AA216/CME345: MODEL REDUCTION

Projection-based Model Order Reduction

Charbel Farhat Stanford University cfarhat@stanford.edu

Outline

- 1 Solution Approximation
- 2 Orthogonal and Oblique Projections
- 3 Galerkin and Petrov-Galerkin Projections
- 4 Equivalent High-Dimensional Model
- 5 Error Analysis
- 6 Preservation of Model Stability

High-Dimensional Model

Ordinary Differential Equation (ODE)

$$\frac{d\mathbf{w}}{dt}(t) = \mathbf{f}(\mathbf{w}(t), t) \tag{1}$$

- $\mathbf{w} \in \mathbb{R}^N$: State variable
- initial condition: $\mathbf{w}(0) = \mathbf{w}_0$
- Output equation

$$\mathbf{y}(t) = \mathbf{g}(\mathbf{w}(t), t) \tag{2}$$

└High-Dimensional Model

Ordinary Differential Equation (ODE)

$$\frac{d\mathbf{w}}{dt}(t) = \mathbf{f}(\mathbf{w}(t), t) \tag{1}$$

- $\mathbf{w} \in \mathbb{R}^N$: State variable
- initial condition: $\mathbf{w}(0) = \mathbf{w}_0$
- Output equation

$$\mathbf{y}(t) = \mathbf{g}(\mathbf{w}(t), t) \tag{2}$$

■ Note the absence of a parameter dependence for now

Solution Approximation

Low Dimensionality of Trajectories

 In many cases, the trajectories of the solutions computed using High-Dimensional Models (HDMs) are contained in low-dimensional subspaces

Solution Approximation

- In many cases, the trajectories of the solutions computed using High-Dimensional Models (HDMs) are contained in low-dimensional subspaces
- Let S denote such a subspace and let $k_S = \dim(S)$

- In many cases, the trajectories of the solutions computed using High-Dimensional Models (HDMs) are contained in low-dimensional subspaces
- Let S denote such a subspace and let $k_S = \dim(S)$
- The state variable or simply, the state can be written exactly as a linear combination of vectors spanning $\mathcal S$

$$\mathbf{w}(t) = q_1(t)\mathbf{v}_1 + \cdots + q_{k_{\mathcal{S}}}(t)\mathbf{v}_{k_{\mathcal{S}}}$$

- $lackbox{\bf V}_{\mathcal{S}} = [lackbox{\bf v}_1 \ \cdots \ lackbox{\bf v}_{k_{\mathcal{S}}}] \in \mathbb{R}^{N imes k_{\mathcal{S}}}$ is a **time-invariant** basis for \mathcal{S}
- $(q_1(t), \cdots, q_{k_S}(t))$ are the generalized coordinates for $\mathbf{w}(t)$ in S
- $\mathbf{q}(t) = [q_1(t) \cdots q_{k_{\mathcal{S}}}(t)]^T \in \mathbb{R}^{k_{\mathcal{S}}}$ is the reduced-order state vector

- In many cases, the trajectories of the solutions computed using High-Dimensional Models (HDMs) are contained in low-dimensional subspaces
- Let S denote such a subspace and let $k_S = \dim(S)$
- The state variable or simply, the state can be written exactly as a linear combination of vectors spanning $\mathcal S$

$$\mathbf{w}(t) = q_1(t)\mathbf{v}_1 + \cdots + q_{k_{\mathcal{S}}}(t)\mathbf{v}_{k_{\mathcal{S}}}$$

- $lackbox{\bf V}_{\mathcal{S}} = [lackbox{\bf v}_1 \ \cdots \ lackbox{\bf v}_{k_{\mathcal{S}}}] \in \mathbb{R}^{N imes k_{\mathcal{S}}}$ is a **time-invariant** basis for \mathcal{S}
- $lacksquare (q_1(t),\cdots,q_{k_{\mathcal{S}}}(t))$ are the **generalized coordinates** for $\mathbf{w}(t)$ in \mathcal{S}
- $\mathbf{q}(t) = [q_1(t) \cdots q_{k_{\mathcal{S}}}(t)]^T \in \mathbb{R}^{k_{\mathcal{S}}}$ is the reduced-order state vector
- In matrix form, the above expansion can be written as

$$\mathbf{w}(t) = \mathbf{V}_{\mathcal{S}}\mathbf{q}(t)$$

Solution Approximation

Low Dimensionality of Trajectories

■ Often, the exact basis $\mathbf{V}_{\mathcal{S}}$ is unknown but can be estimated empirically by a **trial basis** $\mathbf{V} \in \mathbb{R}^{N \times k}, k < N$

Solution Approximation

- Often, the exact basis $\mathbf{V}_{\mathcal{S}}$ is unknown but can be estimated empirically by a **trial basis** $\mathbf{V} \in \mathbb{R}^{N \times k}, k < N$
- k and k_S may be different

- Often, the exact basis $\mathbf{V}_{\mathcal{S}}$ is unknown but can be estimated empirically by a **trial basis** $\mathbf{V} \in \mathbb{R}^{N \times k}, k < N$
- k and k_S may be different
- The following **ansatz** (educated guess, assumption, etc. to be verified later) is considered

$$\mathbf{w}(t) pprox \mathbf{V}\mathbf{q}(t)$$

Low Dimensionality of Trajectories

- Often, the exact basis $\mathbf{V}_{\mathcal{S}}$ is unknown but can be estimated empirically by a **trial basis** $\mathbf{V} \in \mathbb{R}^{N \times k}, k < N$
- k and k_S may be different
- The following ansatz (educated guess, assumption, etc. to be verified later) is considered

$$\mathbf{w}(t) pprox \mathbf{Vq}(t)$$

 Substituting the above subspace approximation in Eq. (1) and in Eq. (2) leads to

$$\frac{d}{dt}(\mathbf{V}\mathbf{q}(t)) = \mathbf{f}(\mathbf{V}\mathbf{q}(t), t) + \mathbf{r}(t)$$
$$\mathbf{y}(t) \approx \mathbf{g}(\mathbf{V}\mathbf{q}(t), t)$$

where $\mathbf{r}(t)$ is the residual due to the subspace approximation

Solution Approximation

Low Dimensionality of Trajectories

■ The **residual** $\mathbf{r}(t) \in \mathbb{R}^N$ accounts for the fact that $\mathbf{Vq}(t)$ is not in general an exact solution of problem (1)

Low Dimensionality of Trajectories

- The **residual** $\mathbf{r}(t) \in \mathbb{R}^N$ accounts for the fact that $\mathbf{Vq}(t)$ is not in general an exact solution of problem (1)
- Since the basis V is assumed to be time-invariant

$$rac{d}{dt}\left(\mathbf{V}\mathbf{q}(t)
ight)=\mathbf{V}rac{d\mathbf{q}}{dt}(t)$$

and therefore

$$\mathbf{V} \frac{d\mathbf{q}}{dt}(t) = \mathbf{f}(\mathbf{V}\mathbf{q}(t), t) + \mathbf{r}(t)$$

 $\mathbf{y}(t) \approx \mathbf{g}(\mathbf{V}\mathbf{q}(t), t)$

Low Dimensionality of Trajectories

- The **residual** $\mathbf{r}(t) \in \mathbb{R}^N$ accounts for the fact that $\mathbf{Vq}(t)$ is not in general an exact solution of problem (1)
- Since the basis V is assumed to be time-invariant

$$rac{d}{dt}\left(\mathbf{V}\mathbf{q}(t)
ight)=\mathbf{V}rac{d\mathbf{q}}{dt}(t)$$

and therefore

$$\mathbf{V} \frac{d\mathbf{q}}{dt}(t) = \mathbf{f}(\mathbf{V}\mathbf{q}(t), t) + \mathbf{r}(t)$$

