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Nested Approximations

Nonlinear High-Dimensional Model (HDM)

HDM of interest

dw

dt
(t;µ) = f (w(t;µ),u(t), t;µ)

y(t;µ) = g (w(t;µ),u(t), t;µ)

w ∈ RN : Vector of state variables

u ∈ Rin: Vector of input variables – typically, in ≪ N

y ∈ Rq: Vector of output variables – typically, q ≪ N

µ ∈ Rp: Vector of parameter variables – typically, p ≪ N

f : Nonlinear function

Usually, there is no closed form solution for w(t;µ)
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Nested Approximations

Model Order Reduction by Petrov-Galerkin Projection

Approximation of the state using a right reduced-order basis (ROB)

w(t;µ) ≈ w̃(t;µ) = Vq(t;µ)

Resulting nonlinear ODE

V
dq

dt
(t;µ) = f(Vq(t;µ),u(t), t;µ) + r(t;µ)

Enforcement of the orthogonality of the residual r to a left ROB W

WTV
dq

dt
(t;µ) = WT f(Vq(t;µ),u(t), t;µ)

If WTV is nonsingular, the above equation can be re-written as

dq

dt
(t;µ) = (WTV)−1WT f(Vq(t;µ),u(t), t;µ)

8 / 31



PMOR - Hyperreduction

Nested Approximations

Computational Bottleneck

Petrov-Galerkin PROM

dq

dt
(t;µ) = (WTV)−1WT︸ ︷︷ ︸

k×N

f(Vq(t;µ),u(t), t;µ)︸ ︷︷ ︸
N×1

(⋆)

k equations with k unknowns
For a given reduced state vector q(t;µ) and a given vector-valued
parameter µ ∈ D ⊂ Rp, the evaluation of
fk(q(t;µ),u(t), t,µ) = (WTV)−1WT f(Vq(t;µ),u(t), t;µ) at a
given time t can be performed in 3 steps as follows

1 compute w̃(t;µ) = Vq(t;µ)
2 evaluate f(w̃(t;µ), u(t), t;µ)
3 left-multiply by (WTV)−1WT ⇒ (WTV)−1WT f(w̃(t;µ), u(t), t;µ)

The computational cost associated with the three steps described
above scales linearly with the dimension N of the HDM
Hence, for nonlinear problems – and for parametric linear problems –
dimensional reduction as described so far does not necessarily lead
to significant CPU time reduction
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Nested Approximations

Function Approximations

In this case, an additional level of approximation is required to
ensure that the online cost associated with solving the reduced
nonlinear equations does not scale with the dimension N of the HDM

This leads to nested approximations

state approximation
nonlinear function approximation (approximate-then-project) or
projection approximation (project-then-approximate)

There are two main classes of nonlinear function approximations

linearization approaches (TPWL, ManiMOR,...)
hyperreduction approaches (DEIM, GNAT, ECSW, ...)
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Hyperreduction Methods

Background: The Gappy POD Method (Approximate-Then-Project)

First applied to face recognition (Emerson and Sirovich,
“Karhunen-Loeve Procedure for Gappy Data”, 1996)

Other applications

flow sensing and estimation

flow (approximate) reconstruction

nonlinear projection-based model order reduction (PMOR)

11 / 31



PMOR - Hyperreduction

Hyperreduction Methods

Background: The Gappy POD Method (Approximate-Then-Project)

First applied to face recognition (Emerson and Sirovich,
“Karhunen-Loeve Procedure for Gappy Data”, 1996)

Other applications

flow sensing and estimation

flow (approximate) reconstruction

nonlinear projection-based model order reduction (PMOR)

11 / 31



PMOR - Hyperreduction

Hyperreduction Methods

Background: The Gappy POD Method (Approximate-Then-Project)

Face recognition

Procedure

1 build a database of Nsnap faces
(snapshots)

2 construct a proper orthogonal
decomposition (POD) basis Vf

for the database

3 for a new face f, record a small
number ki of pixels fi1 , · · · , fiki

4 using the POD basis Vf ,
approximately reconstruct the
new face f (in the least-squares
sense)
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Hyperreduction Methods

Nonlinear Function Approximation by Gappy POD

The gappy approach can also be used to approximate the nonlinear
function f in the reduced equations

dq

dt
(t) =

(
WTV

)−1
WT f(Vq(t), t)

where the evaluation of all entries of f(·, t) scales with N and thus
can be computationally intensive (for simplicity, the input function
u(t) is not considered here and the dependence on a parameter µ is
not emphasized)

