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L High-Dimensional Model

m Ordinary Differential Equation (ODE)

dw
o (1) = f(w(t). 1) (1)

m w € R": State variable
m initial condition: w(0) = wo

m Output equation
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L High-Dimensional Model

m Ordinary Differential Equation (ODE)
dw
o (1) = f(w(t). 1) (1)

m w € R": State variable
m initial condition: w(0) = wo

m Output equation

m Note the absence of a parameter dependence for now
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LLow Dimensionality of Trajectories

m In many cases, the trajectories of the solutions computed using
High-Dimensional Models (HDMs) are contained in
low-dimensional subspaces
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LLow Dimensionality of Trajectories

m In many cases, the trajectories of the solutions computed using
High-Dimensional Models (HDMs) are contained in
low-dimensional subspaces

m Let S denote such a subspace and let ks = dim (S)

m The state variable — or simply, the state — can be written exactly as
a linear combination of vectors spanning S

w(t) = qi(t)vi + -+ grs (t)Vis
B Vs =|[v; - vis] € RY™*s is a time-invariant basis for S

m (qi(t), -+, gis(t)) are the generalized coordinates for w(t) in S
m q(t) = [q1(t) -+ qus(t)]” € R*S is the reduced-order state vector
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LLow Dimensionality of Trajectories

m In many cases, the trajectories of the solutions computed using
High-Dimensional Models (HDMs) are contained in
low-dimensional subspaces

m Let S denote such a subspace and let ks = dim (S)

m The state variable — or simply, the state — can be written exactly as
a linear combination of vectors spanning S

w(t) = qi(t)vi + -+ grs (t)Vis
B Vs =|[v; - vis] € RY™*s is a time-invariant basis for S

m (qi(t), -+, gis(t)) are the generalized coordinates for w(t) in S
m q(t) = [q1(t) -+ qus(t)]” € R*S is the reduced-order state vector

® In matrix form, the above expansion can be written as

W(t) = Vsq(t)
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m Often, the exact basis Vs is unknown but can be estimated
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LLow Dimensionality of Trajectories

m Often, the exact basis Vs is unknown but can be estimated
empirically by a trial basis V € RV*k k < N

m k and ks may be different

m The following ansatz (educated guess, assumption, etc. to be
verified later) is considered

w(t) ~ Vq(t)
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LLow Dimensionality of Trajectories

m Often, the exact basis Vs is unknown but can be estimated
empirically by a trial basis V € RV*k k < N

m k and ks may be different

m The following ansatz (educated guess, assumption, etc. to be
verified later) is considered

w(t) ~ Vq(t)

m Substituting the above subspace approximation in Eq. (1) and in
Eq. (2) leads to
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y(t) ~ g(Va(t),1)
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where r(t) is the residual due to the subspace approximation
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LLow Dimensionality of Trajectories

m The residual r(t) € RV accounts for the fact that Vq(t) is not in
general an exact solution of problem (1)
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L Solution Approximation

LLow Dimensionality of Trajectories

m The residual r(t) € RV accounts for the fact that Vq(t) is not in
general an exact solution of problem (1)

m Since the basis V is assumed to be time-invariant

d dq
& (va(e) = v

and therefore

v%(r) — F(Va(t),t) +r(t)

y(t)

Q
B
<
2
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L Solution Approximation

LLow Dimensionality of Trajectories

m The residual r(t) € RV accounts for the fact that Vq(t) is not in
general an exact solution of problem (1)

m Since the basis V is assumed to be time-invariant

d dq
& (va(e) = v

and therefore

v%(r) — F(Va(t),t) +r(t)
y(t) ~ g(Va(t),t)

m Set of N differential equations in terms of k unknowns

ql(t)7 T 7qk(t)
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L Solution Approximation

LLow Dimensionality of Trajectories

m The residual r(t) € RV accounts for the fact that Vq(t) is not in
general an exact solution of problem (1)

m Since the basis V is assumed to be time-invariant

d dq
& (va(e) = v

and therefore

d
Ve = f(Va(e). 1) + (1)
y(t) ~ g(Va(t),t)
m Set of N differential equations in terms of k unknowns

ql(t)7 T 7qk(t)

m Over-determined system (k < N)
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m Let w and y be two vectors in RV

m w and y are orthogonal to each other with respect to the canonical
inner product in R" if and only if

wy=0

m w and y are orthonormal to each other with respect to the canonical
inner product in RY if and only if w'y = 0, and

w'w=1, and yTy =1

m Let V be a matrix in RV*k
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|—Orthogonal and Oblique Projections
LOrthogonality

m Let w and y be two vectors in RV

m w and y are orthogonal to each other with respect to the canonical
inner product in R" if and only if

wy=0

m w and y are orthonormal to each other with respect to the canonical
inner product in RY if and only if w'y = 0, and

w'w=1, and yTy =1

m Let V be a matrix in RV*k

m V is an orthogonal (orthonormal) matrix if and only if
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L Projections

