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|—Nested Approximations
L Nonlinear High-Dimensional Model (HDM)

m HDM of interest

Mitu) = Fwle )u(). 6 p)
y(tip) = g(w(t;p)u(t), t;p)

m w € R": Vector of state variables

m u € R™: Vector of input variables — typically, in < N

m y € R Vector of output variables — typically, g < N

m u € RP: Vector of parameter variables — typically, p < N

m f: Nonlinear function

m Usually, there is no closed form solution for w(t; p)
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|—Nested Approximations
LModel Order Reduction by Petrov-Galerkin Projection

m Approximation of the state using a right reduced-order basis (ROB)
w(t; p) =~ w(t; p) = Va(t; p)
m Resulting nonlinear ODE

VIt ) = 6(Va(E 1), u(t). £ 1)+t 1)

m Enforcement of the orthogonality of the residual r to a left ROB W

WV I 1) = WTH(Va(t; ), u(t), £ 1)

m If W7V is nonsingular, the above equation can be re-written as

99 ¢ 1) = (W) WTH(Va(: 1) u(2), 1)
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|—Nested Approximations
LComputational Bottleneck

m Petrov-Galerkin PROM

dq

7 () = (WIV) T WTE(Va(t; ), u(t), £ ) (%)

kxN Nx1
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|—Nested Approximations
LComputational Bottleneck

m Petrov-Galerkin PROM

99 ¢ ) = (WTV) W F(Va(t: ), u(2), £ 1) ()

kxN Nx1

m k equations with k unknowns
m For a given reduced state vector q(t; ) and a given vector-valued
parameter p € D C RP, the evaluation of
fi(a(t; p),u(t), t, 1) = (WTV)'WTF(Vq(t; p), u(t), t; p) at a
given time t can be performed in 3 steps as follows
compute W(t; u) = Vq(t; p)
H evaluate f(W(t; p), u(t), t; 1)
left-multiply by (WTV)'W' = (WTV)*WTf(W(t; n), u(t), t; )

9/31



PMOR - Hyperreduction
|—Nested Approximations
LComputational Bottleneck

m Petrov-Galerkin PROM

99 ¢ ) = (WTV) W F(Va(t: ), u(2), £ 1) ()

kxN Nx1

m k equations with k unknowns
m For a given reduced state vector q(t; ) and a given vector-valued
parameter p € D C RP, the evaluation of
fi(a(t; p),u(t), t, 1) = (WTV)'WTF(Vq(t; p), u(t), t; p) at a
given time t can be performed in 3 steps as follows
compute W(t; u) = Vq(t; 1)
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m The computational cost associated with the three steps described
above scales linearly with the dimension N of the HDM
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L Nested Approximations

LComputational Bottleneck

Petrov-Galerkin PROM

99 ¢ ) = (WTV) W F(Va(t: ), u(2), £ 1) ()

kxN Nx1

k equations with k unknowns
For a given reduced state vector q(t; i) and a given vector-valued
parameter p € D C RP, the evaluation of
fi(a(t: p),u(t), t,p) = (WTV)'WTF(Vq(t; ), u(t), t; p) at a
given time t can be performed in 3 steps as follows

compute W(t; u) = Vq(t; 1)

H evaluate f(W(t; p), u(t), t; 1)

left-multiply by (WTV)7*W ' = (WTV)*WTf(W(t; ), u(t), t; )
The computational cost associated with the three steps described
above scales linearly with the dimension N of the HDM
Hence, for nonlinear problems — and for parametric linear problems —
dimensional reduction as described so far does not necessarily lead
to significant CPU time reduction
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L Nested Approximations

LFunction Approximations

m In this case, an additional level of approximation is required to
ensure that the online cost associated with solving the reduced
nonlinear equations does not scale with the dimension N of the HDM

m This leads to nested approximations

m state approximation
m nonlinear function approximation (approximate-then-project) or
projection approximation (project-then-approximate)

m There are two main classes of nonlinear function approximations

m linearization approaches (TPWL, ManiMOR,...)
m hyperreduction approaches (DEIM, GNAT, ECSW, ...)
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I—Hyperreduction Methods
LBackground: The Gappy POD Method (Approximate-Then-Project)

m First applied to face recognition (Emerson and Sirovich,
“Karhunen-Loeve Procedure for Gappy Data”, 1996)
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I—Hyperreduction Methods
LBackground: The Gappy POD Method (Approximate-Then-Project)

m First applied to face recognition (Emerson and Sirovich,
“Karhunen-Loeve Procedure for Gappy Data”, 1996)

m Other applications
m flow sensing and estimation
m flow (approximate) reconstruction
m nonlinear projection-based model order reduction (PMOR)
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I—Hyperreduction Methods

|—Background: The Gappy POD Method (Approximate-Then-Project)
m Face recognition

Procedure

Fig. 1. Reconstruction of a face, not in the original ensemble,
from a 10% mask. T face,