 $\mathbf{y}(t) \approx \mathbf{g}(\mathbf{V}\mathbf{q}(t), t)$

 \blacksquare Set of N differential equations in terms of k unknowns

$$q_1(t), \cdots, q_k(t)$$

Low Dimensionality of Trajectories

- The **residual** $\mathbf{r}(t) \in \mathbb{R}^N$ accounts for the fact that $\mathbf{Vq}(t)$ is not in general an exact solution of problem (1)
- Since the basis **V** is assumed to be time-invariant

$$rac{d}{dt}\left(\mathbf{Vq}(t)
ight) = \mathbf{V}rac{d\mathbf{q}}{dt}(t)$$

and therefore

$$\mathbf{V} \frac{d\mathbf{q}}{dt}(t) = \mathbf{f}(\mathbf{V}\mathbf{q}(t), t) + \mathbf{r}(t)$$

 $\mathbf{y}(t) \approx \mathbf{g}(\mathbf{V}\mathbf{q}(t), t)$

 \blacksquare Set of N differential equations in terms of k unknowns

$$q_1(t), \cdots, q_k(t)$$

• Over-determined system (k < N)

Crthogonal and Oblique Projections

└ Orthogonality

■ Let **w** and **y** be two vectors in \mathbb{R}^N

Corthogonal and Oblique Projections

└Orthogonality

- Let **w** and **y** be two vectors in \mathbb{R}^N
 - lacktriangle w and y are orthogonal to each other with respect to the canonical inner product in \mathbb{R}^N if and only if

$$\mathbf{w}^T\mathbf{y} = 0$$

└Orthogonality

- Let **w** and **y** be two vectors in \mathbb{R}^N
 - \blacksquare w and y are orthogonal to each other with respect to the canonical inner product in \mathbb{R}^N if and only if

$$\mathbf{w}^T\mathbf{y} = 0$$

• w and y are orthonormal to each other with respect to the canonical inner product in \mathbb{R}^N if and only if $\mathbf{w}^T \mathbf{y} = 0$, and

$$\mathbf{w}^T \mathbf{w} = 1$$
, and $\mathbf{y}^T \mathbf{y} = 1$

└Orthogonality

- Let **w** and **y** be two vectors in \mathbb{R}^N
 - \blacksquare w and y are orthogonal to each other with respect to the canonical inner product in \mathbb{R}^N if and only if

$$\mathbf{w}^T \mathbf{y} = 0$$

• w and y are orthonormal to each other with respect to the canonical inner product in \mathbb{R}^N if and only if $\mathbf{w}^T \mathbf{y} = 0$, and

$$\mathbf{w}^{\mathsf{T}}\mathbf{w} = 1$$
, and $\mathbf{y}^{\mathsf{T}}\mathbf{y} = 1$

■ Let **V** be a matrix in $\mathbb{R}^{N \times k}$

└Orthogonality

- Let **w** and **y** be two vectors in \mathbb{R}^N
 - lacktriangle w and y are orthogonal to each other with respect to the canonical inner product in \mathbb{R}^N if and only if

$$\mathbf{w}^T \mathbf{y} = 0$$

• w and y are orthonormal to each other with respect to the canonical inner product in \mathbb{R}^N if and only if $\mathbf{w}^T \mathbf{y} = \mathbf{0}$, and

$$\mathbf{w}^{\mathsf{T}}\mathbf{w}=1, \text{ and } \mathbf{y}^{\mathsf{T}}\mathbf{y}=1$$

- Let **V** be a matrix in $\mathbb{R}^{N \times k}$
 - V is an orthogonal (orthonormal) matrix if and only if

$$\mathbf{V}^T\mathbf{V}=\mathbf{I}_k$$

└- Projections

Definition

A matrix $\Pi \in \mathbb{R}^{N \times N}$ is a **projection** matrix (or projective matrix, idempotent matrix) if

$$\Pi^2=\Pi$$

- Some direct consequences
 - lacktriangle range(lacktriangle) is invariant under the action of lacktriangle

└- Projections

Definition

A matrix $\Pi \in \mathbb{R}^{N \times N}$ is a **projection** matrix (or projective matrix, idempotent matrix) if

$$\Pi^2=\Pi$$

- Some direct consequences
 - range(Π) is invariant under the action of Π
 - lacksquare 0 and 1 are the only possible eigenvalues of lacksquare

└- Projections

Definition

A matrix $\Pi \in \mathbb{R}^{N \times N}$ is a **projection** matrix (or projective matrix, idempotent matrix) if

$$\Pi^2 = \Pi$$

- Some direct consequences
 - range(Π) is invariant under the action of Π
 - lacksquare 0 and 1 are the only possible eigenvalues of lacksquare
 - \blacksquare Π is diagonalizable (follows from the previous consequence)

└- Projections

Definition

A matrix $\Pi \in \mathbb{R}^{N \times N}$ is a **projection** matrix (or projective matrix, idempotent matrix) if

$$\Pi^2 = \Pi$$

- Some direct consequences
 - lacksquare range(lacksquare) is invariant under the action of lacksquare
 - lacksquare 0 and 1 are the only possible eigenvalues of lacksquare
 - **Π** is diagonalizable (follows from the previous consequence)
 - let k be the rank of Π : then, there exists a basis X such that

$$\mathbf{\Pi} = \mathbf{X} \begin{bmatrix} \mathbf{I}_k & \\ & \mathbf{0}_{N-k} \end{bmatrix} \mathbf{X}^{-1}$$

(follows from the two previous consequences)

Orthogonal and Oblique Projections

└ Projections

Consider

$$\boldsymbol{\mathsf{\Pi}} = \boldsymbol{\mathsf{X}} \left[\begin{array}{cc} \boldsymbol{\mathsf{I}}_k & \\ & \boldsymbol{\mathsf{0}}_{\mathcal{N}-k} \end{array} \right] \boldsymbol{\mathsf{X}}^{-1}$$

└ Projections

Consider

$$\Pi = X \begin{bmatrix} \mathbf{I}_k & \\ & \mathbf{0}_{N-k} \end{bmatrix} \mathbf{X}^{-1}$$

decompose X as

$$\mathbf{X} = [\begin{array}{ccc} \mathbf{X}_1 & \mathbf{X}_2 \end{array}], \text{ where } \mathbf{X}_1 \in \mathbb{R}^{N \times k} \text{ and } \mathbf{X}_2 \in \mathbb{R}^{N \times (N-k)}$$

then. $\forall \mathbf{w} \in \mathbb{R}^N$

$$\blacksquare \ \mathsf{\Pi} \mathsf{w} \in \mathsf{range}(\mathsf{X}_1) = \mathsf{range}(\mathsf{\Pi}) = \mathcal{S}_1$$

└ Projections

Consider

$$\Pi = X \begin{bmatrix} \mathbf{I}_k & \\ & \mathbf{0}_{N-k} \end{bmatrix} \mathbf{X}^{-1}$$

decompose X as

$$\mathbf{X} = [\begin{array}{cc} \mathbf{X}_1 & \mathbf{X}_2 \end{array}], \text{ where } \mathbf{X}_1 \in \mathbb{R}^{N \times k} \text{ and } \mathbf{X}_2 \in \mathbb{R}^{N \times (N-k)}$$

then. $\forall \mathbf{w} \in \mathbb{R}^N$

■
$$\Pi$$
w \in range(X_1) = range(Π) = S_1

$$\mathbf{w} - \mathbf{\Pi} \mathbf{w} \in \mathsf{range}(\mathbf{X}_2) = \mathsf{Ker}(\mathbf{\Pi}) = \mathcal{S}_2$$

