AA216/CME345: MODEL REDUCTION - PMOR

AA216/CME345: MODEL REDUCTION
 Projection-based Model Order Reduction

Charbel Farhat
Stanford University
cfarhat@stanford.edu

AA216/CME345: MODEL REDUCTION - PMOR

Outline

1 Solution Approximation
2 Orthogonal and Oblique Projections
3 Galerkin and Petrov-Galerkin Projections
4 Equivalent High-Dimensional Model
5 Error Analysis
6 Preservation of Model Stability

AA216/CME345: MODEL REDUCTION - PMOR

Solution Approximation

High-Dimensional Model

- Ordinary Differential Equation (ODE)

$$
\begin{equation*}
\frac{d \mathbf{w}}{d t}(t)=\mathbf{f}(\mathbf{w}(t), t) \tag{1}
\end{equation*}
$$

- w $\in \mathbb{R}^{N}$: State variable
- initial condition: $\mathbf{w}(0)=\mathbf{w}_{0}$
- Output equation

$$
\begin{equation*}
\mathbf{y}(t)=\mathbf{g}(\mathbf{w}(t), t) \tag{2}
\end{equation*}
$$

AA216/CME345: MODEL REDUCTION - PMOR

Solution Approximation

High-Dimensional Model

- Ordinary Differential Equation (ODE)

$$
\begin{equation*}
\frac{d \mathbf{w}}{d t}(t)=\mathbf{f}(\mathbf{w}(t), t) \tag{1}
\end{equation*}
$$

- w $\in \mathbb{R}^{N}$: State variable
- initial condition: $\mathbf{w}(0)=\mathbf{w}_{0}$
- Output equation

$$
\begin{equation*}
\mathbf{y}(t)=\mathbf{g}(\mathbf{w}(t), t) \tag{2}
\end{equation*}
$$

- Note the absence of a parameter dependence for now

AA216/CME345: MODEL REDUCTION - PMOR

Solution Approximation

Low Dimensionality of Trajectories

■ In many cases, the trajectories of the solutions computed using High-Dimensional Models (HDMs) are contained in low-dimensional subspaces

AA216/CME345: MODEL REDUCTION - PMOR

Solution Approximation

Low Dimensionality of Trajectories

- In many cases, the trajectories of the solutions computed using High-Dimensional Models (HDMs) are contained in low-dimensional subspaces
■ Let \mathcal{S} denote such a subspace and let $k_{\mathcal{S}}=\operatorname{dim}(\mathcal{S})$

AA216/CME345: MODEL REDUCTION - PMOR

Solution Approximation

Low Dimensionality of Trajectories

■ In many cases, the trajectories of the solutions computed using High-Dimensional Models (HDMs) are contained in low-dimensional subspaces
■ Let \mathcal{S} denote such a subspace and let $k_{\mathcal{S}}=\operatorname{dim}(\mathcal{S})$
■ The state variable - or simply, the state - can be written exactly as a linear combination of vectors spanning \mathcal{S}

$$
\mathbf{w}(t)=q_{1}(t) \mathbf{v}_{1}+\cdots+q_{k_{\mathcal{S}}}(t) \mathbf{v}_{k_{\mathcal{S}}}
$$

■ $\mathbf{V}_{\mathcal{S}}=\left[\begin{array}{lll}\mathbf{v}_{1} & \cdots & \mathbf{v}_{k_{\mathcal{S}}}\end{array}\right] \in \mathbb{R}^{N \times k_{\mathcal{S}}}$ is a time-invariant basis for \mathcal{S}

- $\left(q_{1}(t), \cdots, q_{k_{\mathcal{S}}}(t)\right)$ are the generalized coordinates for $\mathbf{w}(t)$ in \mathcal{S}
$■ \mathbf{q}(t)=\left[q_{1}(t) \cdots q_{k_{\mathcal{S}}}(t)\right]^{T} \in \mathbb{R}^{k_{\mathcal{S}}}$ is the reduced-order state vector

AA216/CME345: MODEL REDUCTION - PMOR

Solution Approximation

Low Dimensionality of Trajectories

■ In many cases, the trajectories of the solutions computed using High-Dimensional Models (HDMs) are contained in low-dimensional subspaces
■ Let \mathcal{S} denote such a subspace and let $k_{\mathcal{S}}=\operatorname{dim}(\mathcal{S})$
■ The state variable - or simply, the state - can be written exactly as a linear combination of vectors spanning \mathcal{S}

$$
\mathbf{w}(t)=q_{1}(t) \mathbf{v}_{1}+\cdots+q_{k_{\mathcal{S}}}(t) \mathbf{v}_{k_{\mathcal{S}}}
$$

■ $\mathbf{V}_{\mathcal{S}}=\left[\mathbf{v}_{1} \cdots \mathbf{v}_{k_{\mathcal{S}}}\right] \in \mathbb{R}^{N \times k_{\mathcal{S}}}$ is a time-invariant basis for \mathcal{S}
$\square\left(q_{1}(t), \cdots, q_{k_{\mathcal{S}}}(t)\right)$ are the generalized coordinates for $\mathbf{w}(t)$ in \mathcal{S}
$■ \mathbf{q}(t)=\left[q_{1}(t) \cdots q_{k_{\mathcal{S}}}(t)\right]^{T} \in \mathbb{R}^{k_{\mathcal{S}}}$ is the reduced-order state vector
■ In matrix form, the above expansion can be written as

$$
\mathbf{w}(t)=\mathbf{V}_{\mathcal{S}} \mathbf{q}(t)
$$

AA216/CME345: MODEL REDUCTION - PMOR

Solution Approximation

Low Dimensionality of Trajectories

- Often, the exact basis $\mathbf{V}_{\mathcal{S}}$ is unknown but can be estimated empirically by a trial basis $\mathbf{V} \in \mathbb{R}^{N \times k}, k<N$

AA216/CME345: MODEL REDUCTION - PMOR

Solution Approximation

Low Dimensionality of Trajectories

- Often, the exact basis $\mathbf{V}_{\mathcal{S}}$ is unknown but can be estimated empirically by a trial basis $\mathbf{V} \in \mathbb{R}^{N \times k}, k<N$
- k and $k_{\mathcal{S}}$ may be different

AA216/CME345: MODEL REDUCTION - PMOR

Solution Approximation

Low Dimensionality of Trajectories

- Often, the exact basis $\mathbf{V}_{\mathcal{S}}$ is unknown but can be estimated empirically by a trial basis $\mathbf{V} \in \mathbb{R}^{N \times k}, k<N$
- k and $k_{\mathcal{S}}$ may be different
- The following ansatz (educated guess, assumption, etc. to be verified later) is considered

$$
\mathbf{w}(t) \approx \mathbf{V} \mathbf{q}(t)
$$

AA216/CME345: MODEL REDUCTION - PMOR

Solution Approximation

Low Dimensionality of Trajectories

- Often, the exact basis $\mathbf{V}_{\mathcal{S}}$ is unknown but can be estimated empirically by a trial basis $\mathbf{V} \in \mathbb{R}^{N \times k}, k<N$
- k and $k_{\mathcal{S}}$ may be different
- The following ansatz (educated guess, assumption, etc. to be verified later) is considered

$$
\mathbf{w}(t) \approx \mathbf{V} \mathbf{q}(t)
$$

- Substituting the above subspace approximation in Eq. (1) and in Eq. (2) leads to

$$
\begin{aligned}
\frac{d}{d t}(\mathbf{V q}(t)) & =\mathbf{f}(\mathbf{V q}(t), t)+\mathbf{r}(t) \\
\mathbf{y}(t) & \approx \mathbf{g}(\mathbf{V q}(t), t)
\end{aligned}
$$

where $\mathbf{r}(t)$ is the residual due to the subspace approximation

AA216/CME345: MODEL REDUCTION - PMOR

Solution Approximation

Low Dimensionality of Trajectories

- The residual $\mathbf{r}(t) \in \mathbb{R}^{N}$ accounts for the fact that $\mathbf{V q}(t)$ is not in general an exact solution of problem (1)

AA216/CME345: MODEL REDUCTION - PMOR

Solution Approximation

Low Dimensionality of Trajectories

- The residual $\mathbf{r}(t) \in \mathbb{R}^{N}$ accounts for the fact that $\mathbf{V q}(t)$ is not in general an exact solution of problem (1)
- Since the basis \mathbf{V} is assumed to be time-invariant

$$
\frac{d}{d t}(\mathbf{V} \mathbf{q}(t))=\mathbf{V} \frac{d \mathbf{q}}{d t}(t)
$$

and therefore

$$
\begin{aligned}
\mathbf{V} \frac{d \mathbf{q}}{d t}(t) & =\mathbf{f}(\mathbf{V q}(t), t)+\mathbf{r}(t) \\
\mathbf{y}(t) & \approx \mathbf{g}(\mathbf{V q}(t), t)
\end{aligned}
$$

