat. An online method for interpolating linear
parametric reduced-order models. SIAM Journal on Scientific
Computing 2011; 33(5): 2169-2198.
D. Amsallem, Interpolation on manifolds of CFD-based fluid and
finite element-based structural reduced-order models for on-line
aeroelastic predictions. Ph.D. Thesis, Stanford University, 2010.
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Parameterized Systems

Parametric Linear and Nonlinear Systems

Parametric linear High-Dimensional (time-invariant) Model (HDM)

dw

dt
(t;µ) = A(µ)w(t;µ) + B(µ)u(t)

y(t;µ) = C(µ)w(t;µ) +D(µ)u(t)

w(0;µ) = w0(µ)

Parametric nonlinear HDM

dw

dt
(t;µ) = f(w(t), t;µ) + B(µ)u(t)

w ∈ RN : Vector of state variables

u ∈ Rin: Vector of input variables – typically in ≪ N

y ∈ Rq: Vector of output variables – typically q ≪ N

µ ∈ D ⊂ Rp: Vector of parameters – typically p ≪ N
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Parameterized Systems

Local Petrov-Galerkin Projection-Based Reduced-Order Models

Parametric linear (time-invariant) HDM

goal: Construct a corresponding parametric Projection-based
Reduced-Order Model (PROM) using a local rather than global
approach

dq

dt
(t;µ) = Ar (µ)q(t;µ) + Br (µ)u(t)

y(t;µ) = Cr (µ)q(t;µ) +Dr (µ)u(t)

based on local Reduced-Order Bases (ROBs)
(
V
(
µ(ℓ)

)
, W

(
µ(ℓ)

))
and the approximation

w(t;µ) ≈ V(µ)q(t;µ)

µ(ℓ) ∈ D; q ∈ Rk

all local ROBs have the same dimension k ≪ N

local PROM operators resulting from Petrov-Galerkin projection

Ar (µ) = (W(µ)TV(µ))−1W(µ)TA(µ)V(µ) ∈ Rk×k

Br (µ) = (W(µ)TV(µ))−1W(µ)TB(µ) ∈ Rk×p

Cr (µ) = C(µ)V(µ) ∈ Rq×k ; Dr (µ) = D(µ) ∈ Rq×p
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Parameterized Systems

Local Petrov-Galerkin Projection-Based Reduced-Order Models

Parametric nonlinear HDM

goal: Construct a corresponding parametric PROM using a local
rather than global approach

dq

dt
(t;µ) = fr (q(t), t;µ) + Br (µ)u(t)

y(t;µ) = Cr (µ)q(t;µ) +Dr (µ)u(t)

based on local ROBs
(
V
(
µ(ℓ)

)
, W

(
µ(ℓ)

))
and the approximation

w(t;µ) ≈ V(µ)q(t;µ)

µ(ℓ) ∈ D; q ∈ Rk

all local ROBs have the same dimension k ≪ N
local PROM resulting from Petrov-Galerkin projection

fr (q(t), t;µ) =
(
W (µ)T V (µ)

)−1

W(µ)T f(V(µ)q(t), t;µ) ∈ Rk
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Parameterized Systems

Case Study: Aeroelastic Analysis of a Fighter Aircraft Configuration (Circa 2008)

Parametric, linearized, aeroelastic identification of a F-16 Block 40
aircraft in clean wing configuration (e.g., for flutter analysis in the
time domain)

Linearized coupled fluid-structure system around an aeroelastic
equilibrium position

Hundreds of flight conditions µ = (M∞, α) for flutter clearance

Nfluid ≈ 2× 106, Nstructure ≈ 1.6× 105
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Parameterized Systems

Lack of Robustness of Local ROBs for Parameter Changes

Consider the following procedure

1 construct local ROBs
(
V
(
µ(1)

)
,W

(
µ(1)

))
at the parametric flight

condition µ(1)

2 avoid reconstructing new local ROBs every time the flight condition
is varied and thus use the local ROBs constructed at µ(1) to reduce
the HDM at µ(2)

3 build the following local PROM

dq

dt

(
t;µ(2)

)
= Ar

(
µ(2)

)
q
(
t;µ(2)

)
+ Br

(
µ(2)

)
u(t)

y
(
t;µ(2)

)
= Cr

(
µ(2)

)
q
(
t;µ(2)

)
+Dr

(
µ(2)