A matrix M € RV*N is a projection matrix (or projective matrix,
idempotent matrix) if
n>=n

m Some direct consequences
m range(M) is invariant under the action of N
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|—Orthogonal and Oblique Projections

L Projections

A matrix M € RV*N is a projection matrix (or projective matrix,
idempotent matrix) if
n>=n

m Some direct consequences
m range(M) is invariant under the action of N
m 0 and 1 are the only possible eigenvalues of I
m I is diagonalizable (follows from the previous consequence)
m let k be the rank of IN: then, there exists a basis X such that

n:x{'k X1

On—«k ]

(follows from the two previous consequences)

8/38
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L Projections

m Consider |
n=x| * X!
o
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|—Orthogonal and Oblique Projections

L Projections

m Consider |
n=x| ~ X1
o]

m decompose X as
X=[Xi X ], where X; € RV*¥ and X, € RVX(N=H)

then, Yw € RV
B NMw € range(X;) = range() = S1
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m decompose X as
X=[Xi X ], where X; € RV*¥ and X, € RVX(N=H)

then, Yw € RV
B NMw € range(X;) = range() = S1
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|—Orthogonal and Oblique Projections

L Projections

m Consider |
n=x| ~ X1
o]

m decompose X as
X=[Xi X ], where X; € RV*¥ and X, € RVX(N=H)

then, Yw € RV
B NMw € range(X;) = range() = S1
B w — Mw € range(Xz) = Ker(N) = &>

m [1 defines the projection onto S; parallel to S,

Rstl@SQ
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m Consider the case where Sy, = Sf‘

m Let V € RV*K be an orthogonal matrix whose columns span Sy,
and let w € RVN: The orthogonal projection of w onto the subspace
51 is

VV'w

10/38



AA216/CME345: MODEL REDUCTION - PMOR
|—Orthogonal and Oblique Projections
LOrthogonal Projections

m Consider the case where Sy, = Sf‘

m Let V € RV*¥ be an orthogonal matrix whose columns span Sy,
and let w € RVN: The orthogonal projection of w onto the subspace
51 is
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m the equivalent projection matrix is
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|—Orthogonal and Oblique Projections
LOrthogonal Projections

m Consider the case where Sy, = Sf‘

m Let V € RV*¥ be an orthogonal matrix whose columns span Sy,
and let w € RVN: The orthogonal projection of w onto the subspace
51 is

VAVARY

m the equivalent projection matrix is

m special case #1: If w belongs to S; — that is, w = Vq, where q € R*

n =W'w=VV'Vq=Vq=
v,vW w q q=w
1
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LOrthogonal Projections

m Consider the case where Sy, = Sf‘

m Let V € RV*¥ be an orthogonal matrix whose columns span Sy,
and let w € RVN: The orthogonal projection of w onto the subspace
51 is

VAVARY

m the equivalent projection matrix is

m special case #1: If w belongs to S; — that is, w = Vq, where q € R*

n =W'w=VV'Vq=Vq=
v,vW w q q=w
1

m special case #2: If w is orthogonal to S; — that is, V'w = 0

Mvyw =VV'w =0
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LOrthogonal Projections

Myyw =VV'w
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LOrthogonal Projections

m Example: Helix in 3D (N = 3)

m let w(t) € R® define a curve parameterized by t € [0,67] as follows

wa(t) cos(t)
w(t)=| wa(t) | = | sin(t)
ws(t) t
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LOrthogonal Projections

m Orthogonal projection onto
m range(V) = span(e;, e2)

cos(t)
n\/7vw(t) = sin(t)
0
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LOrthogonal Projections

m Orthogonal projection onto
m range(V) = span(ez, e3)
0

nv,vw(t) = sin(t)
t
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LOrthogonal Projections

—w(t)
— Iy vw(t)

m Orthogonal projection onto
m range(V) = span(e;, es)

cos(t)
n\/7vw(t) = 0
t
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St
m Let V € RV*K and W € RV*K be two full-column rank matrices

whose columns span respectively S; and Sy
m The projection of w € RV onto the subspace S; parallel to S5 is

V(WV)'wTw

m the equivalent projection matrix is

’ Mvw=V(W'V)'w’
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LOblique Projections
m The following is the general case, where S, may be distinct from
St
m Let V € RV*K and W € RV*K be two full-column rank matrices

whose columns span respectively S; and Sy
m The projection of w € RV onto the subspace S; parallel to S5 is