AA216/CME345: MODEL REDUCTION - PMOR

Solution Approximation

Low Dimensionality of Trajectories

- The residual $\mathbf{r}(t) \in \mathbb{R}^{N}$ accounts for the fact that $\mathbf{V q}(t)$ is not in general an exact solution of problem (1)
- Since the basis \mathbf{V} is assumed to be time-invariant

$$
\frac{d}{d t}(\mathbf{V} \mathbf{q}(t))=\mathbf{V} \frac{d \mathbf{q}}{d t}(t)
$$

and therefore

$$
\begin{aligned}
\mathbf{V} \frac{d \mathbf{q}}{d t}(t) & =\mathbf{f}(\mathbf{V q}(t), t)+\mathbf{r}(t) \\
\mathbf{y}(t) & \approx \mathbf{g}(\mathbf{V q}(t), t)
\end{aligned}
$$

- Set of N differential equations in terms of k unknowns

$$
q_{1}(t), \cdots, q_{k}(t)
$$

AA216/CME345: MODEL REDUCTION - PMOR

Solution Approximation

Low Dimensionality of Trajectories

- The residual $\mathbf{r}(t) \in \mathbb{R}^{N}$ accounts for the fact that $\mathbf{V q}(t)$ is not in general an exact solution of problem (1)
- Since the basis \mathbf{V} is assumed to be time-invariant

$$
\frac{d}{d t}(\mathbf{V} \mathbf{q}(t))=\mathbf{V} \frac{d \mathbf{q}}{d t}(t)
$$

and therefore

$$
\begin{aligned}
\mathbf{V} \frac{d \mathbf{q}}{d t}(t) & =\mathbf{f}(\mathbf{V q}(t), t)+\mathbf{r}(t) \\
\mathbf{y}(t) & \approx \mathbf{g}(\mathbf{V q}(t), t)
\end{aligned}
$$

- Set of N differential equations in terms of k unknowns

$$
q_{1}(t), \cdots, q_{k}(t)
$$

- Over-determined system $(k<N)$

AA216/CME345: MODEL REDUCTION - PMOR

Orthogonal and Oblique Projections

Orthogonality

■ Let \mathbf{w} and \mathbf{y} be two vectors in \mathbb{R}^{N}

AA216/CME345: MODEL REDUCTION - PMOR

Orthogonal and Oblique Projections

Orthogonality

- Let \mathbf{w} and \mathbf{y} be two vectors in \mathbb{R}^{N}

■ w and \mathbf{y} are orthogonal to each other with respect to the canonical inner product in \mathbb{R}^{N} if and only if

$$
\mathbf{w}^{T} \mathbf{y}=0
$$

AA216/CME345: MODEL REDUCTION - PMOR

Orthogonal and Oblique Projections

Orthogonality

■ Let \mathbf{w} and \mathbf{y} be two vectors in \mathbb{R}^{N}
■ w and \mathbf{y} are orthogonal to each other with respect to the canonical inner product in \mathbb{R}^{N} if and only if

$$
\mathbf{w}^{T} \mathbf{y}=0
$$

■ w and \mathbf{y} are orthonormal to each other with respect to the canonical inner product in \mathbb{R}^{N} if and only if $\mathbf{w}^{T} \mathbf{y}=0$, and

$$
\mathbf{w}^{T} \mathbf{w}=1, \text { and } \mathbf{y}^{T} \mathbf{y}=1
$$

AA216/CME345: MODEL REDUCTION - PMOR

Orthogonal and Oblique Projections

Orthogonality

■ Let \mathbf{w} and \mathbf{y} be two vectors in \mathbb{R}^{N}
■ w and \mathbf{y} are orthogonal to each other with respect to the canonical inner product in \mathbb{R}^{N} if and only if

$$
\mathbf{w}^{T} \mathbf{y}=0
$$

■ w and \mathbf{y} are orthonormal to each other with respect to the canonical inner product in \mathbb{R}^{N} if and only if $\mathbf{w}^{T} \mathbf{y}=0$, and

$$
\mathbf{w}^{T} \mathbf{w}=1, \text { and } \mathbf{y}^{T} \mathbf{y}=1
$$

■ Let \mathbf{V} be a matrix in $\mathbb{R}^{N \times k}$

AA216/CME345: MODEL REDUCTION - PMOR

Orthogonal and Oblique Projections

Orthogonality

■ Let \mathbf{w} and \mathbf{y} be two vectors in \mathbb{R}^{N}
■ w and \mathbf{y} are orthogonal to each other with respect to the canonical inner product in \mathbb{R}^{N} if and only if

$$
\mathbf{w}^{T} \mathbf{y}=0
$$

■ w and \mathbf{y} are orthonormal to each other with respect to the canonical inner product in \mathbb{R}^{N} if and only if $\mathbf{w}^{T} \mathbf{y}=0$, and

$$
\mathbf{w}^{T} \mathbf{w}=1, \text { and } \mathbf{y}^{T} \mathbf{y}=1
$$

- Let \mathbf{V} be a matrix in $\mathbb{R}^{N \times k}$

■ \mathbf{V} is an orthogonal (orthonormal) matrix if and only if

$$
\mathbf{V}^{T} \mathbf{V}=\mathbf{I}_{k}
$$

AA216/CME345: MODEL REDUCTION - PMOR

Orthogonal and Oblique Projections

Projections

Definition

A matrix $\Pi \in \mathbb{R}^{N \times N}$ is a projection matrix (or projective matrix, idempotent matrix) if

$$
\Pi^{2}=\Pi
$$

- Some direct consequences
- range $(\boldsymbol{\Pi})$ is invariant under the action of $\boldsymbol{\Pi}$

AA216/CME345: MODEL REDUCTION - PMOR

Orthogonal and Oblique Projections

Projections

Definition

A matrix $\Pi \in \mathbb{R}^{N \times N}$ is a projection matrix (or projective matrix, idempotent matrix) if

$$
\Pi^{2}=\boldsymbol{\Pi}
$$

- Some direct consequences
- range $(\boldsymbol{\Pi})$ is invariant under the action of $\boldsymbol{\Pi}$
- 0 and 1 are the only possible eigenvalues of Π

AA216/CME345: MODEL REDUCTION - PMOR

Orthogonal and Oblique Projections

Projections

Definition

A matrix $\boldsymbol{\Pi} \in \mathbb{R}^{N \times N}$ is a projection matrix (or projective matrix, idempotent matrix) if

$$
\Pi^{2}=\boldsymbol{\Pi}
$$

- Some direct consequences
- range $(\boldsymbol{\Pi})$ is invariant under the action of $\boldsymbol{\Pi}$
- 0 and 1 are the only possible eigenvalues of Π
$\square \Pi$ is diagonalizable (follows from the previous consequence)

AA216/CME345: MODEL REDUCTION - PMOR

Orthogonal and Oblique Projections

Projections

Definition

A matrix $\boldsymbol{\Pi} \in \mathbb{R}^{N \times N}$ is a projection matrix (or projective matrix, idempotent matrix) if

$$
\Pi^{2}=\boldsymbol{\Pi}
$$

- Some direct consequences
- range $(\boldsymbol{\Pi})$ is invariant under the action of $\boldsymbol{\Pi}$
- 0 and 1 are the only possible eigenvalues of Π

■ Π is diagonalizable (follows from the previous consequence)
■ let k be the rank of $\boldsymbol{\Pi}$: then, there exists a basis \mathbf{X} such that

$$
\boldsymbol{\Pi}=\mathbf{X}\left[\begin{array}{ll}
\mathbf{I}_{k} & \\
& \mathbf{0}_{N-k}
\end{array}\right] \mathbf{X}^{-1}
$$

(follows from the two previous consequences)

AA216/CME345: MODEL REDUCTION - PMOR

Orthogonal and Oblique Projections

Projections

- Consider

$$
\boldsymbol{\Pi}=\mathbf{X}\left[\begin{array}{ll}
\mathbf{I}_{k} & \\
& \mathbf{0}_{N-k}
\end{array}\right] \mathbf{X}^{-1}
$$

AA216/CME345: MODEL REDUCTION - PMOR

Orthogonal and Oblique Projections

Projections

- Consider

$$
\boldsymbol{\Pi}=\mathbf{X}\left[\begin{array}{ll}
\mathbf{I}_{k} & \\
& \mathbf{0}_{N-k}
\end{array}\right] \mathbf{X}^{-1}
$$