)
u(t)

w
(
t,µ(2)

)
≈ V

(
µ(1)

)
q
(
t;µ(2)

)
where

Ar

(
µ

(2)
)

=

(
W

(
µ

(1)
)T

V
(
µ

(1)
))−1

W
(
µ

(1)
)T

A
(
µ

(2)
)
V
(
µ

(1)
)

∈ Rk×k

Br

(
µ

(2)
)

=

(
W

(
µ

(1)
)T

V
(
µ

(1)
))−1

W
(
µ

(1)
)T

B
(
µ

(2)
)

∈ Rk×p

Cr

(
µ

(2)
)

= C
(
µ

(2)
)
V
(
µ

(1)
)

∈ Rq×k ; Dr

(
µ

(2)
)

= D
(
µ

(2)
)

∈ Rq×p
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Parameterized Systems

Lack of Robustness of Local ROBs for Parameter Changes

Queried flight conditions

µ(1) =
(
M

(1)
∞ , α(1)

)
= (0.71, αtrimmed(0.71))

µ(2) =
(
M

(2)
∞ , α(2)

)
= (0.8, αtrimmed(0.8))

HDM
(
µ(1)

)
PROM

(
µ(1)

)
HDM

(
µ(2)

)
PROM

(
µ(2)

)

⇒ the local ROBs lack robustness with respect to parameter changes
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Parameterized Systems

Direct Construction of Local ROBs

The lack of robustness of the local ROBs with respect to parameter
changes implies that they should be reconstructed every time the
parameters are varied

Alternative procedure: Given a queried but unsampled parameter
point µ⋆ ∈ D

1 construct the HDM operators A (µ⋆) (linear setting) or
f(w(t), t;µ⋆) (nonlinear setting), B (µ⋆), C (µ⋆), and D (µ⋆)

2 generate the local ROBs (V(µ⋆),W(µ⋆)) using a preferred approach

3 construct the local PROM operators Ar (µ
⋆) (linear setting) or

fr (q(t), t;µ
⋆) (nonlinear setting), Br (µ

⋆), Cr (µ
⋆), and Dr (µ

⋆)
using a preferred Petrov-Galerkin Projection-Based Model Order
Reduction (PMOR) method

4 exploit the constructed local Petrov-Galerkin PROM

Question: Is this procedure computationally efficient?
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Parameterized Systems

Direct Construction of Local ROBs

Construction and exploitation in t ∈ [0, 1] s of a local, linearized,
aeroelastic F-16 PROM

The direct generation of a pair of local ROBs accounts for 89% of
the total CPU time

The overall procedure takes 56 minutes, which renders this approach
non-amenable to real-time parametric applications
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Concept of a Database of Local ROBs

Interpolation of Local ROBs

Idea
pre-compute local ROBs at a number of sampled parameter points{
µ(ℓ) ∈ D

}Ns

ℓ=1
interpolate these ROBs to obtain a local ROB at a queried but

unsampled parameter µ⋆ /∈
{
µ(ℓ)

}Ns

ℓ=1

Question: How does one interpolate local ROBs?

For simplicity, assume an orthogonal Galerkin projection
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Concept of a Database of Local ROBs

Direct Interpolation of Local ROBs

Tempting idea: Interpolate the matrices V
(
µ(ℓ)

)
∈ RN×k

entry-by-entry (linear interpolation on the manifold RNk)

Input

queried parameter µ⋆

pre-computed ROBs
{
V
(
µ(ℓ)

)}Ns

ℓ=1
multi-variate interpolator I in Rp

a(µ) = I
(
µ;

{
a
(
µ(ℓ)

)
,µ(ℓ)

}Ns

ℓ=1

)
Algorithm

1: for i = 1 : N do
2: for j = 1 : k do

3: compute vij(µ
⋆) = I

(
µ⋆;

{
vij

(
µ(ℓ)

)
,µ(ℓ)

}Ns

ℓ=1

)
4: end for
5: end for
6: form V(µ⋆) = [vij(µ

⋆)]
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Concept of a Database of Local ROBs

Direct Interpolation Does Not Work

Example
N = 3, k = 2, p = 1

for µ(1) = 0: V
(
µ(1)

)
= V(0) = (v1 v2)

for µ(2) = 1: V
(
µ(2)