, was determined
d only the white pixel:
original face is shown in ¢, and a projection (with all
the pixels) of the face onto 50 empirical eigenfunctions is shown
ind
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|—Background: The Gappy POD Method (Approximate-Then-Project)

m Face recognition

Procedure

build a database of Nsnap faces
(snapshots)

construct a proper orthogonal
decomposition (POD) basis V¢
for the database

for a new face f, record a small
number k; of pixels f;, - - ,f,-kl_
using the POD basis V¢,
approximately reconstruct the
new face f (in the least-squares
sense)

Fig. 1. Reconstruction of a face, not in the original ensemble,
from a 10% mask. The reconstructed face, b, was determins

with i ud only the white pixels sh

. and a projection (with all
the piels) of the face onto 50 empirical cigenfunctions is shown
in d
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I—Hyperreduction Methods
LNonlinear Function Approximation by Gappy POD

m The gappy approach can also be used to approximate the nonlinear
function f in the reduced equations

%(t) — (WTV) ' WT(Vq(t), )

where the evaluation of all entries of f(-,t) scales with N and thus
can be computationally intensive (for simplicity, the input function
u(t) is not considered here and the dependence on a parameter p is
not emphasized)

m Gappy approach

m evaluate only a small subset of the entries of f(-, t)

m pre-compute a ROB Vf and use it to approximately reconstruct all
other entries of f(-, t) by interpolation or a least-squares strategy

m = approximate-then-project approach
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I—Hyperreduction Methods
LNonlinear Function Approximation by Gappy POD

m A complete PMOR method based on the Gappy approach for
hyperreduction should then provide algorithms for

m selecting the evaluation entries Z = {i1,- - , i}
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I—Hyperreduction Methods
LNonlinear Function Approximation by Gappy POD

m A complete PMOR method based on the Gappy approach for
hyperreduction should then provide algorithms for

m selecting the evaluation entries Z = {i1,- - , i}
m pre-computing a ROB V¢ for the nonlinear function f

m approximately reconstructing the nonlinear function at all its other
entries = f(-, t)
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I—Hyperreduction Methods
L Construction of a POD Basis for f

m Construction of a POD basis V¢ of dimension k¢

collect snapshots for the nonlinear function f from one or several
transient simulations

F=[F(w(t).t) - F(W(tm), tn)] € BV
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I—Hyperreduction Methods
L Construction of a POD Basis for f

m Construction of a POD basis V¢ of dimension k¢

collect snapshots for the nonlinear function f from one or several
transient simulations

F=[f(w(tr),t1) --- F(W(tm),tm)] € RV*™
compute a thin SVD
F=UrZeZ{

construct a ROB of dimension ks < ms as the set of first ki vectors
in Uf (truncation)
Vi=ugr -+ gl
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I—Hyperreduction Methods

LApproximate Reconstruction of a Nonlinear Function

m Assume for now that k; indices (entries of f) have been chosen (see
later for how to choose these indices)

Z={i, i}
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LApproximate Reconstruction of a Nonlinear Function

m Assume for now that k; indices (entries of f) have been chosen (see
later for how to choose these indices)

T={i,-,ig}
m Consider the N x k; “mask” matrix
P: |:ei1 “e. eiki:|

m At each time t, given a value of the state approximation
w(t) = Vq(t), evaluate only those entries of f corresponding to the
above indices

= PTf(W(t),t)
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m Assume for now that k; indices (entries of f) have been chosen (see
later for how to choose these indices)

T={i,-,ig}
m Consider the N x k; “mask” matrix
P: |:ei1 “e. eiki:|

m At each time t, given a value of the state approximation
w(t) = Vq(t), evaluate only those entries of f corresponding to the
above indices

fi(W(t), 1)
z = PTR(w(2), 1)
f, (#(1), )

m This is computationally economical if k; < N
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I—Hyperreduction Methods
LApproximate Reconstruction of a Nonlinear Function

m Assume for now that k; indices (entries of f) have been chosen (see
later for how to choose these indices)

T={i,-,ig}
m Consider the N x k; “mask” matrix
P: |:ei1 “e. eiki:|

m At each time t, given a value of the state approximation
w(t) = Vq(t), evaluate only those entries of f corresponding to the
above indices

fiy (W(t), t)