└ Projections

Consider

$$oldsymbol{\Pi} = oldsymbol{\mathsf{X}} \left[egin{array}{cc} oldsymbol{\mathsf{I}}_k & & \ & oldsymbol{\mathsf{0}}_{\mathcal{N}-k} \end{array}
ight] oldsymbol{\mathsf{X}}^{-1}$$

■ decompose **X** as

$$\mathbf{X} = [\begin{array}{cc} \mathbf{X}_1 & \mathbf{X}_2 \end{array}], \text{ where } \mathbf{X}_1 \in \mathbb{R}^{N \times k} \text{ and } \mathbf{X}_2 \in \mathbb{R}^{N \times (N-k)}$$

then. $\forall \mathbf{w} \in \mathbb{R}^N$

■
$$\Pi$$
w \in range(X_1) = range(Π) = S_1

$$\mathbf{w} - \mathbf{\Pi} \mathbf{w} \in \mathsf{range}(\mathbf{X}_2) = \mathsf{Ker}(\mathbf{\Pi}) = \mathcal{S}_2$$

■ Π defines the **projection onto** S_1 **parallel to** S_2

$$\mathbb{R}^{\textit{N}} = \mathcal{S}_1 \oplus \mathcal{S}_2$$

Orthogonal and Oblique Projections

└Orthogonal Projections

lacksquare Consider the case where $\mathcal{S}_2 = \mathcal{S}_1^\perp$

Orthogonal and Oblique Projections

└Orthogonal Projections

- lacksquare Consider the case where $\mathcal{S}_2 = \mathcal{S}_1^\perp$
- Let $\mathbf{V} \in \mathbb{R}^{N \times k}$ be an **orthogonal** matrix whose columns span \mathcal{S}_1 , and let $\mathbf{w} \in \mathbb{R}^N$: The orthogonal projection of \mathbf{w} onto the subspace \mathcal{S}_1 is

 $\mathbf{V}\mathbf{V}^T\mathbf{w}$

Corthogonal and Oblique Projections

└Orthogonal Projections

- lacksquare Consider the case where $\mathcal{S}_2 = \mathcal{S}_1^\perp$
- Let $\mathbf{V} \in \mathbb{R}^{N \times k}$ be an **orthogonal** matrix whose columns span \mathcal{S}_1 , and let $\mathbf{w} \in \mathbb{R}^N$: The orthogonal projection of \mathbf{w} onto the subspace \mathcal{S}_1 is

$$\mathbf{V}\mathbf{V}^T\mathbf{w}$$

the equivalent projection matrix is

$$\Pi_{V,V} = VV^{\mathcal{T}}$$

└Orthogonal Projections

- lacksquare Consider the case where $\mathcal{S}_2 = \mathcal{S}_1^\perp$
- Let $\mathbf{V} \in \mathbb{R}^{N \times k}$ be an **orthogonal** matrix whose columns span \mathcal{S}_1 , and let $\mathbf{w} \in \mathbb{R}^N$: The orthogonal projection of \mathbf{w} onto the subspace \mathcal{S}_1 is

$$VV^Tw$$

the equivalent projection matrix is

$$\Pi_{V,V} = VV^{\mathsf{T}}$$

■ special case #1: If w belongs to S_1 – that is, $\mathbf{w} = \mathbf{V}\mathbf{q}$, where $\mathbf{q} \in \mathbb{R}^k$

$$\Pi_{V,V} w = VV^T w = V \underbrace{V^T V}_{I} q = Vq = w$$

└Orthogonal Projections

- lacksquare Consider the case where $\mathcal{S}_2 = \mathcal{S}_1^\perp$
- Let $\mathbf{V} \in \mathbb{R}^{N \times k}$ be an **orthogonal** matrix whose columns span \mathcal{S}_1 , and let $\mathbf{w} \in \mathbb{R}^N$: The orthogonal projection of \mathbf{w} onto the subspace \mathcal{S}_1 is

$$\mathbf{V}\mathbf{V}^T\mathbf{w}$$

the equivalent projection matrix is

$$\Pi_{V,V} = VV^{\mathsf{T}}$$

■ special case #1: If w belongs to S_1 – that is, $\mathbf{w} = \mathbf{V}\mathbf{q}$, where $\mathbf{q} \in \mathbb{R}^k$

$$\Pi_{V,V} w = VV^T w = V \underbrace{V^T V}_{I} q = Vq = w$$

■ special case #2: If **w** is orthogonal to S_1 – that is, $\mathbf{V}^T \mathbf{w} = \mathbf{0}$

$$\Pi_{V,V} w = VV^T w = 0$$

Orthogonal and Oblique Projections

└Orthogonal Projections

Orthogonal and Oblique Projections

└Orthogonal Projections

- **Example:** Helix in 3D (N = 3)
 - lacktriangledown let $\mathbf{w}(t) \in \mathbb{R}^3$ define a curve parameterized by $t \in [0,6\pi]$ as follows

$$\mathbf{w}(t) = \left[egin{array}{c} w_1(t) \\ w_2(t) \\ w_3(t) \end{array}
ight] = \left[egin{array}{c} \cos(t) \\ \sin(t) \\ t \end{array}
ight]$$

└Orthogonal Projections

- Orthogonal projection onto
 - $ule{range}(\mathbf{V}) = \operatorname{span}(\mathbf{e}_1, \ \mathbf{e}_2)$

$$\mathbf{\Pi}_{\mathbf{V},\mathbf{V}}\mathbf{w}(t) = \begin{bmatrix} \cos(t) \\ \sin(t) \\ 0 \end{bmatrix}$$

└Orthogonal Projections

- Orthogonal projection onto
 - range(\mathbf{V}) = span(\mathbf{e}_2 , \mathbf{e}_3)

$$\Pi_{V,V}\mathbf{w}(t) = \begin{bmatrix} 0 \\ \sin(t) \\ t \end{bmatrix}$$

Orthogonal Projections

- Orthogonal projection onto
 - $ule{range}(\mathbf{V}) = \operatorname{span}(\mathbf{e}_1, \ \mathbf{e}_3)$

$$\Pi_{V,V}\mathbf{w}(t) = \begin{bmatrix} \cos(t) \\ 0 \\ t \end{bmatrix}$$

Corthogonal and Oblique Projections

└Oblique Projections

■ The following is the **general case**, where S_2 may be distinct from S_1^{\perp}

Orthogonal and Oblique Projections

└Oblique Projections

- The following is the **general case**, where S_2 may be distinct from S_1^{\perp}
- Let $\mathbf{V} \in \mathbb{R}^{N \times k}$ and $\mathbf{W} \in \mathbb{R}^{N \times k}$ be two full-column rank matrices whose columns span respectively \mathcal{S}_1 and \mathcal{S}_2^{\perp}