)
= V(1) = (−v1 v2)

queried but unsampled parameter µ = 0.5
linear interpolation

Interpolatory result
V(0.5) = 0.5 (V(0) + V(1)) = (0.5(v1 − v1) 0.5(v2 + v2)) = (0 v2)

What went wrong?
a relevant constraint was neither identified nor preserved
the wrong entity was interpolated
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Concept of a Database of Local ROBs

Subspace Interpolation

Reduced-order equation
linear (time-invariant) system

dq

dt
(t;µ) = V(µ)TA(µ)V(µ)q(t;µ) + V(µ)TB(µ)u(t)

nonlinear system

dq

dt
(t;µ) = V(µ)T f(w̃(t), t;µ)

Equivalent high-dimensional equations for w̃(t;µ) = V(µ)q(t;µ)

dw̃

dt
(t;µ) = ΠV(µ),V(µ)A(µ)w̃(t;µ) +ΠV(µ),V(µ)B(µ)u(t) (linear)

dw̃

dt
(t;µ) = ΠV(µ),V(µ)f(w̃(t), t;µ)+ΠV(µ),V(µ)B(µ)u(t) (nonlinear)

In both cases, the PROM solution is independent of the choice of
ROB associated with the projection subspace

=⇒ the correct entity to interpolate is S(µ) = range(V(µ))
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Concept of a Database of Local ROBs

Interpolation of Local ROBs on the Grassmann Manifold

A subspace S is typically represented by a ROB

The appropriate choice of a ROB is not unique

S = range(V) = range(VQ), ∀Q ∈ GL(k)

A subspace is a linear special case of a manifold; manifolds locally
resemble vector spaces, with tangent spaces that are linear subspaces

Manifolds of interest

G(k,N) (Grassmann manifold): Set of subspaces in RN of dimension
k
ST (k,N) (orthogonal Stiefel manifold): Set of orthogonal ROB
matrices in RN×k

GL(k) (general linear group): Set of nonsingular square matrices of
size k
O(k): Set of orthogonal square matrices of size k

Properties

O(k) ⊂ GL(k)
ST (N,N) = O(N)
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AA216/CME345: PMOR - Local ROBs and Local PROMs

Concept of a Database of Local ROBs

Interpolation of Local ROBs on the Grassmann Manifold

Case of PMOR with orthogonal ROBs
V(µ) ∈ ST (k,N)
range(V(µ)) ∈ G(k,N)

Equivalence class

S(µ) = range(V(µ)) = range(V(µ)Q), ∀Q ∈ O(k)
an element of the Grassmann manifold defines an entire class of
equivalence on the Stiefel manifold
this class of equivalence is defined by the range operation

∀V1,V2 ∈ ST (k,N), V1 ∼ V2 ⇔ range(V1) = range(V2)

⇔ ∃Q ∈ O(k) s.t V1 = V2Q

therefore, the Grassmann manifold is a quotient manifold denoted as

G(k,N) = ST (k,N)/O(k)

Hence, one should interpolate subspaces, but has access in practice
to (orthogonal) ROBs

Solution: Perform interpolation on the Grasmann manifold using
entities belonging to the (orthogonal) Stiefel manifold
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AA216/CME345: PMOR - Local ROBs and Local PROMs

Concept of a Database of Local ROBs

Matrix Manifolds

Quotient matrix manifold
the Grassmann manifold

Embedded matrix manifolds1

the sphere

S(N) =
{
w ∈ RN s.t. ∥w∥2 = 1

}
⊂ RN

the manifold of orthogonal matrices

O(N) =
{
M ∈ RN×N s.t. MTM = IN

}
⊂ RN×N

the general linear group

GL(N) =
{
M ∈ RN×N s.t. det (M) ̸= 0

}
⊂ RN×N

the manifold of symmetric positive definite matrices

SPD(N) =
{
M ∈ RN×N s.t. M = MT& wTMw > 0 ∀w ̸= 0

}
⊂ RN×N

the orthogonal Stiefel manifold

ST (k,N) =
{
M ∈ RN×k s.t. MTM = Ik

}
⊂ RN×k

1In differential geometry, a manifold is said to be embedded if it can be placed in a
higher-dimensional space such that the topology and smooth structure of the manifold
are preserved within that space
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AA216/CME345: PMOR - Local ROBs and Local PROMs

Concept of a Database of Local ROBs

Interpolation on Matrix Manifolds

Example: The circle (sphere S(N) for N = 2)