Gappy approach

evaluate only a small subset of the entries of f(·, t)
pre-compute a ROB Vf and use it to approximately reconstruct all
other entries of f(·, t) by interpolation or a least-squares strategy
⇒ approximate-then-project approach
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Hyperreduction Methods

Nonlinear Function Approximation by Gappy POD

A complete PMOR method based on the Gappy approach for
hyperreduction should then provide algorithms for

selecting the evaluation entries I = {i1, · · · , iki }

pre-computing a ROB Vf for the nonlinear function f

approximately reconstructing the nonlinear function at all its other
entries ⇒ f̃(·, t)
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Hyperreduction Methods

Construction of a POD Basis for f

Construction of a POD basis Vf of dimension kf
1 collect snapshots for the nonlinear function f from one or several

transient simulations

F = [f(w(t1), t1) · · · f(w(tmf ), tmf )] ∈ RN×mf

2 compute a thin SVD
F = UfΣfZ

T
f

3 construct a ROB of dimension kf ≤ mf as the set of first kf vectors
in Uf (truncation)

Vf = [uf,1 · · · uf,kf ]
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Hyperreduction Methods

Approximate Reconstruction of a Nonlinear Function

Assume for now that ki indices (entries of f) have been chosen (see
later for how to choose these indices)

I = {i1, · · · , iki}

Consider the N × ki “mask” matrix

P =
[
ei1 · · · eiki

]
At each time t, given a value of the state approximation
w̃(t) = Vq(t), evaluate only those entries of f corresponding to the
above indices  fi1(w̃(t), t)

...
fiki (w̃(t), t)

 = PT f(w̃(t), t)

This is computationally economical if ki ≪ N

Usually, only a subset of the entries of w̃(t) are required to
construct the above vector (case of a sparse Jacobian)
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Hyperreduction Methods

Discrete Empirical Interpolation Method (DEIM)

Case where ki = kf ⇒ interpolation

idea: f̃ij (w̃, t) = fij (w̃, t), ∀ w̃ ∈ RN , ∀ j = 1, · · · , ki

this means that PT f̃(w̃(t), t) = PT f(w̃(t), t)

recalling that f̃(·, t) belongs to the range of Vf – that is,

f̃(Vq(t), t) = Vf fr (q(t), t), where fr (q(t), t) ∈ Rkf

it follows that PTVf fr (q(t), t) = PT f(Vq(t), t)

assuming that the square matrix PTVf is nonsingular

=⇒ fr (q(t), t) =
(
PTVf

)−1

PT f(Vq(t), t)

hence, the high-dimensional nonlinear function f̃(·, t) is interpolated
as follows

f̃(·, t) = Vf

(
PTVf

)−1

︸ ︷︷ ︸
kf×kf

PT f(·, t) = ΠVf ,Pf(·, t)
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assuming that the square matrix PTVf is nonsingular

=⇒ fr (q(t), t) =
(
PTVf

)−1

PT f(Vq(t), t)

hence, the high-dimensional nonlinear function f̃(·, t) is interpolated
as follows

f̃(·, t) = Vf

(
PTVf

)−1

︸ ︷︷ ︸
kf×kf

PT f(·, t) = ΠVf ,Pf(·, t)
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Hyperreduction Methods

Discrete Empirical Interpolation Method (DEIM)

Case where ki = kf ⇒ interpolation (continue)

note that the complexity of the projection(
WTV

)−1

WT f̃(·, t) =
(
WTV

)−1

WTVf︸ ︷︷ ︸
pre−computable,∈Rk×kf

(
PTVf

)−1

PT f(·, t)

is independent of N!

interpretation: the Discrete Empirical Interpolation Method (DEIM)
is an oblique projection of the high-dimensional nonlinear
vector-valued function
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Hyperreduction Methods

Oblique Projection of the High-Dimensional Nonlinear Vector

f̃(·, t) = Vf(P
TVf)

−1PT f(·, t) = ΠVf ,Pf(·, t)

Recall that ΠV,W = V(WTV)−1WT is the oblique projector onto V,
orthogonally to W
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Hyperreduction Methods