■ decompose \mathbf{X} as

$$
\mathbf{X}=\left[\begin{array}{ll}
\mathbf{X}_{1} & \mathbf{X}_{2}
\end{array}\right], \text { where } \mathbf{X}_{1} \in \mathbb{R}^{N \times k} \text { and } \mathbf{X}_{2} \in \mathbb{R}^{N \times(N-k)}
$$

then, $\forall \mathbf{w} \in \mathbb{R}^{N}$
$■ \boldsymbol{\Pi} \mathbf{w} \in \operatorname{range}\left(\mathbf{X}_{1}\right)=\operatorname{range}(\boldsymbol{\Pi})=\mathcal{S}_{1}$

AA216/CME345: MODEL REDUCTION - PMOR

Orthogonal and Oblique Projections

Projections

- Consider

$$
\boldsymbol{\Pi}=\mathbf{X}\left[\begin{array}{ll}
\mathbf{I}_{k} & \\
& \mathbf{0}_{N-k}
\end{array}\right] \mathbf{X}^{-1}
$$

■ decompose \mathbf{X} as

$$
\mathbf{X}=\left[\begin{array}{ll}
\mathbf{X}_{1} & \mathbf{X}_{2}
\end{array}\right], \text { where } \mathbf{X}_{1} \in \mathbb{R}^{N \times k} \text { and } \mathbf{X}_{2} \in \mathbb{R}^{N \times(N-k)}
$$

then, $\forall \mathbf{w} \in \mathbb{R}^{N}$
■ $\boldsymbol{\Pi} \mathbf{w} \in \operatorname{range}\left(\mathbf{X}_{1}\right)=\operatorname{range}(\boldsymbol{\Pi})=\mathcal{S}_{1}$
■ $\mathbf{w}-\boldsymbol{\Pi} \mathbf{w} \in \operatorname{range}\left(\mathbf{X}_{2}\right)=\operatorname{Ker}(\boldsymbol{\Pi})=\mathcal{S}_{2}$

AA216/CME345: MODEL REDUCTION - PMOR

Orthogonal and Oblique Projections

Projections

- Consider

$$
\boldsymbol{\Pi}=\mathbf{X}\left[\begin{array}{ll}
\mathbf{I}_{k} & \\
& \mathbf{0}_{N-k}
\end{array}\right] \mathbf{X}^{-1}
$$

■ decompose \mathbf{X} as

$$
\mathbf{X}=\left[\begin{array}{ll}
\mathbf{X}_{1} & \mathbf{X}_{2}
\end{array}\right], \text { where } \mathbf{X}_{1} \in \mathbb{R}^{N \times k} \text { and } \mathbf{X}_{2} \in \mathbb{R}^{N \times(N-k)}
$$

then, $\forall \mathbf{w} \in \mathbb{R}^{N}$
■ $\boldsymbol{\Pi} \mathbf{w} \in \operatorname{range}\left(\mathbf{X}_{1}\right)=\operatorname{range}(\boldsymbol{\Pi})=\mathcal{S}_{1}$
■ $\mathbf{w}-\boldsymbol{\Pi} \mathbf{w} \in \operatorname{range}\left(\mathbf{X}_{2}\right)=\operatorname{Ker}(\boldsymbol{\Pi})=\mathcal{S}_{2}$
$■ \Pi$ defines the projection onto \mathcal{S}_{1} parallel to \mathcal{S}_{2}

$$
\mathbb{R}^{N}=\mathcal{S}_{1} \oplus \mathcal{S}_{2}
$$

AA216/CME345: MODEL REDUCTION - PMOR

Orthogonal and Oblique Projections

Orthogonal Projections

- Consider the case where $\mathcal{S}_{2}=\mathcal{S}_{1}^{\perp}$

AA216/CME345: MODEL REDUCTION - PMOR

Orthogonal and Oblique Projections

Orthogonal Projections

- Consider the case where $\mathcal{S}_{2}=\mathcal{S}_{1}^{\perp}$
- Let $\mathbf{V} \in \mathbb{R}^{N \times k}$ be an orthogonal matrix whose columns span \mathcal{S}_{1}, and let $\mathbf{w} \in \mathbb{R}^{N}$: The orthogonal projection of \mathbf{w} onto the subspace \mathcal{S}_{1} is

$$
\mathbf{V} \mathbf{V}^{\top} \mathbf{w}
$$

AA216/CME345: MODEL REDUCTION - PMOR

Orthogonal and Oblique Projections

Orthogonal Projections

- Consider the case where $\mathcal{S}_{2}=\mathcal{S}_{1}^{\perp}$
- Let $\mathbf{V} \in \mathbb{R}^{N \times k}$ be an orthogonal matrix whose columns span \mathcal{S}_{1}, and let $\mathbf{w} \in \mathbb{R}^{N}$: The orthogonal projection of \mathbf{w} onto the subspace \mathcal{S}_{1} is

$$
\mathbf{V} \mathbf{V}^{\top} \mathbf{w}
$$

- the equivalent projection matrix is

$$
\boldsymbol{\Pi}_{\mathbf{v}, \mathbf{v}}=\mathbf{V} \mathbf{V}^{T}
$$

AA216/CME345: MODEL REDUCTION - PMOR

Orthogonal and Oblique Projections

Orthogonal Projections

- Consider the case where $\mathcal{S}_{2}=\mathcal{S}_{1}^{\perp}$
- Let $\mathbf{V} \in \mathbb{R}^{N \times k}$ be an orthogonal matrix whose columns span \mathcal{S}_{1}, and let $\mathbf{w} \in \mathbb{R}^{N}$: The orthogonal projection of \mathbf{w} onto the subspace \mathcal{S}_{1} is

$$
\mathbf{V} \mathbf{V}^{\top} \mathbf{w}
$$

- the equivalent projection matrix is

$$
\boldsymbol{\Pi}_{\mathbf{V}, \mathbf{v}}=\mathbf{V} \mathbf{V}^{T}
$$

■ special case $\# 1$: If \mathbf{w} belongs to \mathcal{S}_{1} - that is, $\mathbf{w}=\mathbf{V q}$, where $\mathbf{q} \in \mathbb{R}^{k}$

$$
\Pi_{\mathbf{v}, \mathrm{v}} \mathbf{w}=\mathbf{V} \mathbf{v}^{\top} \mathbf{w}=\mathbf{V} \underbrace{\mathbf{v}^{\top} \mathbf{v}}_{\mathbf{1}} \mathbf{q}=\mathbf{V q}=\mathbf{w}
$$

AA216/CME345: MODEL REDUCTION - PMOR

Orthogonal and Oblique Projections

Orthogonal Projections

- Consider the case where $\mathcal{S}_{2}=\mathcal{S}_{1}^{\perp}$
- Let $\mathbf{V} \in \mathbb{R}^{N \times k}$ be an orthogonal matrix whose columns span \mathcal{S}_{1}, and let $\mathbf{w} \in \mathbb{R}^{N}$: The orthogonal projection of \mathbf{w} onto the subspace \mathcal{S}_{1} is

$$
\mathbf{V} \mathbf{V}^{\top} \mathbf{w}
$$

- the equivalent projection matrix is

$$
\boldsymbol{\Pi}_{\mathbf{V}, \mathbf{v}}=\mathbf{V} \mathbf{V}^{T}
$$

■ special case $\# 1$: If \mathbf{w} belongs to \mathcal{S}_{1} - that is, $\mathbf{w}=\mathbf{V q}$, where $\mathbf{q} \in \mathbb{R}^{k}$

$$
\boldsymbol{\Pi}_{\mathbf{V}, \mathbf{v}} \mathbf{w}=\mathbf{V} \mathbf{V}^{T} \mathbf{w}=\mathbf{V} \underbrace{\mathbf{V}^{\top} \mathbf{V}}_{\mathbf{I}} \mathbf{q}=\mathbf{V} \mathbf{q}=\mathbf{w}
$$

■ special case \#2: If \mathbf{w} is orthogonal to $\mathcal{S}_{1}-$ that is, $\mathbf{V}^{\top} \mathbf{w}=\mathbf{0}$

$$
\boldsymbol{\Pi}_{\mathbf{v}, \mathbf{v}} \mathbf{w}=\mathbf{V} \mathbf{V}^{T} \mathbf{w}=\mathbf{0}
$$

AA216/CME345: MODEL REDUCTION - PMOR

Orthogonal and Oblique Projections

Orthogonal Projections

$$
\boldsymbol{\Pi}_{\mathbf{V}, \mathbf{v}} \mathbf{w}=\mathbf{V} \mathbf{V}^{T} \mathbf{w}
$$