Standard interpolation fails to preserve a nonlinear manifold
(essentially because standard interpolation applies only in vector
spaces)

Idea: perform interpolation in a linear space ⇒ on a tangent space
of the manifold
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AA216/CME345: PMOR - Local ROBs and Local PROMs

Concept of a Database of Local ROBs

Interpolation on the Tangent Space of a Matrix Manifold

Input

pre-computed matrices
{
A
(
µ(ℓ)

)
∈ RN×M

}Ns

ℓ=1
map mA from the manifold M to the tangent space of M at the
point A
multi-variate interpolator I in Rp

a(µ) = I
(
µ;

{
a
(
µ(ℓ)

)
,µ(ℓ)

}Ns

ℓ=1

)
inverse map m−1

A from the tangent space of M at the point A to the
manifold M

Requirement: The interpolation operator I must preserve the
tangent space ⇒ linear operator – for example,

a(µ⋆) = I
(
µ⋆;

{
a
(
µ(ℓ)

)
,µ(ℓ)

}Ns

ℓ=1

)
=

Ns∑
ℓ=1

θℓ(µ
⋆)a

(
µ(ℓ)

)
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AA216/CME345: PMOR - Local ROBs and Local PROMs

Concept of a Database of Local ROBs

Interpolation on the Tangent Space of a Matrix Manifold

Algorithm

1: for ℓ = 1 : Ns do
2: compute Γ

(
µ(ℓ)

)
= mA

(
A
(
µ(ℓ)

))
3: end for
4: for i = 1 : N do
5: for j = 1 : M do

6: compute Γij(µ
⋆) = I

(
µ⋆;

{
Γij

(
µ(ℓ)

)
,µ(ℓ)

}Ns

ℓ=1

)
7: end for
8: end for
9: form Γ(µ⋆) = [Γij(µ

⋆)] and compute A(µ⋆) = m−1
A (Γ(µ⋆))
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AA216/CME345: PMOR - Local ROBs and Local PROMs

Concept of a Database of Local ROBs

Differential Geometry

How does one find mA and its inverse m−1
A ?

Idea: Use concepts from differential geometry
Geodesic

is a generalization of a “straight line” to “curved spaces” (manifolds)
is uniquely defined given a point x on the manifold and a tangent
vector ξ at this point

γ(t; x , ξ) : [0, 1] → M

γ(0; x , ξ) = x , γ̇(0, x , ξ) = ξ

Exponential map
Expx : TxM → M ξ 7−→ γ(1; x , ξ)

Logarithm map at base point x (defined in neighborhood Ux of x)

Logx : Ux ⊂ M → TxM y 7−→ Exp−1
x (y) = Logx (y) = γ̇(0, x , ξ) = ξ
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AA216/CME345: PMOR - Local ROBs and Local PROMs

Concept of a Database of Local ROBs

Interpolation on a Tangent Space of a Matrix Manifold

Application to the interpolation of two points on a circle
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AA216/CME345: PMOR - Local ROBs and Local PROMs

Concept of a Database of Local ROBs

Interpolation on a Tangent Space of the Grassmann Manifold

Logarithm map

1 compute a thin SVD

(I− V0V
T
0 )Vi (V

T
0 Vi )

−1 = UΣZT

2 compute
Γ = U tan−1(Σ)ZT ∈ RN×k

3 Γ ↔ LogS0
(Si ) ∈ TS0G(k,N)

Exponential map of ξ̃ ∈ TS0G(k,N) ↔ Γ̃

1 compute a thin SVD
Γ̃ = UΣZT

2 compute
V = (V0Z cosΣ+U sinΣ) ∈ ST (k,N)

3 range(V) = ExpS0
(ξ̃) ∈ G(k,N)

Note: The trigonometric operators apply only to the diagonal entries
of the relevant matrices
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AA216/CME345: PMOR - Local ROBs and Local PROMs

Concept of a Database of Local ROBs

Interpolation on a Tangent Space of the Grassmann Manifold

Interpolation on the tangent space of G(k ,N)
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AA216/CME345: PMOR - Local ROBs and Local PROMs

Concept of a Database of Local ROBs

Case Study: Aeroelastic Analysis of a Fighter Aircraft Configuration (Circa 2008)

Parametric, linearized, aeroelastic identification of a F-16 Block 40
aircraft in clean wing configuration (e.g., for flutter analysis in the
time domain)
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AA216/CME345: PMOR - Local ROBs and Local PROMs