Orthogonal and Oblique Projections

└Oblique Projections

- The following is the **general case**, where S_2 may be distinct from S_1^{\perp}
- Let $\mathbf{V} \in \mathbb{R}^{N \times k}$ and $\mathbf{W} \in \mathbb{R}^{N \times k}$ be two full-column rank matrices whose columns span respectively \mathcal{S}_1 and \mathcal{S}_2^{\perp}
- lacksquare The projection of $oldsymbol{w} \in \mathbb{R}^N$ onto the subspace \mathcal{S}_1 parallel to \mathcal{S}_2 is

$$V(W^TV)^{-1}W^Tw$$

Corthogonal and Oblique Projections

└Oblique Projections

- The following is the **general case**, where S_2 may be distinct from S_1^{\perp}
- Let $\mathbf{V} \in \mathbb{R}^{N \times k}$ and $\mathbf{W} \in \mathbb{R}^{N \times k}$ be two full-column rank matrices whose columns span respectively \mathcal{S}_1 and \mathcal{S}_2^{\perp}
- lacksquare The projection of lacksquare $\in \mathbb{R}^N$ onto the subspace \mathcal{S}_1 parallel to \mathcal{S}_2 is

$$V(W^TV)^{-1}W^Tw$$

■ the equivalent projection matrix is

$$\Pi_{V,W} = V(W^TV)^{-1}W^T$$

Corthogonal and Oblique Projections

└Oblique Projections

- The following is the **general case**, where S_2 may be distinct from S_1^{\perp}
- Let $\mathbf{V} \in \mathbb{R}^{N \times k}$ and $\mathbf{W} \in \mathbb{R}^{N \times k}$ be two full-column rank matrices whose columns span respectively \mathcal{S}_1 and \mathcal{S}_2^{\perp}
- lacksquare The projection of lacksquare $\in \mathbb{R}^N$ onto the subspace \mathcal{S}_1 parallel to \mathcal{S}_2 is

$$V(W^TV)^{-1}W^Tw$$

■ the equivalent projection matrix is

$$igg| oldsymbol{\Pi}_{oldsymbol{\mathsf{V}},oldsymbol{\mathsf{W}}} = oldsymbol{\mathsf{V}}(oldsymbol{\mathsf{W}}^Toldsymbol{\mathsf{V}})^{-1}oldsymbol{\mathsf{W}}^Tigg|$$

■ special case #1: If w belongs to S_1 , then w = Vq, where q ∈ \mathbb{R}^k , and

$$\Pi_{V,W} \mathbf{w} = \mathbf{V} \underbrace{\left(\mathbf{W}^T \mathbf{V}\right)^{-1} \mathbf{W}^T \mathbf{V}}_{:} \mathbf{q} = \mathbf{V} \mathbf{q}$$

Orthogonal and Oblique Projections

└Oblique Projections

- The following is the **general case**, where S_2 may be distinct from \mathcal{S}_1^{\perp}
- Let $\mathbf{V} \in \mathbb{R}^{N \times k}$ and $\mathbf{W} \in \mathbb{R}^{N \times k}$ be two full-column rank matrices whose columns span respectively S_1 and S_2^{\perp}
- The projection of $\mathbf{w} \in \mathbb{R}^N$ onto the subspace \mathcal{S}_1 parallel to \mathcal{S}_2 is

$$V(W^TV)^{-1}W^Tw$$

the equivalent projection matrix is

$$\left| \mathbf{\Pi}_{\mathbf{V},\mathbf{W}} = \mathbf{V}(\mathbf{W}^T \mathbf{V})^{-1} \mathbf{W}^T \right|$$

■ special case #1: If w belongs to S_1 , then w = Vq, where $q \in \mathbb{R}^k$, and

$$\Pi_{V,W} \mathbf{w} = \mathbf{V} \underbrace{\left(\mathbf{W}^T \mathbf{V}\right)^{-1} \mathbf{W}^T \mathbf{V}}_{:} \mathbf{q} = \mathbf{V} \mathbf{q}$$

■ special case #2: If w is orthogonal to S_2^{\perp} – that is, $\mathbf{W}^T \mathbf{w} = \mathbf{0}$, then

$$\Pi_{V,W}w=V(W^{T}V)^{-1}\underbrace{W^{T}w}_{0\;\square\;\flat\;\vee\;0\;\square\;\flat\;\vee\;0\;\square\;\flat\;\vee\;0\;\square}=0$$

Orthogonal and Oblique Projections

└Oblique Projections

$$\Pi_{V,W} w = V(W^T V)^{-1} W^T w$$

Orthogonal and Oblique Projections

└Oblique Projections

- Example: Helix in 3D
 - bases

$$\boldsymbol{V} = [\boldsymbol{e}_1 \ \boldsymbol{e}_2], \ \boldsymbol{W} = [\boldsymbol{e}_1 + \boldsymbol{e}_3 \ \boldsymbol{e}_2 + \boldsymbol{e}_3]$$

Oblique Projections

- Example: Helix in 3D
 - bases

$$\boldsymbol{\mathsf{V}} = [\boldsymbol{\mathsf{e}}_1 \ \boldsymbol{\mathsf{e}}_2], \ \boldsymbol{\mathsf{W}} = [\boldsymbol{\mathsf{e}}_1 + \boldsymbol{\mathsf{e}}_3 \ \boldsymbol{\mathsf{e}}_2 + \boldsymbol{\mathsf{e}}_3]$$

projection matrix

$$\mathbf{\Pi}_{\mathbf{V},\mathbf{W}} = \mathbf{V}(\mathbf{W}^{T}\mathbf{V})^{-1}\mathbf{W}^{T} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

└Oblique Projections

- Example: Helix in 3D
 - bases

$$\textbf{V} = [\textbf{e}_1 \ \textbf{e}_2], \ \textbf{W} = [\textbf{e}_1 + \textbf{e}_3 \ \textbf{e}_2 + \textbf{e}_3]$$

projection matrix

$$\mathbf{\Pi}_{\mathbf{V},\mathbf{W}} = \mathbf{V}(\mathbf{W}^{T}\mathbf{V})^{-1}\mathbf{W}^{T} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

projected helix equation

$$\mathbf{\Pi}_{\mathsf{V},\mathsf{W}}\mathsf{w}(t) = \left[\begin{array}{ccc} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{array} \right] \left[\begin{array}{c} \cos(t) \\ \sin(t) \\ t \end{array} \right] = \left[\begin{array}{c} \cos(t) + t \\ \sin(t) + t \\ 0 \end{array} \right]$$

Orthogonal and Oblique Projections

-Oblique Projections

- Galerkin and Petrov-Galerkin Projections
- └Projection-Based Model Order Reduction

Start from a HDM for the problem of interest

$$\frac{d\mathbf{w}}{dt}(t) = \mathbf{f}(\mathbf{w}(t), t)
\mathbf{y}(t) = \mathbf{g}(\mathbf{w}(t), t)
\mathbf{w}(0) = \mathbf{w}_0$$

- $\mathbf{w} \in \mathbb{R}^N$: Vector of state variables
- **y** $\in \mathbb{R}^q$: Vector of output variables (typically $q \ll N$)
- ${\color{blue} \bullet} \ f(\cdot,\cdot) \in \mathbb{R}^{\textit{N}} :$ Completes the specification of the HDM-based problem

- Galerkin and Petrov-Galerkin Projections
 - └ Projection-Based Model Order Reduction

 The goal is to construct a Projection-based Reduced-Order Model (PROM)

$$\frac{d\mathbf{q}}{dt}(t) = \mathbf{f}_r(\mathbf{q}(t), t)
\mathbf{y}(t) \approx \mathbf{g}_r(\mathbf{q}(t), t)$$

where

- $\mathbf{q} \in \mathbb{R}^k$: Vector of reduced-order state variables, $k \ll N$
- $\mathbf{y} \in \mathbb{R}^q$: Vector of output variables
- $\mathbf{f}_r(\cdot,\cdot) \in \mathbb{R}^k$: Completes the description of the PROM
- The discussion of the initial condition is deferred to later

Galerkin and Petrov-Galerkin Projections

- A Projection-based Model Order Reduction (PMOR) method should
 - be computationally tractable

Galerkin and Petrov-Galerkin Projections

- A Projection-based Model Order Reduction (PMOR) method should
 - be computationally tractable
 - be applicable to a large class of dynamical systems