AA216/CME345: MODEL REDUCTION - PMOR

Orthogonal and Oblique Projections

Orthogonal Projections

- Example: Helix in 3D $(N=3)$
- let $\mathbf{w}(t) \in \mathbb{R}^{3}$ define a curve parameterized by $t \in[0,6 \pi]$ as follows

$$
\mathbf{w}(t)=\left[\begin{array}{c}
w_{1}(t) \\
w_{2}(t) \\
w_{3}(t)
\end{array}\right]=\left[\begin{array}{c}
\cos (t) \\
\sin (t) \\
t
\end{array}\right]
$$

AA216/CME345: MODEL REDUCTION - PMOR

Orthogonal and Oblique Projections

Orthogonal Projections

- Orthogonal projection onto
- range $(\mathbf{V})=\operatorname{span}\left(\mathbf{e}_{1}, \mathbf{e}_{2}\right)$

$$
\boldsymbol{\Pi}_{\mathbf{v}, \mathbf{v} \mathbf{w}}(t)=\left[\begin{array}{c}
\cos (t) \\
\sin (t) \\
0
\end{array}\right]
$$

AA216/CME345: MODEL REDUCTION - PMOR

Orthogonal and Oblique Projections

Orthogonal Projections

$-\mathbf{w}(t)$
$-\boldsymbol{\Pi}_{\mathbf{V}, \mathbf{V}} \mathbf{w}(t)$

- Orthogonal projection onto
- range $(\mathbf{V})=\operatorname{span}\left(\mathbf{e}_{2}, \mathbf{e}_{3}\right)$

$$
\boldsymbol{\Pi}_{\mathbf{v}, \mathbf{v} \mathbf{w}}(t)=\left[\begin{array}{c}
0 \\
\sin (t) \\
t
\end{array}\right]
$$

AA216/CME345: MODEL REDUCTION - PMOR

Orthogonal and Oblique Projections

Orthogonal Projections

- Orthogonal projection onto
- range $(\mathbf{V})=\operatorname{span}\left(\mathbf{e}_{1}, \mathbf{e}_{3}\right)$

$$
\boldsymbol{\Pi}_{\mathbf{v}, \mathbf{v} \mathbf{w}}(t)=\left[\begin{array}{c}
\cos (t) \\
0 \\
t
\end{array}\right]
$$

AA216/CME345: MODEL REDUCTION - PMOR

Orthogonal and Oblique Projections

Oblique Projections

- The following is the general case, where \mathcal{S}_{2} may be distinct from \mathcal{S}_{1}^{\perp}

AA216/CME345: MODEL REDUCTION - PMOR

Orthogonal and Oblique Projections

Oblique Projections

- The following is the general case, where \mathcal{S}_{2} may be distinct from \mathcal{S}_{1}^{\perp}
- Let $\mathbf{V} \in \mathbb{R}^{N \times k}$ and $\mathbf{W} \in \mathbb{R}^{N \times k}$ be two full-column rank matrices whose columns span respectively \mathcal{S}_{1} and \mathcal{S}_{2}^{\perp}

AA216/CME345: MODEL REDUCTION - PMOR

Orthogonal and Oblique Projections

Oblique Projections

- The following is the general case, where \mathcal{S}_{2} may be distinct from \mathcal{S}_{1}^{\perp}
- Let $\mathbf{V} \in \mathbb{R}^{N \times k}$ and $\mathbf{W} \in \mathbb{R}^{N \times k}$ be two full-column rank matrices whose columns span respectively \mathcal{S}_{1} and \mathcal{S}_{2}^{\perp}
■ The projection of $\mathbf{w} \in \mathbb{R}^{N}$ onto the subspace \mathcal{S}_{1} parallel to \mathcal{S}_{2} is

$$
\mathbf{V}\left(\mathbf{W}^{\top} \mathbf{V}\right)^{-1} \mathbf{W}^{\top} \mathbf{w}
$$

AA216/CME345: MODEL REDUCTION - PMOR

Orthogonal and Oblique Projections

Oblique Projections

- The following is the general case, where \mathcal{S}_{2} may be distinct from \mathcal{S}_{1}^{\perp}
- Let $\mathbf{V} \in \mathbb{R}^{N \times k}$ and $\mathbf{W} \in \mathbb{R}^{N \times k}$ be two full-column rank matrices whose columns span respectively \mathcal{S}_{1} and \mathcal{S}_{2}^{\perp}
■ The projection of $\mathbf{w} \in \mathbb{R}^{N}$ onto the subspace \mathcal{S}_{1} parallel to \mathcal{S}_{2} is

$$
\mathbf{V}\left(\mathbf{W}^{\top} \mathbf{V}\right)^{-1} \mathbf{W}^{\top} \mathbf{w}
$$

- the equivalent projection matrix is

$$
\boldsymbol{\Pi}_{\mathbf{v}, \mathbf{w}}=\mathbf{V}\left(\mathbf{W}^{T} \mathbf{V}\right)^{-1} \mathbf{W}^{T}
$$

AA216/CME345: MODEL REDUCTION - PMOR

Orthogonal and Oblique Projections

Oblique Projections

- The following is the general case, where \mathcal{S}_{2} may be distinct from \mathcal{S}_{1}^{\perp}
- Let $\mathbf{V} \in \mathbb{R}^{N \times k}$ and $\mathbf{W} \in \mathbb{R}^{N \times k}$ be two full-column rank matrices whose columns span respectively \mathcal{S}_{1} and \mathcal{S}_{2}^{\perp}
- The projection of $\mathbf{w} \in \mathbb{R}^{N}$ onto the subspace \mathcal{S}_{1} parallel to \mathcal{S}_{2} is

$$
\mathbf{V}\left(\mathbf{W}^{\top} \mathbf{V}\right)^{-1} \mathbf{W}^{\top} \mathbf{w}
$$

- the equivalent projection matrix is

$$
\boldsymbol{\Pi}_{\mathbf{v}, \mathbf{w}}=\mathbf{V}\left(\mathbf{W}^{T} \mathbf{V}\right)^{-1} \mathbf{W}^{T}
$$

- special case $\# 1$: If \mathbf{w} belongs to \mathcal{S}_{1}, then $\mathbf{w}=\mathbf{V q}$, where $\mathbf{q} \in \mathbb{R}^{k}$, and

$$
\boldsymbol{\Pi}_{\mathbf{v}, \mathbf{w}} \mathbf{w}=\mathbf{V} \underbrace{\left(\mathbf{w}^{T} \mathbf{V}\right)^{-1} \mathbf{W}^{T} \mathbf{V}}_{\mathbf{I}} \mathbf{q}=\mathbf{V} \mathbf{q}
$$

AA216/CME345: MODEL REDUCTION - PMOR

Orthogonal and Oblique Projections

Oblique Projections

- The following is the general case, where \mathcal{S}_{2} may be distinct from \mathcal{S}_{1}^{\perp}
- Let $\mathbf{V} \in \mathbb{R}^{N \times k}$ and $\mathbf{W} \in \mathbb{R}^{N \times k}$ be two full-column rank matrices whose columns span respectively \mathcal{S}_{1} and \mathcal{S}_{2}^{\perp}
■ The projection of $\mathbf{w} \in \mathbb{R}^{N}$ onto the subspace \mathcal{S}_{1} parallel to \mathcal{S}_{2} is

$$
\mathbf{V}\left(\mathbf{W}^{\top} \mathbf{V}\right)^{-1} \mathbf{W}^{\top} \mathbf{w}
$$

- the equivalent projection matrix is

$$
\boldsymbol{\Pi}_{\mathbf{v}, \mathbf{w}}=\mathbf{V}\left(\mathbf{W}^{T} \mathbf{V}\right)^{-1} \mathbf{W}^{T}
$$

■ special case $\# 1$: If \mathbf{w} belongs to \mathcal{S}_{1}, then $\mathbf{w}=\mathbf{V q}$, where $\mathbf{q} \in \mathbb{R}^{k}$, and

$$
\boldsymbol{\Pi}_{\mathbf{v}, \mathbf{w}} \mathbf{w}=\mathbf{V} \underbrace{\left(\mathbf{w}^{\top} \mathbf{V}\right)^{-1} \mathbf{W}^{T} \mathbf{V}}_{\mathbf{I}} \mathbf{q}=\mathbf{V} \mathbf{q}
$$