; = PTf(W(t), t)
fi, (W(t), t)

m This is computationally economical if k; < N

m Usually, only a subset of the entries of W(t) are required to

construct the above vector (case of a sparse Jacobian)
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I—Hyperreduction Methods
L Discrete Empirical Interpolation Method (DEIM)

m Case where k; = k¢ = interpolation
® idea: (W, t) = f;(W,t), YWeRY, Vj=1,-- Kk
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m Case where k; = k¢ = interpolation

idea: f,(W,t) = f,(W,t), YWeR", Vj=1,- Kk

this means that PTf(W(t), t) = PTf(w(t), t)

recalling that f(-, t) belongs to the range of V¢ — that is,
f(Vq(t), t) = Vf.(q(t), t), where f.(q(t),t) € R
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L Discrete Empirical Interpolation Method (DEIM)

m Case where k; = k¢ = interpolation

idea: f,(W,t) = f,(W,t), YWeR", Vj=1,- Kk

this means that PTf(W(t), t) = PTf(w(t), t)

recalling that f(-, t) belongs to the range of V¢ — that is,
f(Vq(t), t) = Vf.(q(t), t), where f.(q(t),t) € R

it follows that PTVif, (q(t), t) = PTf(Vq(t), t)

assuming that the square matrix P Vs is nonsingular

= f(q(t),t) = (PTVf)_1 PTf(Vq(t), t)

hence, the high-dimensional nonlinear function f(-, t) is interpolated
as follows

f(,t) = Vi (Pva) TUPTEC ) = Ny pf(- )

———
kg X kg
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I—Hyperreduction Methods
L Discrete Empirical Interpolation Method (DEIM)

m Case where k; = kg = interpolation (continue)

m note that the complexity of the projection
1 . _1 1
(WTV> WTE(, t) = (WTV) YRAVA (PTVf) PTE(-,t)
—,_J
pre— computable, € Rk X kg

is independent of N!
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I—Hyperreduction Methods
L Discrete Empirical Interpolation Method (DEIM)

m Case where k; = kg = interpolation (continue)

m note that the complexity of the projection
1 . _1 1
(WTV> WTE(, t) = (WTV) YRAVA (PTVf) PTE(-,t)
—,_J
pre— computable, € Rk X kg

is independent of N!

m interpretation: the Discrete Empirical Interpolation Method (DEIM)
is an oblique projection of the high-dimensional nonlinear
vector-valued function
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I—Hyperreduction Methods

LOblique Projection of the High-Dimensional Nonlinear Vector

f(-,t) = Ve(PTVe) 'PTH(-, t) = Ny, pf(-, t)

m Recall that My w = V(WTV)"IWT is the oblique projector onto V,
orthogonally to W

S5+ = range(W)

Sy = range(V)
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I—Hyperreduction Methods
LLeast-Squares Reconstruction
m Case where k; > kf = least-squares reconstruction
® idea: (W, t) ~ f,(W,t), VWeR", Vj=1,--- N
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I—Hyperreduction Methods

LLeast-Squares Reconstruction
m Case where k; > kf = least-squares reconstruction
® idea: (W, t) ~ f,(W,t), VWeR", Vj=1,--- N
m this leads to the minimization problem

‘PTnyr — PTH(Va(t), t)H

f.(q(t), t) = argmin

yr ERKF 2
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LLeast-Squares Reconstruction

m Case where k; > kf = least-squares reconstruction

idea: fi(W,t) ~ f,(W,t), YWERN, Vj=1,--- N
this leads to the minimization problem

‘PTnyr — PTH(Va(t), t)H

fr(q(t), t) = arg min
yrERKF

2
note that M = P7V; € RY*¥ is a skinny matrix
its singular value decomposition can be written as

M =uUxz’

it follows that the left inverse of M, Mt — that is, the generalized
inverse of M that satisfies MMTM = M — is

M' =zsfu’
P (1 1 .
where X" = diag | —,--+,—,0,---,0 ] if
o1 or
X =diag(o1, - ,0,,0,--+,0), where 01 > -0, >0
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east- quares econstruction
L Least-s R i
m Case where k; > kf = least-squares reconstruction
® idea: f(W,t) ~ fi(W,t), YWeRY, Vj=1,--- N
m this leads to the minimization problem

fr(q(t), t) = arg min ‘PTnyr —PTf(Vq(t), t)H

yr ERKF

2

m note that M = PV € R ¥ is a skinny matrix
m its singular value decomposition can be written as
M =uUxz’

m it follows that the left inverse of M, M — that is, the generalized
inverse of M that satisfies MMTM = M — is