V(WV)'wTw

m the equivalent projection matrix is

’ Mvw=V(W'V)'w’

m special case #1: If w belongs to S1, then w = Vq, where q € R,
and
Mvww=V(W'V)'WVq=Vq
—_—
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LOblique Projections
m The following is the general case, where S, may be distinct from
St
m Let V € RV*K and W € RV*K be two full-column rank matrices

whose columns span respectively S; and Sy
m The projection of w € RV onto the subspace S; parallel to S5 is

V(WV)'wTw

m the equivalent projection matrix is

’ Mvw=V(W'V)'w’

m special case #1: If w belongs to S1, then w = Vq, where q € R,
and
Mvww=V(W'V)'WVq=Vq
—_—
I
m special case #2: If w is orthogonal to S~ — that is, W' w = 0, then
n =VW'V)'Ww=0
vww = V( ) W'w
0

16/38
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|—Oblique Projections

Myww =V(W'V)'W'w

SQ = range(W) _

Lo

/-/"‘J. 7 S| = range(V)
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|—Orthogonal and Oblique Projections
LOblique Projections

m Example: Helix in 3D

m bases
V=[e: e], W=[e:1+e; e+ ej]

18/38



AA216/CME345: MODEL REDUCTION - PMOR
|—Orthogonal and Oblique Projections
LOblique Projections

m Example: Helix in 3D

m bases
V=[e: e], W=[e:1+e; e+ ej]

m projection matrix

Mvw=VW' V) 'w’ =

O O
o = O
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|—Orthogonal and Oblique Projections
LOblique Projections

m Example: Helix in 3D

m bases
V=[e: e], W=[e:1+e; e+ ej]

m projection matrix

1 0 1
Mvw=VW'V)'W =] 0 1 1
0 00

m projected helix equation

1 0 1 cos(t) cos(t) + t
Myww(t)=| 0 1 1 sin(t) | = | sin(t)+t
0 0 O

18/38
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—w(t)

— v ww(t)

15
=10
=

5

0

15
10 15
5 10
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L Galerkin and Petrov-Galerkin Projections
LProjection-Based Model Order Reduction

m Start from a HDM for the problem of interest

dw
T = o))

y(t) = g(w(t)1)
w(0) = wy

B w € RY: Vector of state variables
m y € R?: Vector of output variables (typically g < N)
mf(,) € R": Completes the specification of the HDM-based problem
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L Galerkin and Petrov-Galerkin Projections
LProjection-Based Model Order Reduction

m The goal is to construct a Projection-based Reduced-Order
Model (PROM)

dq B
o = ),

y(t) g-(a(t), t)

%

where

m q € R*: Vector of reduced-order state variables, k < N
m y € R% Vector of output variables
m f.(-,-) € RX: Completes the description of the PROM

m The discussion of the initial condition is deferred to later
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L Requirements

m A Projection-based Model Order Reduction (PMOR) method should

m be computationally tractable
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L Galerkin and Petrov-Galerkin Projections

L Requirements

m A Projection-based Model Order Reduction (PMOR) method should

m be computationally tractable

m be applicable to a large class of dynamical systems

m minimize a certain measure of the error between the solution
computed using the HDM and that computed using the PROM
(error criterion)

m preserve as many properties of the HDM as possible

22/38
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L Galerkin and Petrov-Galerkin Projections

L Petrov-Galerkin Projection

m Recall the residual r(t) € RV*k introduced by approximating w(t)

as Vq(t)
V96 = F(Va(e). ) + r(t) & r() = VI (1) — £ (Va(e). )
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L Galerkin and Petrov-Galerkin Projections

LPetrov—GaIerkin Projection

m Recall the residual r(t) € RV*k introduced by approximating w(t)

as Vq(t)
V96 = F(Va(e). ) + r(t) & r() = VI (1) — £ (Va(e). )

m Constrain this residual to be orthogonal to a subspace W defined by
a test basis W € RV*k — that is, compute q(t) such that

Wr(t) =0

m This leads to the descriptive form of the governing equations of the
Petrov-Galerkin PROM

WTV%(t) = WTf(Vq(t), t)

23/38
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L Galerkin and Petrov-Galerkin Projections

LPetrov—GaIerkin Projection

m Assume that W'V is non-singular: In this case, the PROM can be
re-written in the non-descriptive form

D) = W) WHVa(0), )

y(t) g(Va(t), t)

Q
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L Galerkin and Petrov-Galerkin Projections

LPetrov—GaIerkin Projection

m Assume that W'V is non-singular: In this case, the PROM can be
re-written in the non-descriptive form