- special case $\# 2$: If \mathbf{w} is orthogonal to $\mathcal{S}_{2}^{\perp}-$ that is, $\mathbf{W}^{\top} \mathbf{w}=\mathbf{0}$, then

$$
\boldsymbol{\Pi}_{\mathbf{v}, \mathbf{w} \mathbf{w}}=\mathbf{V}\left(\mathbf{W}^{T} \mathbf{V}\right)^{-1} \underbrace{\mathbf{w}^{T} \mathbf{w}}_{\mathbf{0}^{1}}=\mathbf{0}
$$

AA216/CME345: MODEL REDUCTION - PMOR

Orthogonal and Oblique Projections

Oblique Projections

$$
\boldsymbol{\Pi}_{\mathbf{V}, \mathbf{w}} \mathbf{w}=\mathbf{V}\left(\mathbf{W}^{\top} \mathbf{V}\right)^{-1} \mathbf{W}^{\top} \mathbf{w}
$$

AA216/CME345: MODEL REDUCTION - PMOR

Orthogonal and Oblique Projections

Oblique Projections

- Example: Helix in 3D

■ bases

$$
\mathbf{V}=\left[\begin{array}{ll}
\mathbf{e}_{1} & \mathbf{e}_{2}
\end{array}\right], \mathbf{W}=\left[\begin{array}{ll}
\mathbf{e}_{1}+\mathbf{e}_{3} & \mathbf{e}_{2}+\mathbf{e}_{3}
\end{array}\right]
$$

AA216/CME345: MODEL REDUCTION - PMOR

Orthogonal and Oblique Projections

Oblique Projections

- Example: Helix in 3D

■ bases

$$
\mathbf{V}=\left[\begin{array}{ll}
\mathbf{e}_{1} & \mathbf{e}_{2}
\end{array}\right], \mathbf{W}=\left[\begin{array}{ll}
\mathbf{e}_{1}+\mathbf{e}_{3} & \mathbf{e}_{2}+\mathbf{e}_{3}
\end{array}\right]
$$

- projection matrix

$$
\boldsymbol{\Pi}_{\mathbf{v}, \mathbf{w}}=\mathbf{V}\left(\mathbf{W}^{T} \mathbf{V}\right)^{-1} \mathbf{W}^{T}=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

AA216/CME345: MODEL REDUCTION - PMOR

Orthogonal and Oblique Projections

Oblique Projections

- Example: Helix in 3D

■ bases

$$
\mathbf{V}=\left[\begin{array}{ll}
\mathbf{e}_{1} & \mathbf{e}_{2}
\end{array}\right], \mathbf{W}=\left[\begin{array}{ll}
\mathbf{e}_{1}+\mathbf{e}_{3} & \mathbf{e}_{2}+\mathbf{e}_{3}
\end{array}\right]
$$

- projection matrix

$$
\boldsymbol{\Pi}_{\mathbf{V}, \mathbf{w}}=\mathbf{V}\left(\mathbf{W}^{T} \mathbf{V}\right)^{-1} \mathbf{W}^{T}=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

- projected helix equation

$$
\boldsymbol{\Pi}_{\mathbf{V}, \mathbf{w} \mathbf{w}}(t)=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
\cos (t) \\
\sin (t) \\
t
\end{array}\right]=\left[\begin{array}{c}
\cos (t)+t \\
\sin (t)+t \\
0
\end{array}\right]
$$

AA216/CME345: MODEL REDUCTION - PMOR

Orthogonal and Oblique Projections

Oblique Projections

$$
\begin{aligned}
& -\mathbf{w}(t) \\
& -\mathbf{\Pi}_{\mathbf{V}, \mathbf{w}} \mathbf{w}(t)
\end{aligned}
$$

AA216/CME345: MODEL REDUCTION - PMOR

Galerkin and Petrov-Galerkin Projections

Projection-Based Model Order Reduction

- Start from a HDM for the problem of interest

$$
\begin{aligned}
\frac{d \mathbf{w}}{d t}(t) & =\mathbf{f}(\mathbf{w}(t), t) \\
\mathbf{y}(t) & =\mathbf{g}(\mathbf{w}(t), t) \\
\mathbf{w}(0) & =\mathbf{w}_{0}
\end{aligned}
$$

■ $\mathbf{w} \in \mathbb{R}^{N}:$ Vector of state variables
■ $\mathbf{y} \in \mathbb{R}^{q}$: Vector of output variables (typically $q \ll N$)
■ $\mathbf{f}(\cdot, \cdot) \in \mathbb{R}^{N}$: Completes the specification of the HDM-based problem

AA216/CME345: MODEL REDUCTION - PMOR

Galerkin and Petrov-Galerkin Projections

Projection-Based Model Order Reduction

- The goal is to construct a Projection-based Reduced-Order Model (PROM)

$$
\begin{aligned}
\frac{d \mathbf{q}}{d t}(t) & =\mathbf{f}_{r}(\mathbf{q}(t), t) \\
\mathbf{y}(t) & \approx \mathbf{g}_{r}(\mathbf{q}(t), t)
\end{aligned}
$$

where

- $\mathbf{q} \in \mathbb{R}^{k}$: Vector of reduced-order state variables, $k \ll N$
- $\mathbf{y} \in \mathbb{R}^{q}$: Vector of output variables
- $\mathbf{f}_{r}(\cdot, \cdot) \in \mathbb{R}^{k}$: Completes the description of the PROM
- The discussion of the initial condition is deferred to later

AA216/CME345: MODEL REDUCTION - PMOR

Galerkin and Petrov-Galerkin Projections

Requirements

- A Projection-based Model Order Reduction (PMOR) method should
- be computationally tractable

AA216/CME345: MODEL REDUCTION - PMOR

Galerkin and Petrov-Galerkin Projections

Requirements

- A Projection-based Model Order Reduction (PMOR) method should
- be computationally tractable
- be applicable to a large class of dynamical systems

AA216/CME345: MODEL REDUCTION - PMOR

Galerkin and Petrov-Galerkin Projections

Requirements

- A Projection-based Model Order Reduction (PMOR) method should
- be computationally tractable
- be applicable to a large class of dynamical systems
- minimize a certain measure of the error between the solution computed using the HDM and that computed using the PROM (error criterion)

AA216/CME345: MODEL REDUCTION - PMOR

Galerkin and Petrov-Galerkin Projections

Requirements

- A Projection-based Model Order Reduction (PMOR) method should
- be computationally tractable
- be applicable to a large class of dynamical systems
- minimize a certain measure of the error between the solution computed using the HDM and that computed using the PROM (error criterion)
- preserve as many properties of the HDM as possible

AA216/CME345: MODEL REDUCTION - PMOR

Galerkin and Petrov-Galerkin Projections

Petrov-Galerkin Projection

- Recall the residual $\mathbf{r}(t) \in \mathbb{R}^{N \times k}$ introduced by approximating $\mathbf{w}(t)$ as $\mathbf{V q}(t)$

$$
\mathbf{V} \frac{d \mathbf{q}}{d t}(t)=\mathbf{f}(\mathbf{V} \mathbf{q}(t), t)+\mathbf{r}(t) \Leftrightarrow \mathbf{r}(t)=\mathbf{V} \frac{d \mathbf{q}}{d t}(t)-\mathbf{f}(\mathbf{V} \mathbf{q}(t), t)
$$

AA216/CME345: MODEL REDUCTION - PMOR

Galerkin and Petrov-Galerkin Projections

Petrov-Galerkin Projection

- Recall the residual $\mathbf{r}(t) \in \mathbb{R}^{N \times k}$ introduced by approximating $\mathbf{w}(t)$ as $\mathbf{V q}(t)$

$$
\mathbf{V} \frac{d \mathbf{q}}{d t}(t)=\mathbf{f}(\mathbf{V} \mathbf{q}(t), t)+\mathbf{r}(t) \Leftrightarrow \mathbf{r}(t)=\mathbf{V} \frac{d \mathbf{q}}{d t}(t)-\mathbf{f}(\mathbf{V} \mathbf{q}(t), t)
$$

- Constrain this residual to be orthogonal to a subspace \mathcal{W} defined by a test basis $\mathbf{W} \in \mathbb{R}^{N \times k}$ - that is, compute $\mathbf{q}(t)$ such that

$$
\mathbf{W}^{\top} \mathbf{r}(t)=\mathbf{0}
$$

AA216/CME345: MODEL REDUCTION - PMOR

Galerkin and Petrov-Galerkin Projections

Petrov-Galerkin Projection

- Recall the residual $\mathbf{r}(t) \in \mathbb{R}^{N \times k}$ introduced by approximating $\mathbf{w}(t)$ as $\mathbf{V q}(t)$

$$
\mathbf{V} \frac{d \mathbf{q}}{d t}(t)=\mathbf{f}(\mathbf{V} \mathbf{q}(t), t)+\mathbf{r}(t) \Leftrightarrow \mathbf{r}(t)=\mathbf{V} \frac{d \mathbf{q}}{d t}(t)-\mathbf{f}(\mathbf{V} \mathbf{q}(t), t)
$$