Galerkin and Petrov-Galerkin Projections

- A Projection-based Model Order Reduction (PMOR) method should
 - be computationally tractable
 - be applicable to a large class of dynamical systems
 - minimize a certain measure of the error between the solution computed using the HDM and that computed using the PROM (error criterion)

Galerkin and Petrov-Galerkin Projections

- A Projection-based Model Order Reduction (PMOR) method should
 - be computationally tractable
 - be applicable to a large class of dynamical systems
 - minimize a certain measure of the error between the solution computed using the HDM and that computed using the PROM (error criterion)
 - preserve as many properties of the HDM as possible

└ Petrov-Galerkin Projection

■ Recall the residual $\mathbf{r}(t) \in \mathbb{R}^{N \times k}$ introduced by approximating $\mathbf{w}(t)$ as $\mathbf{Vq}(t)$

$$\mathbf{V} \frac{d\mathbf{q}}{dt}(t) = \mathbf{f}(\mathbf{V}\mathbf{q}(t), t) + \mathbf{r}(t) \Leftrightarrow \mathbf{r}(t) = \mathbf{V} \frac{d\mathbf{q}}{dt}(t) - \mathbf{f}(\mathbf{V}\mathbf{q}(t), t)$$

└Petrov-Galerkin Projection

■ Recall the residual $\mathbf{r}(t) \in \mathbb{R}^{N \times k}$ introduced by approximating $\mathbf{w}(t)$ as $\mathbf{Vq}(t)$

$$\mathbf{V} \frac{d\mathbf{q}}{dt}(t) = \mathbf{f}(\mathbf{V}\mathbf{q}(t), t) + \mathbf{r}(t) \Leftrightarrow \mathbf{r}(t) = \mathbf{V} \frac{d\mathbf{q}}{dt}(t) - \mathbf{f}(\mathbf{V}\mathbf{q}(t), t)$$

■ Constrain this residual to be orthogonal to a subspace \mathcal{W} defined by a **test basis** $\mathbf{W} \in \mathbb{R}^{N \times k}$ – that is, compute $\mathbf{q}(t)$ such that

$$\mathbf{W}^T\mathbf{r}(t)=\mathbf{0}$$

└ Petrov-Galerkin Projection

■ Recall the residual $\mathbf{r}(t) \in \mathbb{R}^{N \times k}$ introduced by approximating $\mathbf{w}(t)$ as $\mathbf{Vq}(t)$

$$\mathbf{V} \frac{d\mathbf{q}}{dt}(t) = \mathbf{f}(\mathbf{V}\mathbf{q}(t), t) + \mathbf{r}(t) \Leftrightarrow \mathbf{r}(t) = \mathbf{V} \frac{d\mathbf{q}}{dt}(t) - \mathbf{f}(\mathbf{V}\mathbf{q}(t), t)$$

■ Constrain this residual to be orthogonal to a subspace \mathcal{W} defined by a **test basis** $\mathbf{W} \in \mathbb{R}^{N \times k}$ – that is, compute $\mathbf{q}(t)$ such that

$$|\mathbf{W}^T\mathbf{r}(t) = \mathbf{0}|$$

 This leads to the descriptive form of the governing equations of the Petrov-Galerkin PROM

$$oxed{\mathbf{W}^T \mathbf{V} rac{d\mathbf{q}}{dt}(t) = \mathbf{W}^T \mathbf{f}(\mathbf{V}\mathbf{q}(t), t)}$$

Petrov-Galerkin Projection

Assume that $\mathbf{W}^T \mathbf{V}$ is non-singular: In this case, the PROM can be re-written in the *non-descriptive form*

$$\frac{d\mathbf{q}}{dt}(t) = (\mathbf{W}^T \mathbf{V})^{-1} \mathbf{W}^T \mathbf{f}(\mathbf{V} \mathbf{q}(t), t)
\mathbf{y}(t) \approx \mathbf{g}(\mathbf{V} \mathbf{q}(t), t)$$

Petrov-Galerkin Projection

lacktriangle Assume that lacktriangle Assume that lacktriangle is non-singular: In this case, the PROM can be re-written in the *non-descriptive form*

$$\frac{d\mathbf{q}}{dt}(t) = (\mathbf{W}^T \mathbf{V})^{-1} \mathbf{W}^T \mathbf{f}(\mathbf{V} \mathbf{q}(t), t)$$
$$\mathbf{y}(t) \approx \mathbf{g}(\mathbf{V} \mathbf{q}(t), t)$$

 After the above reduced-order equations have been solved, the subspace approximation of the high-dimensional state vector can be reconstructed, if needed, as follows

$$\mathbf{w}(t) pprox \mathbf{V}\mathbf{q}(t)$$

Galerkin and Petrov-Galerkin Projections

Galerkin Projection

lacktriangledown If lacktriangledown the projection method is called a **Galerkin** projection and the resulting PROM is called a **Galerkin** PROM

Galerkin Projection

- lacktriangledown If lacktriangledown the projection method is called a **Galerkin** projection and the resulting PROM is called a **Galerkin** PROM
- If in addition **V** is orthogonal, the reduced-order equations become

$$\frac{d\mathbf{q}}{dt}(t) = \mathbf{V}^{T}\mathbf{f}(\mathbf{V}\mathbf{q}(t), t)
\mathbf{y}(t) \approx \mathbf{g}(\mathbf{V}\mathbf{q}(t), t)$$

Linear Time-Invariant Systems

■ Special case: **Linear Time-Invariant (LTI)** systems

$$\mathbf{f}(\mathbf{w}(t),t) = \mathbf{A}\mathbf{w}(t) + \mathbf{B}\mathbf{u}(t)$$

 $\mathbf{g}(\mathbf{w}(t),t) = \mathbf{C}\mathbf{w}(t) + \mathbf{D}\mathbf{u}(t)$

 $\mathbf{u} \in \mathbb{R}^p$: Vector of input variables

Linear Time-Invariant Systems

Special case: Linear Time-Invariant (LTI) systems

$$\mathbf{f}(\mathbf{w}(t),t) = \mathbf{A}\mathbf{w}(t) + \mathbf{B}\mathbf{u}(t)$$

 $\mathbf{g}(\mathbf{w}(t),t) = \mathbf{C}\mathbf{w}(t) + \mathbf{D}\mathbf{u}(t)$

- $\mathbf{u} \in \mathbb{R}^p$: Vector of input variables
- corresponding Petrov-Galerkin PROM

$$\frac{d\mathbf{q}}{dt}(t) = (\mathbf{W}^T \mathbf{V})^{-1} \mathbf{W}^T (\mathbf{A} \mathbf{V} \mathbf{q}(t) + \mathbf{B} \mathbf{u}(t))$$

$$\mathbf{y}(t) = \mathbf{C} \mathbf{V} \mathbf{q}(t) + \mathbf{D} \mathbf{u}(t)$$

Linear Time-Invariant Systems

■ Special case: Linear Time-Invariant (LTI) systems

$$\mathbf{f}(\mathbf{w}(t),t) = \mathbf{A}\mathbf{w}(t) + \mathbf{B}\mathbf{u}(t)$$

 $\mathbf{g}(\mathbf{w}(t),t) = \mathbf{C}\mathbf{w}(t) + \mathbf{D}\mathbf{u}(t)$