Concept of a Database of Local ROBs

Case Study: Aeroelastic Analysis of a Fighter Aircraft Configuration (Circa 2008)

Parametric, linearized, aeroelastic identification of a F/A-18 aircraft
in clean wing configuration (e.g., for flutter analysis in the time
domain): Effect of the choice of the tangent plane
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AA216/CME345: PMOR - Local ROBs and Local PROMs

Concept of a Database of Local ROBs

Case Study: Aeroelastic Analysis of a Commercial Aircraft Configuration (2011)

Prediction of the linearized, aeroelastic behavior of the wing of a
commercial aircraft (Airbus)
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AA216/CME345: PMOR - Local ROBs and Local PROMs

Concept of a Database of Local ROBs

Case Study: Aeroelastic Analysis of a Fighter Aircraft Configuration (Circa 2008)

Parametric, linearized, aeroelastic identification of a F-16 Block 40
aircraft in clean wing configuration (e.g., for flutter analysis in the
time domain): Construction and exploitation in t ∈ [0, 1] s of a
linearized, aeroelastic PROM

Overall CPU time is decreased from 55 minutes to 8 minutes

New dominant cost: Construction of the HDM operators
(A(µ⋆),B(µ⋆),C(µ⋆),D(µ⋆))

This suggests the following alternative approach: Interpolate the
reduced-order operators

(
Ar

(
µ(ℓ)

)
,Br

(
µ(ℓ)

)
,Cr

(
µ(ℓ)

)
,Dr

(
µ(ℓ)

))
since

they are linear in this application ⇒ concept of a database of local
linear PROMs
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time domain): Construction and exploitation in t ∈ [0, 1] s of a
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Interpolation of Linear PROMs on Embedded Manifolds

Applicable only to linear systems characterized by operators such as
(Ar (µ),Br (µ),Cr (µ),Dr (µ)) that are pre-computed and stored in a
database of local PROMs

for each individual set of local operators – e.g.,
{
Ar

(
µℓ

)}Ns

ℓ=1
–

identify the appropriate matrix manifold M and interpolate the
aforementioned set of local operators on M
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Case Study: Structural Analysis of a Simple Mass-Spring System

Simple example: Mass-spring system with two degrees of freedom

M
d2w

dt2
(t) +K(µ)w(t) = Bu(t), µ = k1 − 0.1

w(t) =

[
x1(t)
x2(t)

]
the values of m1, m2, k̃ , and k2 are fixed to some constants

the value of k1 is set to k1 = 0.1+µ, and µ is treated as a parameter
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Case Study: Structural Analysis of a Simple Mass-Spring System

PMOR by modal truncation: V(µ) is the matrix of the two
eigenmodes of the structural system

K(µ)vj(µ) = λj(µ)Mvj(µ)

Matrix of eigenvalues: Kr (µ) = V(µ)TK(µ)V(µ) = Λ(µ)

Variations of the eigenvalues and eigenmodes with the parameter µ
(first eigenmode is shown in blue color, second is shown in red color)
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Interpolation on a Matrix Manifold

Note that Λ(µ) belongs to the manifold of (diagonal) symmetric
positive definite matrices, SPD(2)

Perform interpolation of Λ(µ) on this manifold using (Λ(0),Λ(2.9))

Result is shown in magenta color

Observe that the result is wrong, even for such a simple system
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Mode Veering and Mode Crossing

The issue is the lack of consistency between the coordinates of the
reduced-order matrices, triggered in this case by mode veering

Mode crossing would trigger a similar issue (the eigenfrequencies are
ordered increasingly in Λ(µ))
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Consistent Interpolation on Matrix Manifolds

Two-step solution

step A: Pre-process the reduced-order matrices

enforce consistency by solving the following Ns orthogonal
Procrustes problems

min
Qℓ/Q

T
ℓ
Qℓ=Ik

∥∥∥V (
µ(ℓ)

)
Qℓ − V

(
µ(ℓ0)

)∥∥∥
F
, ∀ ℓ = 1, · · · ,Ns

compute analytical solutions of above problems as follows

1 compute Pℓ,ℓ0 = V
(
µ(ℓ)

)T
V
(
µ(ℓ0)