■ Constrain this residual to be orthogonal to a subspace \mathcal{W} defined by a test basis $\mathbf{W} \in \mathbb{R}^{N \times k}$ - that is, compute $\mathbf{q}(t)$ such that

$$
\mathbf{W}^{T} \mathbf{r}(t)=\mathbf{0}
$$

- This leads to the descriptive form of the governing equations of the Petrov-Galerkin PROM

$$
\mathbf{W}^{T} \mathbf{V} \frac{d \mathbf{q}}{d t}(t)=\mathbf{W}^{T} \mathbf{f}(\mathbf{V} \mathbf{q}(t), t)
$$

AA216/CME345: MODEL REDUCTION - PMOR

Galerkin and Petrov-Galerkin Projections

Petrov-Galerkin Projection

- Assume that $\mathbf{W}^{\top} \mathbf{V}$ is non-singular: In this case, the PROM can be re-written in the non-descriptive form

$$
\begin{aligned}
\frac{d \mathbf{q}}{d t}(t) & =\left(\mathbf{W}^{T} \mathbf{V}\right)^{-1} \mathbf{W}^{\top} \mathbf{f}(\mathbf{V} \mathbf{q}(t), t) \\
\mathbf{y}(t) & \approx \mathbf{g}(\mathbf{V} \mathbf{q}(t), t)
\end{aligned}
$$

AA216/CME345: MODEL REDUCTION - PMOR

Galerkin and Petrov-Galerkin Projections

Petrov-Galerkin Projection

- Assume that $\mathbf{W}^{\top} \mathbf{V}$ is non-singular: In this case, the PROM can be re-written in the non-descriptive form

$$
\begin{aligned}
\frac{d \mathbf{q}}{d t}(t) & =\left(\mathbf{W}^{\top} \mathbf{V}\right)^{-1} \mathbf{W}^{\top} \mathbf{f}(\mathbf{V} \mathbf{q}(t), t) \\
\mathbf{y}(t) & \approx \mathbf{g}(\mathbf{V} \mathbf{q}(t), t)
\end{aligned}
$$

- After the above reduced-order equations have been solved, the subspace approximation of the high-dimensional state vector can be reconstructed, if needed, as follows

$$
\mathbf{w}(t) \approx \mathbf{V} \mathbf{q}(t)
$$

AA216/CME345: MODEL REDUCTION - PMOR

Galerkin and Petrov-Galerkin Projections

Galerkin Projection

- If $\mathbf{W}=\mathbf{V}$, the projection method is called a Galerkin projection and the resulting PROM is called a Galerkin PROM

AA216/CME345: MODEL REDUCTION - PMOR

Galerkin and Petrov-Galerkin Projections

Galerkin Projection

- If $\mathbf{W}=\mathbf{V}$, the projection method is called a Galerkin projection and the resulting PROM is called a Galerkin PROM
- If in addition \mathbf{V} is orthogonal, the reduced-order equations become

$$
\begin{aligned}
\frac{d \mathbf{q}}{d t}(t) & =\mathbf{V}^{\top} \mathbf{f}(\mathbf{V} \mathbf{q}(t), t) \\
\mathbf{y}(t) & \approx \mathbf{g}(\mathbf{V} \mathbf{q}(t), t)
\end{aligned}
$$

AA216/CME345: MODEL REDUCTION - PMOR

Galerkin and Petrov-Galerkin Projections

Linear Time-Invariant Systems

- Special case: Linear Time-Invariant (LTI) systems

$$
\begin{aligned}
\mathbf{f}(\mathbf{w}(t), t) & =\mathbf{A} \mathbf{w}(t)+\mathbf{B u}(t) \\
\mathbf{g}(\mathbf{w}(t), t) & =\mathbf{C w}(t)+\mathbf{D u}(t)
\end{aligned}
$$

- $\mathbf{u} \in \mathbb{R}^{p}$: Vector of input variables

AA216/CME345: MODEL REDUCTION - PMOR

Galerkin and Petrov-Galerkin Projections

Linear Time-Invariant Systems

- Special case: Linear Time-Invariant (LTI) systems

$$
\begin{aligned}
\mathbf{f}(\mathbf{w}(t), t) & =\mathbf{A} \mathbf{w}(t)+\mathbf{B u}(t) \\
\mathbf{g}(\mathbf{w}(t), t) & =\mathbf{C w}(t)+\mathbf{D u}(t)
\end{aligned}
$$

■ $\mathbf{u} \in \mathbb{R}^{p}$: Vector of input variables

- corresponding Petrov-Galerkin PROM

$$
\begin{aligned}
\frac{d \mathbf{q}}{d t}(t) & =\left(\mathbf{W}^{T} \mathbf{V}\right)^{-1} \mathbf{W}^{T}(\mathbf{A V q}(t)+\mathbf{B u}(t)) \\
\mathbf{y}(t) & =\mathbf{C V q}(t)+\mathbf{D u}(t)
\end{aligned}
$$

AA216/CME345: MODEL REDUCTION - PMOR

Galerkin and Petrov-Galerkin Projections

Linear Time-Invariant Systems

- Special case: Linear Time-Invariant (LTI) systems

$$
\begin{aligned}
\mathbf{f}(\mathbf{w}(t), t) & =\mathbf{A} \mathbf{w}(t)+\mathbf{B u}(t) \\
\mathbf{g}(\mathbf{w}(t), t) & =\mathbf{C w}(t)+\mathbf{D u}(t)
\end{aligned}
$$

■ $\mathbf{u} \in \mathbb{R}^{p}$: Vector of input variables

- corresponding Petrov-Galerkin PROM

$$
\begin{aligned}
\frac{d \mathbf{q}}{d t}(t) & =\left(\mathbf{W}^{T} \mathbf{V}\right)^{-1} \mathbf{W}^{T}(\mathbf{A} \mathbf{V} \mathbf{q}(t)+\mathbf{B u}(t)) \\
\mathbf{y}(t) & =\mathbf{C V q}(t)+\mathbf{D u}(t)
\end{aligned}
$$

- reduced-order LTI operators

$$
\begin{aligned}
& \mathbf{A}_{r}=\left(\mathbf{W}^{T} \mathbf{V}\right)^{-1} \mathbf{W}^{T} \mathbf{A} \mathbf{V} \in \mathbb{R}^{k \times k}, k \ll N \\
& \mathbf{B}_{r}=\left(\mathbf{W}^{T} \mathbf{V}\right)^{-1} \mathbf{W}^{T} \mathbf{B} \in \mathbb{R}^{k \times p} \\
& \mathbf{C}_{r}=\mathbf{C V} \in \mathbb{R}^{q \times k} \\
& \mathbf{D}_{r}=\mathbf{D} \in \mathbb{R}^{q \times p}
\end{aligned}
$$

AA216/CME345: MODEL REDUCTION - PMOR

Galerkin and Petrov-Galerkin Projections

Initial Condition

- High-dimensional initial condition

$$
\mathbf{w}(0)=\mathbf{w}_{0} \in \mathbb{R}^{N}
$$

AA216/CME345: MODEL REDUCTION - PMOR

Galerkin and Petrov-Galerkin Projections

Initial Condition

- High-dimensional initial condition

$$
\mathbf{w}(0)=\mathbf{w}_{0} \in \mathbb{R}^{N}
$$

- Reduced-order initial condition (Petrov-Galerkin PROM)

$$
\mathbf{q}(0)=\left(\mathbf{W}^{T} \mathbf{V}\right)^{-1} \mathbf{W}^{T} \mathbf{w}_{0} \in \mathbb{R}^{k}
$$

AA216/CME345: MODEL REDUCTION - PMOR

Galerkin and Petrov-Galerkin Projections

Initial Condition

- High-dimensional initial condition

$$
\mathbf{w}(0)=\mathbf{w}_{0} \in \mathbb{R}^{N}
$$

- Reduced-order initial condition (Petrov-Galerkin PROM)

$$
\mathbf{q}(0)=\left(\mathbf{W}^{T} \mathbf{V}\right)^{-1} \mathbf{W}^{T} \mathbf{w}_{0} \in \mathbb{R}^{k}
$$

■ in the high-dimensional state space, this gives

$$
\mathbf{V} \mathbf{q}(0)=\mathbf{V}\left(\mathbf{W}^{T} \mathbf{V}\right)^{-1} \mathbf{W}^{T} \mathbf{w}_{0} \in \mathbb{R}^{k}
$$