M' =zsfu’
P (1 1 .
where X" = diag | —,--+,—,0,---,0 ] if
o1 or
X =diag(o1, - ,0,,0,--+,0), where 01 > -0, >0

m therefore
f(a(t), t) = V¢ (Pva)T PTF(Va(t), t) = Vs (zzTuT) PTF(Va(t), t)
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LGreedy Function Sampling

m The selection of the indices in Z takes place after the matrix
Ve=[vi1 - - Vg has been computed using, for example, POD
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LGreedy Function Sampling

m The selection of the indices in Z takes place after the matrix
Ve=[vi1 - - Vg has been computed using, for example, POD

m Greedy algorithm

o sy 1] = max{|ve |}

[y

2: Vg = [Vf71], P= [e,-l]

3: for | =2: ks do

4:  solve PTV¢c = Pva_’/ for c
5: r=vg, — Vsc

6: s, 1] = max{|r|}

7 Vi = [Vf7Vf}/], P= [P, e,',]
8: end for
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I—Hyperreduction Methods
LAnalysis of the Hyperreduction Method DEIM

Strengths Weaknesses

m the cost of the online phase
does not scale with the size
N of the HDM
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I—Hyperreduction Methods

LAnalysis of the Hyperreduction Method DEIM

Strengths

m the cost of the online phase
does not scale with the size
N of the HDM

m the hyperreduced function is
usually robust with respect to
deviations from the original
training trajectory

Weaknesses

m the online phase is
software-intrusive

B many parameters to adjust
(ROB sizes, mask size, ...)

m typically destabilizes the
PROM of a second-order
dynamical system
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I—Hyperreduction Methods

LEnergy-Conserving Sampling and Weighting Method (Project-Then-Approximate)

m Energy-Conserving Sampling and Weighting (ECSW): The first
hyperreduction method of the project-then-approximate type

m developed first for nonlinear, finite element (FE)-based, solid
mechanics and structural dynamics Galerkin PROMs

m for such PROMs, the Gappy POD, Empirical Interpolation Method
(EIM), Discrete EIM (DEIM), and the unassembled DEIM (UDEIM)
are in general numerically unstable

m reason: in the above hyperreduction methods, the interpolation

procedure and the construction of the basis V are driven by accuracy
considerations only
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m Energy-Conserving Sampling and Weighting (ECSW): The first
hyperreduction method of the project-then-approximate type

m developed first for nonlinear, finite element (FE)-based, solid
mechanics and structural dynamics Galerkin PROMs

m for such PROMs, the Gappy POD, Empirical Interpolation Method
(EIM), Discrete EIM (DEIM), and the unassembled DEIM (UDEIM)
are in general numerically unstable

m reason: in the above hyperreduction methods, the interpolation
procedure and the construction of the basis V are driven by accuracy
considerations only

m for Galerkin PROMs constructed for second-order dynamical systems,
it preserves the Lagrangian structure associated with Hamilton's
principle
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m Energy-Conserving Sampling and Weighting (ECSW): The first
hyperreduction method of the project-then-approximate type

m developed first for nonlinear, finite element (FE)-based, solid
mechanics and structural dynamics Galerkin PROMs

m for such PROMs, the Gappy POD, Empirical Interpolation Method
(EIM), Discrete EIM (DEIM), and the unassembled DEIM (UDEIM)
are in general numerically unstable

m reason: in the above hyperreduction methods, the interpolation
procedure and the construction of the basis V are driven by accuracy
considerations only

m for Galerkin PROMs constructed for second-order dynamical systems,
it preserves the Lagrangian structure associated with Hamilton's
principle

m developed more recently for Petrov-Galerkin PROMs constructed for
nonlinear, finite-volume-based, computational fluid dynamics
applications
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L ECSW Method for Galerkin PROMs (FE context)

m Galerkin PROM = W =V € R"*k (and VTV = I,) = PROM (%)
simplifies to

99t 4) = YT F(Va(t ), u(t). 1)

kxN Nx1

(for Petrov-Galerkin PROMs, see S. Grimberg, C. Farhat, R. Tezaur
and C. Bou-Mosleh, 2021)
m explicit time-integration: V' f(Vq(t; ), u(t), t; u) € R* = O(kN)
complexity
m implicit time-integration: the above and
VTK(Vq(t; p), u(t), t; u)V € R*** where

K, — of(Vq(t; p),u(t), t; 1)
t (Va(t; 1))

denotes the tangent operator = O(kN?)