)
2 compute the SVD Pℓ,ℓ0 = Uℓ,ℓ0Σℓ,ℓ0Z

T
l,l0

3 compute Qℓ = Uℓ,ℓ0Z
T
ℓ,ℓ0

the associated computational cost scales with k

=⇒ step A can be performed either online or offline
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Consistent Interpolation on Matrix Manifolds

Two-step solution (continue)

step B: Note that (assuming a Galerkin PROM and orthogonal local
ROBs)

(
V

(
µ
(ℓ)

)
Qℓ

)T
A

(
µ
(ℓ)

)(
V

(
µ
(ℓ)

)
Qℓ

)
= QT

ℓ V

(
µ
(ℓ)

)T
A

(
µ
(ℓ)

)
V

(
µ
(ℓ)

)
Qℓ = QT

ℓ Ar

(
µ
(ℓ)

)
Qℓ(

V

(
µ
(ℓ)

)
Qℓ

)T
B

(
µ
(ℓ)

)
= QT

ℓ V

(
µ
(ℓ)

)T
B

(
µ
(ℓ)

)
= QT

ℓ Br

(
µ
(ℓ)

)
C

(
µ
(ℓ)

)(
V

(
µ
(ℓ)

)
Qℓ

)
=

(
C

(
µ
(ℓ)

)
V

(
µ
(ℓ)

))
Qℓ = CrQℓ

and therefore

first, transform directly each PROM(
Ar

(
µ(ℓ)

)
,Br

(
µ(ℓ)

)
,Cr

(
µ(ℓ)

)
,Dr

(
µ(ℓ)

))
to(

QT
ℓ Ar

(
µ(ℓ)

)
Qℓ,Q

T
ℓ Br

(
µ(ℓ)

)
,Cr

(
µ(ℓ)

)
Qℓ,Dr

(
µ(ℓ)

))
then, identify for each element of the transformed tuple an
appropriate matrix manifold and perform the interpolation on this
matrix manifold
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Consistent Interpolation on Matrix Manifolds

Two-step result is shown in cyan color

Observe that the result is very accurate
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Case Study: Structural Analysis of a Wing-Tank Configuration (Circa 2008)

More challenging example: Wing with tank and sloshing effects

The hydro-elastic effects affect the eigenfrequencies and eigenmodes
of the structure

The parameter µ defines the fuel fill level in the tank 0 ≤ µ ≤ 100%
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Case Study: Structural Analysis of a Wing-Tank Configuration (Circa 2008)
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Case Study: Structural Analysis of a Wing-Tank Configuration (Circa 2008)
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Link with Modal Assurance Criterion

Modal Assurance Criterion (MAC) between two modes ϕ and ψ

MAC(ϕ,ψ) =
|ϕTψ|2

(ϕTϕ)(ψTψ)

What is the MAC between the vectors in the ROBs V
(
µ(ℓ)

)
and

V
(
µ(ℓ0)

)
before and after Step A?
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When ϕ and ψ are normalized, MAC(ϕ,ψ) = |ϕTψ|2

Pℓ,ℓ0 = V
(
µ(ℓ)

)T
V
(
µ(ℓ0)

)
is the matrix of square roots of the

MACs between the modes contained in V
(
µ(ℓ)

)
and those

contained in V
(
µ(ℓ0)

)
This is the Modal Assurance Criterion Square Root (MACSR)
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Case Study: Aeroelastic Analysis of a Wing-Tank Configuration (Circa 2008)

Aeroelastic study of a wing-tank system
2 parameters, namely, the fuel fill level and the free-stream Mach
number M∞
Database approach
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Case Study: Aeroelastic Analysis of a Wing-Tank Configuration (Circa 2008)
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Case Study: Aeroelastic Analysis of a Wing-Tank Configuration (Circa 2008)

Effect of Step A
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Skipping Step A leads to inaccurate interpolation results (left figure)

Performing Step A ensures a consistent interpolation (right figure)
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Case Study: Aeroelastic Analysis of a Wing-Tank Configuration (Circa 2008)

CPU performance

Approach Offline phase Online phase
CPU time (# procs) CPU time (# procs)

HDM - (-) 9 152 000 s ≈ 106 days (32)
Response surface 28 000 s ≈ 7 h (32) 2 s (1)

PROM interpolation 28 000 s ≈ 7 h (32) 30 s (1)

Online speedup factor = 305 000

Offline + Online speedup factor = 327
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Mobile Computing

Mobile computing using a database of PROMs
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