) = W) WHva(e). )
y(t) ~ g(Vq(t),t)

m After the above reduced-order equations have been solved, the
subspace approximation of the high-dimensional state vector can be
reconstructed, if needed, as follows

w(t) = Vq(t)

24/38
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L Galerkin Projection

m If W =V, the projection method is called a Galerkin projection and
the resulting PROM is called a Galerkin PROM
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L Galerkin and Petrov-Galerkin Projections

L Galerkin Projection

m If W =V, the projection method is called a Galerkin projection and
the resulting PROM is called a Galerkin PROM

m If in addition V is orthogonal, the reduced-order equations become

Wiy = VTRV, 0

y(t) g(Va(t), t)

Q
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L Galerkin and Petrov-Galerkin Projections

LLinear Time-Invariant Systems
m Special case: Linear Time-Invariant (LTI) systems

= Aw(t)+ Bu(t)

t
t) = Cw(t)+ Du(t)

m u € RP: Vector of input variables
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t
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m u € RP: Vector of input variables
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I—Galerkin and Petrov-Galerkin Projections
LLinear Time-Invariant Systems
m Special case: Linear Time-Invariant (LTI) systems
t) = Aw(t)+ Bu(t)
t) = Cw(t)+ Du(t)

m u € RP: Vector of input variables
m corresponding Petrov-Galerkin PROM

d _
D = (W)W (AVaq() + Bu(1))
y(t) = CVq(t)+ Du(t)

m reduced-order LTI operators
A, = (WV)'WTAV e R*F k< N
B, = (W'V)'W'BeR"”
C. = CVeR™
D, = DgcRY”

26 /38
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m High-dimensional initial condition
W(O) = Wp € RN
m Reduced-order initial condition (Petrov-Galerkin PROM)

q(0) = (WTV)'WTw, € R

m in the high-dimensional state space, this gives
Vq(0) = V(W'V) "W w, € R

m this is an oblique projection of wg onto range(V) parallel to
range(W)
m Error in the subspace approximation of the initial condition

w(0) — Vq(0) = (Iy — V(WTV)'W w,

m Alternative: use an affine approximation w(t) = w(0) + Vq(t) (see
Homework #1)
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m Question: Which HDM would produce the same solution as that
given by the following Petrov-Galerkin PROM? (this notion will
prove to be useful for the stability analysis of a PROM)

m recall the reduced-order equations
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y(t) g(Va(t), 1)
m the corresponding reconstructed high-dimensional state solution is
W(t) = Vq(t)
m pre-multiplying the above reduced-order equations by V leads to
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m Question: Which HDM would produce the same solution as that
given by the following Petrov-Galerkin PROM? (this notion will
prove to be useful for the stability analysis of a PROM)

m recall the reduced-order equations

W) = WV)WTH(Va(2), 1)
y(t) = g(Va(t),t)
m the corresponding reconstructed high-dimensional state solution is
W(t) = Vq(t)
m pre-multiplying the above reduced-order equations by V leads to
C(’T":’(t) — V(WTV) W (e), £)

§(t) = s(Ww(t),t)
m the associated initial condition is

w(0) = Vq(0) = V(W' V)" 'W w(0)
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|—Equivalent High-Dimensional Model

m Recall the projector My w

Myvw=V(W'V)'w’

Definition
Equivalent HDM

Q
3

(1) = Mvwf(w(t) 1)
g(w(t), t)

Q‘
<
—~~

~
N—r

Il

with the initial condition

The equivalent dynamical function is
f(,-) = Nvwf(,-)
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|—Equiv.’;\lent High-Dimensional Model

LEquivalence Between Two Projection-Based Reduced-Order Models

m Consider the Petrov-Galerkin PROM

%(t) = (WTV) 'WT(Vq(t), )
y(t) ~ g(Va(t).t)
a(0) = (W'V)'W'w(0)

Choosing two different bases \I' and W' that respectively span the same
subspaces V and W results in the same reconstructed solution w(t)

In other words, subspaces are more important than bases ...
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LEquivalence Between Two Projection-Based Reduced-Order Models

m Consequences

m given a HDM, a corresponding PROM is uniquely defined by its
associated Petrov-Galerkin projector My, w
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LEquivalence Between Two Projection-Based Reduced-Order Models

m Consequences

m given a HDM, a corresponding PROM is uniquely defined by its
associated Petrov-Galerkin projector My, w
m this projector is itself uniquely defined by the two subspaces

W = range(W) and V = range(V)

m hence

] PROM < (W, V)\

m W and V belong to the Grassmann manifold G(k, N), which is the
set of all subspaces of dimension k in RV
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|—Error Analysis
L Definition

m Question: Can we characterize the error of the solution computed
using a PROM relative to the solution obtained using the HDM?