24/31



PMOR - Hyperreduction
I—Hyperreduction Methods
L ECSW Method for Galerkin PROMs (FE context)

m Hyperreduction of the reduced “force” vector

VTE(Va(t;p),u(t), ;) = D (LV)T LF(Va(t; p), u(t), t; )
ecé
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L ECSW Method for Galerkin PROMs (FE context)

m Hyperreduction of the reduced “force” vector

VTE(Va(t;p),u(t), ;) = D (LV)T LF(Va(t; p), u(t), t; )
ecé

Ay (V) Lef(Va(t p),u(t), £ p)
ecECE

where N;(: €]) < Ne(= |€])

and £° > 0 to preserve the strain energy property (also beneficial in
general to the solution of the associated optimization problem) 2531
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L ECSW Method for Galerkin PROMs (FE context)

m Hyperreduction of the reduced tangent (stiffness) matrix

VTE(Va(t; ), u( ~ Y (LEV) T LR(Va(t; ), u(t), £ )
ecECE
and
k. - If(Va(tip) u(t), t; p)
‘ o(Va(t; p))
=
VK. (Va(t; ), u(t), t; p)V ~ Z € (L°V) T K*(Va(t; p), u(t), t; p)(L°V)

m The reduced mesh & and the corresponding set of weights {£¢} —
or equivalently, the vector of weights & € RVe — are determined by
training the hyperreduction approximation on force functions (or
tangent stiffness matrices, see R. Tezaur, F. As'ad and C. Farhat,
2022) associated with sampled parameter points and thus with
performed simulations
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Q

VTF(Va(t; ), u(t), t; p) > &LV LR(Va(t ), u(t), £ p)

ecECE

VIK(Va(t; p),u(t), )V~ Y €5 (L°V)T K (Va(t; ), u(t), t; ) (L°V)
ecfce

m The ECSW hyperreduction approximation is a generalized (in a
hyper space) quadrature rule approximation where

m the sampled elements defining & are the quadrature points

m the coefficients {€° > 0} are the quadrature weights
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omputation of the Reduce esh and Associate eights
Lc i f the Reduced Mesh and A iated Weigh

m Using a lighter notation, where only the critical dependences are
highlighted, let

g(a) = (L°V)TL°f(Vq)) = (L°V) L°f(VV w;) € R
bi = Zgie(q/) € Rkv =1 - Nsnap
ecé
811 81N,
G = c R(kNSnap)XNe
gNsnap]- e gNsnapNe
and
b = (b - bn, )T € RKNenap

m Let now ® = {¢€ € RM : ||GE — b|| < €||b]2, & >0}

m Then, the optimal reduced mesh and associated weights are given by

P —argmin €]l and £ = {e € £/ > 0}
gco

optimal reduced mesh

optimal weights 28/31
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omputation of the Reduce esh and Associate eights
Lc i f the Reduced Mesh and A iated Weigh

P —argmin||€lly and E% = {e € £/ > 0}
£co

- : optimal reduced mesh
optimal weights

m Fastest alternative approach
m alternative optimization problem

€% = argmin ||G¢ — b|f3
geRNe
£>0

m solver: sparse non-negative least-squares (NNLS) solver, where the
iterative process is termined as soon as

G — bll2 < €[|b]2

m the above solution algorithm is amenable to parallelization
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|—Application: Nonlinear Structural Dynamic Response of a Generic V-Hull to Air Blast

m Nonlinear FE structural model of a generic V-hull
m J2 plasticity constitutive model
m shell and beam elements with finite rotations: |£| = 236,995
elements
m 233276 nodes and 1399056 dofs

m Air blast loading: 10 kg charge

m Simulation time-interval: [0, 1073] s

m POD-based PROM of dimension k = 100 <« N = 1399056

m Explicit analysis: (At)upm = 1078 s; (At)prom = 2.5 x 107° s
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I—Hyperreduction Methods

I—Application: Nonlinear Structural Dynamic Response of a Generic V-Hull to Air Blast

m ECSW with: e =2.5 x 1072 and Nsnap = k = 100 = delivers in 16

Qlinuteion 64 cores of a Unix cluster an optimal reduced mesh with
Ne = |€E] = 2000 = 0.8% of N, (= |E] = 236995) — Circa 2014

m For this application, ECSW and the reduced mesh it produces enable
the PROM to deliver a speedup factor of 28935, while achieving
96% relative accuracy — Circa 2014

m]
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