AA216/CME345: MODEL REDUCTION - PMOR

Galerkin and Petrov-Galerkin Projections

Initial Condition

- High-dimensional initial condition

$$
\mathbf{w}(0)=\mathbf{w}_{0} \in \mathbb{R}^{N}
$$

- Reduced-order initial condition (Petrov-Galerkin PROM)

$$
\mathbf{q}(0)=\left(\mathbf{W}^{T} \mathbf{V}\right)^{-1} \mathbf{W}^{T} \mathbf{w}_{0} \in \mathbb{R}^{k}
$$

- in the high-dimensional state space, this gives

$$
\mathbf{V} \mathbf{q}(0)=\mathbf{V}\left(\mathbf{W}^{T} \mathbf{V}\right)^{-1} \mathbf{W}^{T} \mathbf{w}_{0} \in \mathbb{R}^{k}
$$

- this is an oblique projection of \mathbf{w}_{0} onto range (\mathbf{V}) parallel to range(\mathbf{W})

AA216/CME345: MODEL REDUCTION - PMOR

Galerkin and Petrov-Galerkin Projections

Initial Condition

- High-dimensional initial condition

$$
\mathbf{w}(0)=\mathbf{w}_{0} \in \mathbb{R}^{N}
$$

- Reduced-order initial condition (Petrov-Galerkin PROM)

$$
\mathbf{q}(0)=\left(\mathbf{W}^{T} \mathbf{V}\right)^{-1} \mathbf{W}^{T} \mathbf{w}_{0} \in \mathbb{R}^{k}
$$

- in the high-dimensional state space, this gives

$$
\mathbf{V} \mathbf{q}(0)=\mathbf{V}\left(\mathbf{W}^{T} \mathbf{V}\right)^{-1} \mathbf{W}^{T} \mathbf{w}_{0} \in \mathbb{R}^{k}
$$

- this is an oblique projection of \mathbf{w}_{0} onto range (\mathbf{V}) parallel to range(\mathbf{W})
- Error in the subspace approximation of the initial condition

$$
\mathbf{w}(0)-\mathbf{V} \mathbf{q}(0)=\left(\mathbf{I}_{N}-\mathbf{V}\left(\mathbf{W}^{T} \mathbf{V}\right)^{-1} \mathbf{W}^{T}\right) \mathbf{w}_{0}
$$

AA216/CME345: MODEL REDUCTION - PMOR

Galerkin and Petrov-Galerkin Projections

Initial Condition

- High-dimensional initial condition

$$
\mathbf{w}(0)=\mathbf{w}_{0} \in \mathbb{R}^{N}
$$

- Reduced-order initial condition (Petrov-Galerkin PROM)

$$
\mathbf{q}(0)=\left(\mathbf{W}^{T} \mathbf{V}\right)^{-1} \mathbf{W}^{T} \mathbf{w}_{0} \in \mathbb{R}^{k}
$$

■ in the high-dimensional state space, this gives

$$
\mathbf{V} \mathbf{q}(0)=\mathbf{V}\left(\mathbf{W}^{T} \mathbf{V}\right)^{-1} \mathbf{W}^{T} \mathbf{w}_{0} \in \mathbb{R}^{k}
$$

- this is an oblique projection of \mathbf{w}_{0} onto range (\mathbf{V}) parallel to range(\mathbf{W})
- Error in the subspace approximation of the initial condition

$$
\mathbf{w}(0)-\mathbf{V} \mathbf{q}(0)=\left(\mathbf{I}_{N}-\mathbf{V}\left(\mathbf{W}^{T} \mathbf{V}\right)^{-1} \mathbf{W}^{T}\right) \mathbf{w}_{0}
$$

- Alternative: use an affine approximation $\mathbf{w}(t)=\mathbf{w}(0)+\mathbf{V q}(t)$ (see Homework \#1)

AA216/CME345: MODEL REDUCTION - PMOR

Equivalent High-Dimensional Model

- Question: Which HDM would produce the same solution as that given by the following Petrov-Galerkin PROM? (this notion will prove to be useful for the stability analysis of a PROM)

AA216/CME345: MODEL REDUCTION - PMOR

Equivalent High-Dimensional Model

- Question: Which HDM would produce the same solution as that given by the following Petrov-Galerkin PROM? (this notion will prove to be useful for the stability analysis of a PROM)
- recall the reduced-order equations

$$
\begin{aligned}
\frac{d \mathbf{q}}{d t}(t) & =\left(\mathbf{W}^{T} \mathbf{V}\right)^{-1} \mathbf{W}^{T} \mathbf{f}(\mathbf{V} \mathbf{q}(t), t) \\
\mathbf{y}(t) & =\mathbf{g}(\mathbf{V} \mathbf{q}(t), t)
\end{aligned}
$$

AA216/CME345: MODEL REDUCTION - PMOR

Equivalent High-Dimensional Model

- Question: Which HDM would produce the same solution as that given by the following Petrov-Galerkin PROM? (this notion will prove to be useful for the stability analysis of a PROM)
- recall the reduced-order equations

$$
\begin{aligned}
\frac{d \mathbf{q}}{d t}(t) & =\left(\mathbf{W}^{T} \mathbf{V}\right)^{-1} \mathbf{W}^{T} \mathbf{f}(\mathbf{V} \mathbf{q}(t), t) \\
\mathbf{y}(t) & =\mathbf{g}(\mathbf{V} \mathbf{q}(t), t)
\end{aligned}
$$

- the corresponding reconstructed high-dimensional state solution is

$$
\tilde{\mathbf{w}}(t)=\mathbf{V} \mathbf{q}(t)
$$

AA216/CME345: MODEL REDUCTION - PMOR

Equivalent High-Dimensional Model

- Question: Which HDM would produce the same solution as that given by the following Petrov-Galerkin PROM? (this notion will prove to be useful for the stability analysis of a PROM)

■ recall the reduced-order equations

$$
\begin{aligned}
\frac{d \mathbf{q}}{d t}(t) & =\left(\mathbf{W}^{T} \mathbf{V}\right)^{-1} \mathbf{W}^{T} \mathbf{f}(\mathbf{V} \mathbf{q}(t), t) \\
\mathbf{y}(t) & =\mathbf{g}(\mathbf{V} \mathbf{q}(t), t)
\end{aligned}
$$

- the corresponding reconstructed high-dimensional state solution is

$$
\tilde{\mathbf{w}}(t)=\mathbf{V} \mathbf{q}(t)
$$

- pre-multiplying the above reduced-order equations by \mathbf{V} leads to

$$
\begin{aligned}
\frac{d \tilde{\mathbf{w}}}{d t}(t) & =\mathbf{V}\left(\mathbf{W}^{T} \mathbf{V}\right)^{-1} \mathbf{W}^{T} \mathbf{f}(\tilde{\mathbf{w}}(t), t) \\
\tilde{\mathbf{y}}(t) & =\mathbf{g}(\tilde{\mathbf{w}}(t), t)
\end{aligned}
$$

AA216/CME345: MODEL REDUCTION - PMOR

Equivalent High-Dimensional Model

- Question: Which HDM would produce the same solution as that given by the following Petrov-Galerkin PROM? (this notion will prove to be useful for the stability analysis of a PROM)
- recall the reduced-order equations

$$
\begin{aligned}
\frac{d \mathbf{q}}{d t}(t) & =\left(\mathbf{W}^{T} \mathbf{V}\right)^{-1} \mathbf{W}^{T} \mathbf{f}(\mathbf{V} \mathbf{q}(t), t) \\
\mathbf{y}(t) & =\mathbf{g}(\mathbf{V} \mathbf{q}(t), t)
\end{aligned}
$$

■ the corresponding reconstructed high-dimensional state solution is

$$
\tilde{\mathbf{w}}(t)=\mathbf{V} \mathbf{q}(t)
$$

- pre-multiplying the above reduced-order equations by \mathbf{V} leads to

$$
\begin{aligned}
\frac{d \tilde{\mathbf{w}}}{d t}(t) & =\mathbf{V}\left(\mathbf{W}^{T} \mathbf{V}\right)^{-1} \mathbf{W}^{T} \mathbf{f}(\tilde{\mathbf{w}}(t), t) \\
\tilde{\mathbf{y}}(t) & =\mathbf{g}(\tilde{\mathbf{w}}(t), t)
\end{aligned}
$$

- the associated initial condition is

$$
\tilde{\mathbf{w}}(0)=\mathbf{V} \mathbf{q}(0)=\mathbf{V}\left(\mathbf{W}^{T} \mathbf{V}\right)^{-1} \mathbf{W}^{T} \mathbf{w}(0)
$$