Least-Squares Reconstruction

Case where ki > kf ⇒ least-squares reconstruction

idea: f̃ij (w̃, t) ≈ fij (w̃, t), ∀ w̃ ∈ RN , ∀ j = 1, · · · ,N

this leads to the minimization problem

fr (q(t), t) = argmin
yr∈Rkf

∥∥∥PTVfyr − PT f(Vq(t), t)
∥∥∥
2

note that M = PTVf ∈ Rki×kf is a skinny matrix

its singular value decomposition can be written as

M = UΣZT

it follows that the left inverse of M, M† – that is, the generalized
inverse of M that satisfies MM†M = M – is

M† = ZΣ†UT

where Σ† = diag

(
1

σ1
, · · · , 1

σr
, 0, · · · , 0

)
if

Σ = diag(σ1, · · · , σr , 0, · · · , 0), where σ1 ≥ · · ·σr > 0

therefore

f̃(q(t), t) = Vf

(
PTVf

)†
PT f(Vq(t), t) = Vf

(
ZΣ†UT

)
PT f(Vq(t), t)
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Hyperreduction Methods

Greedy Function Sampling

The selection of the indices in I takes place after the matrix
Vf = [vf,1 · · · vf,kf ] has been computed using, for example, POD

Greedy algorithm

1: [s, i1] = max{|vf,1|}
2: Vf = [vf,1], P = [ei1 ]
3: for l = 2 : kf do
4: solve PTVfc = PTvf,l for c
5: r = vf,l − Vfc
6: [s, il ] = max{|r|}
7: Vf = [Vf , vf,l ], P = [P, eil ]
8: end for
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Hyperreduction Methods

Analysis of the Hyperreduction Method DEIM

Strengths

the cost of the online phase
does not scale with the size
N of the HDM

the hyperreduced function is
usually robust with respect to
deviations from the original
training trajectory

Weaknesses

the online phase is
software-intrusive

many parameters to adjust
(ROB sizes, mask size, ...)

typically destabilizes the
PROM of a second-order
dynamical system
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Hyperreduction Methods

Energy-Conserving Sampling and Weighting Method (Project-Then-Approximate)

Energy-Conserving Sampling and Weighting (ECSW): The first
hyperreduction method of the project-then-approximate type

developed first for nonlinear, finite element (FE)-based, solid
mechanics and structural dynamics Galerkin PROMs

for such PROMs, the Gappy POD, Empirical Interpolation Method
(EIM), Discrete EIM (DEIM), and the unassembled DEIM (UDEIM)
are in general numerically unstable
reason: in the above hyperreduction methods, the interpolation
procedure and the construction of the basis V are driven by accuracy
considerations only

for Galerkin PROMs constructed for second-order dynamical systems,
it preserves the Lagrangian structure associated with Hamilton’s
principle

developed more recently for Petrov-Galerkin PROMs constructed for
nonlinear, finite-volume-based, computational fluid dynamics
applications
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Hyperreduction Methods

ECSW Method for Galerkin PROMs (FE context)

Galerkin PROM ⇒ W = V ∈ RN×k (and VTV = Ik) ⇒ PROM (⋆)
simplifies to

dq

dt
(t;µ) = VT︸︷︷︸

k×N

f(Vq(t;µ),u(t), t;µ)︸ ︷︷ ︸
N×1

(for Petrov-Galerkin PROMs, see S. Grimberg, C. Farhat, R. Tezaur
and C. Bou-Mosleh, 2021)

explicit time-integration: VT f(Vq(t;µ), u(t), t;µ) ∈ Rk ⇒ O(kN)
complexity
implicit time-integration: the above and
VTKt(Vq(t;µ), u(t), t;µ)V ∈ Rk×k , where

Kt =
∂f(Vq(t;µ), u(t), t;µ)

∂(Vq(t;µ))

denotes the tangent operator ⇒ O(kN2)

24 / 31



PMOR - Hyperreduction

Hyperreduction Methods

ECSW Method for Galerkin PROMs (FE context)

Hyperreduction of the reduced “force” vector

VT f(Vq(t;µ),u(t), t;µ) =
∑
e∈E

(LeV)T Lef(Vq(t;µ),u(t), t;µ)

≈
∑

e∈Ẽ⊂E

ξe (LeV)T Lef(Vq(t;µ),u(t), t;µ)

where Ñe(= |Ẽ |) ≪ Ne(= |E|)

and ξe > 0 to preserve the strain energy property (also beneficial in
general to the solution of the associated optimization problem)
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Hyperreduction Methods

ECSW Method for Galerkin PROMs (FE context)