- $\mathbf{u} \in \mathbb{R}^p$: Vector of input variables
- corresponding Petrov-Galerkin PROM

$$\frac{d\mathbf{q}}{dt}(t) = (\mathbf{W}^T \mathbf{V})^{-1} \mathbf{W}^T (\mathbf{A} \mathbf{V} \mathbf{q}(t) + \mathbf{B} \mathbf{u}(t))$$

$$\mathbf{y}(t) = \mathbf{C} \mathbf{V} \mathbf{q}(t) + \mathbf{D} \mathbf{u}(t)$$

reduced-order LTI operators

$$\begin{aligned} \mathbf{A}_r &= & (\mathbf{W}^T \mathbf{V})^{-1} \mathbf{W}^T \mathbf{A} \mathbf{V} \in \mathbb{R}^{k \times k}, \ k \ll N \\ \mathbf{B}_r &= & (\mathbf{W}^T \mathbf{V})^{-1} \mathbf{W}^T \mathbf{B} \in \mathbb{R}^{k \times p} \\ \mathbf{C}_r &= & \mathbf{C} \mathbf{V} \in \mathbb{R}^{q \times k} \\ \mathbf{D}_r &= & \mathbf{D} \in \mathbb{R}^{q \times p} \end{aligned}$$

Galerkin and Petrov-Galerkin Projections

☐ Initial Condition

■ High-dimensional initial condition

$$\mathbf{w}(0) = \mathbf{w}_0 \in \mathbb{R}^N$$

Initial Condition

High-dimensional initial condition

$$\mathbf{w}(0) = \mathbf{w}_0 \in \mathbb{R}^N$$

■ Reduced-order initial condition (Petrov-Galerkin PROM)

$$\mathbf{q}(0) = (\mathbf{W}^T \mathbf{V})^{-1} \mathbf{W}^T \mathbf{w}_0 \in \mathbb{R}^k$$

Initial Condition

High-dimensional initial condition

$$\mathbf{w}(0) = \mathbf{w}_0 \in \mathbb{R}^N$$

■ Reduced-order initial condition (Petrov-Galerkin PROM)

$$\mathbf{q}(0) = (\mathbf{W}^T \mathbf{V})^{-1} \mathbf{W}^T \mathbf{w}_0 \in \mathbb{R}^k$$

■ in the high-dimensional state space, this gives

$$Vq(0) = V(W^TV)^{-1}W^Tw_0 \in \mathbb{R}^k$$

Initial Condition

High-dimensional initial condition

$$\mathbf{w}(0) = \mathbf{w}_0 \in \mathbb{R}^N$$

■ Reduced-order initial condition (Petrov-Galerkin PROM)

$$\mathbf{q}(0) = (\mathbf{W}^T \mathbf{V})^{-1} \mathbf{W}^T \mathbf{w}_0 \in \mathbb{R}^k$$

in the high-dimensional state space, this gives

$$Vq(0) = V(W^TV)^{-1}W^Tw_0 \in \mathbb{R}^k$$

 \blacksquare this is an oblique projection of \textbf{w}_0 onto range(V) parallel to range(W)

└ Initial Condition

High-dimensional initial condition

$$\mathbf{w}(0) = \mathbf{w}_0 \in \mathbb{R}^N$$

■ Reduced-order initial condition (Petrov-Galerkin PROM)

$$\mathbf{q}(0) = (\mathbf{W}^T \mathbf{V})^{-1} \mathbf{W}^T \mathbf{w}_0 \in \mathbb{R}^k$$

in the high-dimensional state space, this gives

$$Vq(0) = V(W^TV)^{-1}W^Tw_0 \in \mathbb{R}^k$$

- this is an oblique projection of \mathbf{w}_0 onto range(\mathbf{V}) parallel to range(\mathbf{W})
- Error in the subspace approximation of the initial condition

$$\mathbf{w}(0) - \mathbf{V}\mathbf{q}(0) = (\mathbf{I}_N - \mathbf{V}(\mathbf{W}^T\mathbf{V})^{-1}\mathbf{W}^T)\mathbf{w}_0$$

Galerkin and Petrov-Galerkin Projections

└ Initial Condition

High-dimensional initial condition

$$\mathbf{w}(0) = \mathbf{w}_0 \in \mathbb{R}^N$$

■ Reduced-order initial condition (Petrov-Galerkin PROM)

$$\mathbf{q}(0) = (\mathbf{W}^T \mathbf{V})^{-1} \mathbf{W}^T \mathbf{w}_0 \in \mathbb{R}^k$$

in the high-dimensional state space, this gives

$$Vq(0) = V(W^TV)^{-1}W^Tw_0 \in \mathbb{R}^k$$

- this is an oblique projection of w₀ onto range(V) parallel to range(W)
- Error in the subspace approximation of the initial condition

$$\mathbf{w}(0) - \mathbf{V}\mathbf{q}(0) = (\mathbf{I}_N - \mathbf{V}(\mathbf{W}^T\mathbf{V})^{-1}\mathbf{W}^T)\mathbf{w}_0$$

■ Alternative: use an affine approximation $\mathbf{w}(t) = \mathbf{w}(0) + \mathbf{V}\mathbf{q}(t)$ (see Homework #1)

Equivalent High-Dimensional Model

 Question: Which HDM would produce the same solution as that given by the following Petrov-Galerkin PROM? (this notion will prove to be useful for the stability analysis of a PROM)

- Question: Which HDM would produce the same solution as that given by the following Petrov-Galerkin PROM? (this notion will prove to be useful for the stability analysis of a PROM)
 - recall the reduced-order equations

$$\frac{d\mathbf{q}}{dt}(t) = (\mathbf{W}^{\mathsf{T}}\mathbf{V})^{-1}\mathbf{W}^{\mathsf{T}}\mathbf{f}(\mathbf{V}\mathbf{q}(t), t)
\mathbf{y}(t) = \mathbf{g}(\mathbf{V}\mathbf{q}(t), t)$$

- Question: Which HDM would produce the same solution as that given by the following Petrov-Galerkin PROM? (this notion will prove to be useful for the stability analysis of a PROM)
 - recall the reduced-order equations

$$\frac{d\mathbf{q}}{dt}(t) = (\mathbf{W}^{T}\mathbf{V})^{-1}\mathbf{W}^{T}\mathbf{f}(\mathbf{V}\mathbf{q}(t), t)$$
$$\mathbf{y}(t) = \mathbf{g}(\mathbf{V}\mathbf{q}(t), t)$$

the corresponding reconstructed high-dimensional state solution is

$$\tilde{\mathbf{w}}(t) = \mathbf{V}\mathbf{q}(t)$$

- Question: Which HDM would produce the same solution as that given by the following Petrov-Galerkin PROM? (this notion will prove to be useful for the stability analysis of a PROM)
 - recall the reduced-order equations

$$\frac{d\mathbf{q}}{dt}(t) = (\mathbf{W}^{\mathsf{T}}\mathbf{V})^{-1}\mathbf{W}^{\mathsf{T}}\mathbf{f}(\mathbf{V}\mathbf{q}(t), t)$$
$$\mathbf{y}(t) = \mathbf{g}(\mathbf{V}\mathbf{q}(t), t)$$

the corresponding reconstructed high-dimensional state solution is

$$\tilde{\mathbf{w}}(t) = \mathbf{V}\mathbf{q}(t)$$

 $lue{}$ pre-multiplying the above reduced-order equations by $lue{V}$ leads to

$$\frac{d\tilde{\mathbf{w}}}{dt}(t) = \mathbf{V}(\mathbf{W}^T\mathbf{V})^{-1}\mathbf{W}^T\mathbf{f}(\tilde{\mathbf{w}}(t), t)
\tilde{\mathbf{y}}(t) = \mathbf{g}(\tilde{\mathbf{w}}(t), t)$$