Eprom(t) = w(t) —W(t)
— w(t) - Va(t)

m assume here a Galerkin projection and an associated orthogonal basis
mViV=I,
m projector My y = vvT
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m Question: Can we characterize the error of the solution computed
using a PROM relative to the solution obtained using the HDM?

Eprom(t) = w(t) —W(t)
— w(t) - Va(t)

m assume here a Galerkin projection and an associated orthogonal basis
mViV=I,
m projector My y = vvT

m the error vector can be decomposed into two orthogonal
components

Eprom(t) = w(t) — My yw(t)+ My yvw(t) — Vq(t)
(v = Mvw) w(e) + V (V7w(e) - a())
& (t) + ()
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|—Error Analysis
LOrthogonal Components of the Error Vector

m Error component orthogonal to V

’gVL(t) = (In — Ov,v) w(t) ‘

Interpretation: The exact trajectory does not strictly belong to
V = range(V) = projection error
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m Error component orthogonal to V

’gVL(t) = (In — Ov,v) w(t) ‘

Interpretation: The exact trajectory does not strictly belong to
V = range(V) = projection error
m Error component parallel to V

Ev(t) =V (VTw(t) —q(t))

Interpretation: An “equivalent” but different dynamical system is
solved = modeling error

m Note that &y (t) can be computed without executing the PROM
and therefore can provide an a priori error estimate
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|—Orthogonal Components of the Error Vector

Adapted from A New Look at Proper Orthogonal Decomposition, Rathiman and Petzold, SIAM
Journal of Numerical Analysis, Vol. 41, No. 5, 2003.
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|—Error Analysis
LOrthogonal Components of the Error Vector

m Again, consider the case of an orthogonal Galerkin projection
m One can derive an ODE governing the behavior of the error
component lying in V in terms of that lying in V*

d&
T = My (Fw(o), &) — F(w(e) — Eu(t) — & (1), 1))
&) =0
m In the case of an autonomous linear system
dw
I(t) = Aw(t)

the error ODE has the simple form

dey

4 (1) = Nvy (A&y(1)) + Ny (Aly. (1))

where &y (t) acts as a forcing term
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LOrthogonal Components of the Error Vector

m Then, one can then derive the following error bound

I€prom(t)|| < (IF(T, VT AV)|2[VT AV |2 + 1) [[Ey (1)

where || - || denotes the L ([0, T],R") function norm,
]2 = \/fOT | f(7)||3d7, and F(T,M) denotes the linear operator
defined by

F(T,M): Lo ([0, TI,RY) — £ ([0, T],R")
u — t—— (/t eM(t—‘r)u(T)dT)
0

m Error bounds for the nonlinear case can be found in A New Look at
Proper Orthogonal Decomposition, Rathiman and Petzold, SIAM
Journal of Numerical Analysis, Vol. 41, No. 5, 2003
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L Preservation of Model Stability

m If A is symmetric and the projection is an orthogonal Galerkin
projection, the stability of the HDM is preserved during the
reduction process (Hint: Consider the equivalent HDM and analyze

the sign of %(WTW))
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m If A is symmetric and the projection is an orthogonal Galerkin
projection, the stability of the HDM is preserved during the
reduction process (Hint: Consider the equivalent HDM and analyze

: d 1.
the sign of E(wTw))

m However, if A is not symmetric, the stability of the HDM is not
preserved: For example, consider a linear HDM characterized by the
following unsymmetric matrix

1 35
A_[0.6 2]

m consider next the reduced-order basis V
1
v=1o]
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the sign of E(wTw))

m However, if A is not symmetric, the stability of the HDM is not
preserved: For example, consider a linear HDM characterized by the
following unsymmetric matrix

1 35
A_[0.6 2]

m the eigenvalues of A are {—0.1127, —0.8873} (stable model)
m consider next the reduced-order basis V
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L Preservation of Model Stability

m If A is symmetric and the projection is an orthogonal Galerkin
projection, the stability of the HDM is preserved during the
reduction process (Hint: Consider the equivalent HDM and analyze

d
the sign of E(WTW))
m However, if A is not symmetric, the stability of the HDM is not

preserved: For example, consider a linear HDM characterized by the
following unsymmetric matrix

1 35
A_[0.6 2]

m the eigenvalues of A are {—0.1127, —0.8873} (stable model)
m consider next the reduced-order basis V

<[]

m A, = [1] and therefore the Galerkin PROM is not asymptotically
stable
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