Hyperreduction of the reduced tangent (stiffness) matrix

VT f(Vq(t;µ),u(t), t;µ) ≈
∑

e∈Ẽ⊂E

ξe (LeV)T Lef(Vq(t;µ),u(t), t;µ)

and

Kt =
∂f(Vq(t;µ),u(t), t;µ)

∂(Vq(t;µ))
⇒

VTKt(Vq(t;µ), u(t), t;µ)V ≈
∑

e∈Ẽ⊂E

ξe (LeV)T Ke(Vq(t;µ), u(t), t;µ)(LeV)

The reduced mesh Ẽ and the corresponding set of weights {ξe} –
or equivalently, the vector of weights ξ ∈ RNe – are determined by
training the hyperreduction approximation on force functions (or
tangent stiffness matrices, see R. Tezaur, F. As’ad and C. Farhat,
2022) associated with sampled parameter points and thus with
performed simulations
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Hyperreduction Methods

Interpretation

VT f(Vq(t;µ), u(t), t;µ) ≈
∑

e∈Ẽ⊂E

ξe (LeV)T Le f(Vq(t;µ), u(t), t;µ)

VTKt(Vq(t;µ), u(t), t;µ)V ≈
∑

e∈Ẽ⊂E

ξe (LeV)T Ke(Vq(t;µ), u(t), t;µ)(LeV)

The ECSW hyperreduction approximation is a generalized (in a
hyper space) quadrature rule approximation where

the sampled elements defining Ẽ are the quadrature points

the coefficients {ξe > 0} are the quadrature weights
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Hyperreduction Methods

Computation of the Reduced Mesh and Associated Weights

Using a lighter notation, where only the critical dependences are
highlighted, let

g e
i (qi ) = (LeV)TLef(Vqi ) = (LeV)TLef(VVTwi ) ∈ Rk

bi =
∑
e∈E

g e
i (qi ) ∈ Rk , i = 1, · · · , Nsnap

G =

 g11 · · · g1Ne

· · · · · · · · ·
gNsnap1 · · · gNsnapNe

 ∈ R(kNsnap)×Ne

and

b =
(
b1 · · · bNsnap

)T ∈ RkNsnap

Let now Φ = {ξ ∈ RNe : ∥Gξ − b∥2 < ϵ∥b∥2, ξ ≥ 0}

Then, the optimal reduced mesh and associated weights are given by

ξopt = argmin
ξ∈Φ

∥ξ∥0︸ ︷︷ ︸
optimal weights

and Ẽopt = {e ∈ E/ξopt
e

> 0}︸ ︷︷ ︸
optimal reduced mesh
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Hyperreduction Methods

Computation of the Reduced Mesh and Associated Weights

ξopt = argmin
ξ∈Φ

∥ξ∥0︸ ︷︷ ︸
optimal weights

and Ẽopt = {e ∈ E/ξopt
e

> 0}︸ ︷︷ ︸
optimal reduced mesh

Fastest alternative approach

alternative optimization problem

ξopt = argmin
ξ∈RNe

ξ≥0

∥Gξ − b∥22

solver: sparse non-negative least-squares (NNLS) solver, where the
iterative process is termined as soon as

∥Gξ − b∥2 < ϵ∥b∥2

the above solution algorithm is amenable to parallelization
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Hyperreduction Methods

Application: Nonlinear Structural Dynamic Response of a Generic V-Hull to Air Blast

Nonlinear FE structural model of a generic V-hull
J2 plasticity constitutive model
shell and beam elements with finite rotations: |E| = 236, 995
elements
233 276 nodes and 1 399 056 dofs

Air blast loading: 10 kg charge

Simulation time-interval: [0, 10−3] s

POD-based PROM of dimension k = 100 ≪ N = 1399 056

Explicit analysis: (∆t)HDM = 10−8 s; (∆t)PROM = 2.5× 10−6 s
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Application: Nonlinear Structural Dynamic Response of a Generic V-Hull to Air Blast

ECSW with: ϵ = 2.5× 10−2 and Nsnap = k = 100 ⇒ delivers in 16
minutes on 64 cores of a Unix cluster an optimal reduced mesh with

Ñe = |Ẽ | = 2000 = 0.8% of Ne (= |E| = 236 995) – Circa 2014

For this application, ECSW and the reduced mesh it produces enable
the PROM to deliver a speedup factor of 28 935, while achieving
96% relative accuracy – Circa 2014
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