- Question: Which HDM would produce the same solution as that given by the following Petrov-Galerkin PROM? (this notion will prove to be useful for the stability analysis of a PROM)
 - recall the reduced-order equations

$$\frac{d\mathbf{q}}{dt}(t) = (\mathbf{W}^{\mathsf{T}}\mathbf{V})^{-1}\mathbf{W}^{\mathsf{T}}\mathbf{f}(\mathbf{V}\mathbf{q}(t), t)
\mathbf{y}(t) = \mathbf{g}(\mathbf{V}\mathbf{q}(t), t)$$

the corresponding reconstructed high-dimensional state solution is

$$\tilde{\mathbf{w}}(t) = \mathbf{V}\mathbf{q}(t)$$

 $lue{f v}$ pre-multiplying the above reduced-order equations by f V leads to

$$\frac{d\tilde{\mathbf{w}}}{dt}(t) = \mathbf{V}(\mathbf{W}^{T}\mathbf{V})^{-1}\mathbf{W}^{T}\mathbf{f}(\tilde{\mathbf{w}}(t), t)
\tilde{\mathbf{y}}(t) = \mathbf{g}(\tilde{\mathbf{w}}(t), t)$$

the associated initial condition is

$$\tilde{\mathbf{w}}(0) = \mathbf{V}\mathbf{q}(0) = \mathbf{V}(\mathbf{W}^T\mathbf{V})^{-1}\mathbf{W}^T\mathbf{w}(0)$$

lacktriangle Recall the projector $\Pi_{V,W}$

$$\mathbf{\Pi}_{\mathbf{V},\mathbf{W}} = \mathbf{V}(\mathbf{W}^T\mathbf{V})^{-1}\mathbf{W}^T$$

Definition

Equivalent HDM

$$\frac{d\tilde{\mathbf{w}}}{dt}(t) = \mathbf{\Pi}_{\mathbf{V},\mathbf{W}}\mathbf{f}(\tilde{\mathbf{w}}(t),t)$$
$$\tilde{\mathbf{y}}(t) = \mathbf{g}(\tilde{\mathbf{w}}(t),t)$$

with the initial condition

$$\tilde{\boldsymbol{w}}(0) = \boldsymbol{\Pi}_{\boldsymbol{V},\boldsymbol{W}} \boldsymbol{w}(0)$$

The equivalent dynamical function is

$$\tilde{f}(\cdot,\cdot) = \Pi_{V,W} f(\cdot,\cdot)$$

Equivalent High-Dimensional Model

Equivalence Between Two Projection-Based Reduced-Order Models

Consider the Petrov-Galerkin PROM

$$\frac{d\mathbf{q}}{dt}(t) = (\mathbf{W}^T \mathbf{V})^{-1} \mathbf{W}^T \mathbf{f}(\mathbf{V} \mathbf{q}(t), t)
\mathbf{y}(t) \approx \mathbf{g}(\mathbf{V} \mathbf{q}(t), t)
\mathbf{q}(0) = (\mathbf{W}^T \mathbf{V})^{-1} \mathbf{W}^T \mathbf{w}(0)$$

Lemma

Choosing two different bases \mathbf{V}' and \mathbf{W}' that respectively span the same subspaces \mathcal{V} and \mathcal{W} results in the same reconstructed solution $\mathbf{w}(t)$

In other words, subspaces are more important than bases ...

Equivalent High-Dimensional Model

Equivalence Between Two Projection-Based Reduced-Order Models

- Consequences
 - lacktriangle given a HDM, a corresponding PROM is uniquely defined by its associated Petrov-Galerkin projector $\Pi_{V,W}$

Equivalent High-Dimensional Model

Equivalence Between Two Projection-Based Reduced-Order Models

- Consequences
 - lacktriangle given a HDM, a corresponding PROM is uniquely defined by its associated Petrov-Galerkin projector $\Pi_{V,W}$
 - this projector is itself uniquely defined by the two subspaces

$$\mathcal{W} = \mathsf{range}(\mathbf{W}) \text{ and } \mathcal{V} = \mathsf{range}(\mathbf{V})$$

Equivalent High-Dimensional Model

Equivalence Between Two Projection-Based Reduced-Order Models

- Consequences
 - given a HDM, a corresponding PROM is uniquely defined by its associated Petrov-Galerkin projector $\Pi_{V,W}$
 - this projector is itself uniquely defined by the two subspaces

$$\mathcal{W} = \mathsf{range}(\boldsymbol{\mathsf{W}})$$
 and $\mathcal{V} = \mathsf{range}(\boldsymbol{\mathsf{V}})$

hence

$$\mathsf{PROM} \Leftrightarrow (\mathcal{W}, \mathcal{V})$$

Equivalent High-Dimensional Model

Lequivalence Between Two Projection-Based Reduced-Order Models

- Consequences
 - lacktriangle given a HDM, a corresponding PROM is uniquely defined by its associated Petrov-Galerkin projector $\Pi_{V,W}$
 - this projector is itself uniquely defined by the two subspaces

$$\mathcal{W} = \mathsf{range}(\mathbf{W}) \text{ and } \mathcal{V} = \mathsf{range}(\mathbf{V})$$

hence

$$\mathsf{PROM} \Leftrightarrow (\mathcal{W}, \mathcal{V})$$

• \mathcal{W} and \mathcal{V} belong to the **Grassmann manifold** $\mathcal{G}(k, N)$, which is the set of all subspaces of dimension k in \mathbb{R}^N

Error Analysis

Definition

Question: Can we characterize the error of the solution computed using a PROM relative to the solution obtained using the HDM?

$$\mathcal{E}_{\mathsf{PROM}}(t) = \mathbf{w}(t) - \tilde{\mathbf{w}}(t)$$

= $\mathbf{w}(t) - \mathbf{V}\mathbf{q}(t)$

- assume here a Galerkin projection and an associated orthogonal basis
 - $\mathbf{V}^T\mathbf{V} = \mathbf{I}_k$
 - projector $\Pi_{\mathbf{V},\mathbf{V}} = \mathbf{V}\mathbf{V}^T$

∟Error Analysis

Definition

Question: Can we characterize the error of the solution computed using a PROM relative to the solution obtained using the HDM?

$$\mathcal{E}_{\mathsf{PROM}}(t) = \mathbf{w}(t) - \tilde{\mathbf{w}}(t)$$

= $\mathbf{w}(t) - \mathbf{V}\mathbf{q}(t)$

- assume here a Galerkin projection and an associated orthogonal basis
 - $V^TV = I_k$
 - projector $\Pi_{\mathbf{V},\mathbf{V}} = \mathbf{V}\mathbf{V}^T$
- the error vector can be decomposed into two orthogonal components

$$\begin{split} \mathcal{E}_{\mathsf{PROM}}(t) &= & \mathbf{w}(t) - \mathbf{\Pi}_{\mathsf{V},\mathsf{V}} \mathbf{w}(t) + \mathbf{\Pi}_{\mathsf{V},\mathsf{V}} \mathbf{w}(t) - \mathsf{V} \mathbf{q}(t) \\ &= & (\mathbf{I}_{N} - \mathbf{\Pi}_{\mathsf{V},\mathsf{V}}) \, \mathbf{w}(t) + \mathsf{V} \left(\mathbf{V}^{\mathsf{T}} \mathbf{w}(t) - \mathbf{q}(t) \right) \\ &= & \mathcal{E}_{\mathsf{V}^{\perp}}(t) + \mathcal{E}_{\mathsf{V}}(t) \end{split}$$

Error Analysis

Orthogonal Components of the Error Vector

■ Error component orthogonal to V

$$\mathcal{E}_{\mathbf{V}^{\perp}}(t) = (\mathbf{I}_{N} - \mathbf{\Pi}_{\mathbf{V},\mathbf{V}}) \mathbf{w}(t)$$

Interpretation: The exact trajectory does not strictly belong to $\mathcal{V} = \mathsf{range}(\mathbf{V}) \Rightarrow \mathit{projection\ error}$

Error Analysis

Orthogonal Components of the Error Vector

Error component orthogonal to V

$$\mathcal{E}_{\mathbf{V}^{\perp}}(t) = (\mathbf{I}_N - \mathbf{\Pi}_{\mathbf{V},\mathbf{V}}) \mathbf{w}(t)$$

Interpretation: The exact trajectory does not strictly belong to $\mathcal{V} = \mathsf{range}(\mathbf{V}) \Rightarrow \mathit{projection\ error}$

■ Error component parallel to V

$$\mathcal{E}_{\mathbf{V}}(t) = \mathbf{V} \left(\mathbf{V}^T \mathbf{w}(t) - \mathbf{q}(t) \right)$$

Interpretation: An "equivalent" but different dynamical system is solved \Rightarrow modeling error

Error Analysis

lueOrthogonal Components of the Error Vector

Error component orthogonal to V

$$\mathcal{E}_{\mathbf{V}^{\perp}}(t) = (\mathbf{I}_N - \mathbf{\Pi}_{\mathbf{V},\mathbf{V}}) \mathbf{w}(t)$$

Interpretation: The exact trajectory does not strictly belong to $\mathcal{V} = \mathsf{range}(\mathbf{V}) \Rightarrow \mathit{projection\ error}$

Error component parallel to V

$$\mathcal{E}_{\mathbf{V}}(t) = \mathbf{V} \left(\mathbf{V}^T \mathbf{w}(t) - \mathbf{q}(t)
ight)$$

Interpretation: An "equivalent" but *different* dynamical system is solved ⇒ *modeling error*

Note that $\mathcal{E}_{\mathbf{V}^{\perp}}(t)$ can be computed without executing the PROM and therefore can provide an **a priori** error estimate

Error Analysis

Orthogonal Components of the Error Vector

Error Analysis

└Orthogonal Components of the Error Vector

Adapted from A New Look at Proper Orthogonal Decomposition, Rathiman and Petzold, SIAM Journal of Numerical Analysis, Vol. 41, No. 5, 2003.

Error Analysis

└Orthogonal Components of the Error Vector

- Again, consider the case of an orthogonal Galerkin projection
- $lue{}$ One can derive an ODE governing the behavior of the error component lying in $\mathcal V$ in terms of that lying in $\mathcal V^\perp$

$$\frac{d\mathcal{E}_{\mathbf{V}}}{dt}(t) = \mathbf{\Pi}_{\mathbf{V},\mathbf{V}}(\mathbf{f}(\mathbf{w}(t),t) - \mathbf{f}(\mathbf{w}(t) - \mathcal{E}_{\mathbf{V}}(t) - \mathcal{E}_{\mathbf{V}^{\perp}}(t),t))$$

$$\mathcal{E}_{\mathbf{V}}(0) = \mathbf{0}$$

■ In the case of an autonomous linear system

$$\frac{d\mathbf{w}}{dt}(t) = \mathbf{A}\mathbf{w}(t)$$

the error ODE has the simple form

$$\boxed{rac{d\mathcal{E}_{\mathbf{V}}}{dt}(t) = \mathbf{\Pi}_{\mathbf{V},\mathbf{V}}\left(\mathbf{A}\mathcal{E}_{\mathbf{V}}(t)
ight) + \mathbf{\Pi}_{\mathbf{V},\mathbf{V}}\left(\mathbf{A}\mathcal{E}_{\mathbf{V}^{\perp}}(t)
ight)}$$

where $\mathcal{E}_{\mathbf{V}^{\perp}}(t)$ acts as a **forcing term**

∟Error Analysis

- └Orthogonal Components of the Error Vector
 - Then, one can then derive the following error bound

Theorem

$$\|\mathcal{E}_{PROM}(t)\| \leq \left(\|F(T, \boldsymbol{\mathsf{V}}^T\boldsymbol{\mathsf{A}}\boldsymbol{\mathsf{V}})\|_2\|\boldsymbol{\mathsf{V}}^T\boldsymbol{\mathsf{A}}\boldsymbol{\mathsf{V}}^\perp\|_2 + 1\right)\|\mathcal{E}_{\boldsymbol{\mathsf{V}}^\perp}(t)\|$$

where $\|\cdot\|$ denotes the $\mathcal{L}_2\left([0,T],\mathbb{R}^N\right)$ function norm, $\|f\|_2 = \sqrt{\int_0^T \|f(\tau)\|_2^2 d\tau}$, and $F(T,\mathbf{M})$ denotes the linear operator defined by

$$F(T, \mathbf{M}) : \mathcal{L}_2([0, T], \mathbb{R}^N) \longrightarrow \mathcal{L}_2([0, T], \mathbb{R}^N)$$

$$\mathbf{u} \longmapsto t \longmapsto \left(\int_0^t e^{\mathbf{M}(t-\tau)} \mathbf{u}(\tau) d\tau \right)$$

Error bounds for the nonlinear case can be found in A New Look at Proper Orthogonal Decomposition, Rathiman and Petzold, SIAM Journal of Numerical Analysis, Vol. 41, No. 5, 2003

If **A** is **symmetric** and the projection is an **orthogonal Galerkin** projection, the stability of the HDM is preserved during the reduction process (Hint: Consider the equivalent HDM and analyze the sign of $\frac{d}{dt}(\tilde{\mathbf{w}}^T\tilde{\mathbf{w}})$)

- If **A** is **symmetric** and the projection is an **orthogonal Galerkin** projection, the stability of the HDM is preserved during the reduction process (Hint: Consider the equivalent HDM and analyze the sign of $\frac{d}{dt}(\tilde{\mathbf{w}}^T\tilde{\mathbf{w}})$)
- However, if A is not symmetric, the stability of the HDM is not preserved: For example, consider a linear HDM characterized by the following unsymmetric matrix

$$\mathbf{A} = \left[\begin{array}{cc} 1 & -3.5 \\ 0.6 & -2 \end{array} \right]$$

consider next the reduced-order basis V

$$\mathbf{V} = \left[\begin{array}{c} 1 \\ 0 \end{array} \right]$$

- If **A** is **symmetric** and the projection is an **orthogonal Galerkin** projection, the stability of the HDM is preserved during the reduction process (Hint: Consider the equivalent HDM and analyze the sign of $\frac{d}{dt}(\tilde{\mathbf{w}}^T\tilde{\mathbf{w}})$)
- However, if A is not symmetric, the stability of the HDM is not preserved: For example, consider a linear HDM characterized by the following unsymmetric matrix

$$\mathbf{A} = \left[\begin{array}{cc} 1 & -3.5 \\ 0.6 & -2 \end{array} \right]$$

- the eigenvalues of **A** are $\{-0.1127, -0.8873\}$ (stable model)
- consider next the reduced-order basis **V**

$$\mathbf{V} = \left[\begin{array}{c} 1 \\ 0 \end{array} \right]$$

- If **A** is **symmetric** and the projection is an **orthogonal Galerkin** projection, the stability of the HDM is preserved during the reduction process (Hint: Consider the equivalent HDM and analyze the sign of $\frac{d}{dt}(\tilde{\mathbf{w}}^T\tilde{\mathbf{w}})$)
- However, if A is not symmetric, the stability of the HDM is not preserved: For example, consider a linear HDM characterized by the following unsymmetric matrix

$$\mathbf{A} = \left[\begin{array}{cc} 1 & -3.5 \\ 0.6 & -2 \end{array} \right]$$

- the eigenvalues of **A** are $\{-0.1127, -0.8873\}$ (stable model)
- consider next the reduced-order basis V

$$\mathbf{V} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

 $\mathbf{A}_r = [1]$ and therefore the Galerkin PROM is not asymptotically stable