AA216/CME345: MODEL REDUCTION - PMOR

Equivalent High-Dimensional Model

- Recall the projector $\Pi_{\mathrm{V}, \mathrm{w}}$

$$
\boldsymbol{\Pi}_{\mathbf{V}, \mathbf{w}}=\mathbf{V}\left(\mathbf{W}^{\top} \mathbf{V}\right)^{-1} \mathbf{W}^{\top}
$$

Definition

Equivalent HDM

$$
\begin{aligned}
\frac{d \tilde{\mathbf{w}}}{d t}(t) & =\boldsymbol{\Pi}_{\mathbf{V}, \mathbf{w}} \mathbf{f}(\tilde{\mathbf{w}}(t), t) \\
\tilde{\mathbf{y}}(t) & =\mathbf{g}(\tilde{\mathbf{w}}(t), t)
\end{aligned}
$$

with the initial condition

$$
\tilde{\mathbf{w}}(0)=\boldsymbol{\Pi}_{\mathbf{V}, \mathbf{w} \mathbf{w}}(0)
$$

The equivalent dynamical function is

$$
\tilde{\mathbf{f}}(\cdot, \cdot)=\boldsymbol{\Pi}_{\mathbf{V}, \mathbf{w}} \mathbf{f}(\cdot, \cdot)
$$

AA216/CME345: MODEL REDUCTION - PMOR

Equivalent High-Dimensional Model

Equivalence Between Two Projection-Based Reduced-Order Models

■ Consider the Petrov-Galerkin PROM

$$
\begin{aligned}
\frac{d \mathbf{q}}{d t}(t) & =\left(\mathbf{W}^{\top} \mathbf{V}\right)^{-1} \mathbf{W}^{T} \mathbf{f}(\mathbf{V} \mathbf{q}(t), t) \\
\mathbf{y}(t) & \approx \mathbf{g}(\mathbf{V} \mathbf{q}(t), t) \\
\mathbf{q}(0) & =\left(\mathbf{W}^{\top} \mathbf{V}\right)^{-1} \mathbf{W}^{\top} \mathbf{w}(0)
\end{aligned}
$$

Lemma

Choosing two different bases \mathbf{V}^{\prime} and \mathbf{W}^{\prime} that respectively span the same subspaces \mathcal{V} and \mathcal{W} results in the same reconstructed solution $\mathbf{w}(t)$

In other words, subspaces are more important than bases ...

AA216/CME345: MODEL REDUCTION - PMOR

Equivalent High-Dimensional Model

Equivalence Between Two Projection-Based Reduced-Order Models

■ Consequences

- given a HDM, a corresponding PROM is uniquely defined by its associated Petrov-Galerkin projector $\boldsymbol{\Pi}_{\mathbf{v}, \mathbf{w}}$

AA216/CME345: MODEL REDUCTION - PMOR

Equivalent High-Dimensional Model

Equivalence Between Two Projection-Based Reduced-Order Models

■ Consequences

- given a HDM, a corresponding PROM is uniquely defined by its associated Petrov-Galerkin projector $\boldsymbol{\Pi}_{\mathbf{v}, \mathrm{w}}$
■ this projector is itself uniquely defined by the two subspaces

$$
\mathcal{W}=\operatorname{range}(\mathbf{W}) \text { and } \mathcal{V}=\operatorname{range}(\mathbf{V})
$$

AA216/CME345: MODEL REDUCTION - PMOR

Equivalent High-Dimensional Model

Equivalence Between Two Projection-Based Reduced-Order Models

■ Consequences

- given a HDM, a corresponding PROM is uniquely defined by its associated Petrov-Galerkin projector $\Pi_{\mathrm{v}, \mathrm{w}}$
■ this projector is itself uniquely defined by the two subspaces

$$
\mathcal{W}=\operatorname{range}(\mathbf{W}) \text { and } \mathcal{V}=\operatorname{range}(\mathbf{V})
$$

- hence

$$
\operatorname{PROM} \Leftrightarrow(\mathcal{W}, \mathcal{V})
$$

AA216/CME345: MODEL REDUCTION - PMOR

Equivalent High-Dimensional Model

Equivalence Between Two Projection-Based Reduced-Order Models

■ Consequences

- given a HDM, a corresponding PROM is uniquely defined by its associated Petrov-Galerkin projector $\Pi_{\mathrm{v}, \mathrm{w}}$
■ this projector is itself uniquely defined by the two subspaces

$$
\mathcal{W}=\operatorname{range}(\mathbf{W}) \text { and } \mathcal{V}=\operatorname{range}(\mathbf{V})
$$

- hence

$$
\operatorname{PROM} \Leftrightarrow(\mathcal{W}, \mathcal{V})
$$

■ \mathcal{W} and \mathcal{V} belong to the Grassmann manifold $\mathcal{G}(k, N)$, which is the set of all subspaces of dimension k in \mathbb{R}^{N}

AA216/CME345: MODEL REDUCTION - PMOR

Error Analysis

Definition

- Question: Can we characterize the error of the solution computed using a PROM relative to the solution obtained using the HDM?

$$
\begin{aligned}
\mathcal{E}_{\mathrm{PROM}}(t) & =\mathbf{w}(t)-\tilde{\mathbf{w}}(t) \\
& =\mathbf{w}(t)-\mathbf{V} \mathbf{q}(t)
\end{aligned}
$$

- assume here a Galerkin projection and an associated orthogonal basis

■ $\mathbf{V}^{\top} \mathbf{V}=\mathbf{I}_{k}$
■ projector $\boldsymbol{\Pi}_{\mathbf{V}, \mathbf{V}}=\mathbf{V} \mathbf{V}^{\top}$

AA216/CME345: MODEL REDUCTION - PMOR

Error Analysis

Definition

- Question: Can we characterize the error of the solution computed using a PROM relative to the solution obtained using the HDM?

$$
\begin{aligned}
\mathcal{E}_{\mathrm{PROM}}(t) & =\mathbf{w}(t)-\tilde{\mathbf{w}}(t) \\
& =\mathbf{w}(t)-\mathbf{V} \mathbf{q}(t)
\end{aligned}
$$

- assume here a Galerkin projection and an associated orthogonal basis

■ $\mathbf{V}^{\top} \mathbf{V}=\mathbf{I}_{k}$

- projector $\boldsymbol{\Pi}_{\mathbf{V}, \mathbf{V}}=\mathbf{V} \mathbf{V}^{T}$
- the error vector can be decomposed into two orthogonal components

$$
\begin{aligned}
\mathcal{E}_{\mathrm{PROM}}(t) & =\mathbf{w}(t)-\boldsymbol{\Pi}_{\mathbf{V}, \mathbf{V}} \mathbf{w}(t)+\Pi_{\mathbf{V}, \mathbf{v}} \mathbf{w}(t)-\mathbf{V} \mathbf{q}(t) \\
& =\left(\mathbf{I}_{N}-\boldsymbol{\Pi}_{\mathbf{V}, \mathbf{V}}\right) \mathbf{w}(t)+\mathbf{V}\left(\mathbf{V}^{T} \mathbf{w}(t)-\mathbf{q}(t)\right) \\
& =\mathcal{E}_{\mathbf{V} \perp}(t)+\mathcal{E}_{\mathbf{V}}(t)
\end{aligned}
$$

AA216/CME345: MODEL REDUCTION - PMOR

Error Analysis

Orthogonal Components of the Error Vector

- Error component orthogonal to V

$$
\mathcal{E}_{\mathbf{V}^{\perp}}(t)=\left(\mathbf{I}_{N}-\boldsymbol{\Pi}_{\mathbf{V}, \mathbf{v}}\right) \mathbf{w}(t)
$$

Interpretation: The exact trajectory does not strictly belong to $\mathcal{V}=$ range $(\mathbf{V}) \Rightarrow$ projection error

AA216/CME345: MODEL REDUCTION - PMOR

Error Analysis

Orthogonal Components of the Error Vector

- Error component orthogonal to V

$$
\mathcal{E}_{\mathbf{V}^{\perp}}(t)=\left(\mathbf{I}_{N}-\boldsymbol{\Pi}_{\mathbf{V}, \mathbf{v}}\right) \mathbf{w}(t)
$$

Interpretation: The exact trajectory does not strictly belong to $\mathcal{V}=$ range $(\mathbf{V}) \Rightarrow$ projection error
■ Error component parallel to \mathbf{V}

$$
\mathcal{E}_{\mathbf{V}}(t)=\mathbf{V}\left(\mathbf{V}^{\top} \mathbf{w}(t)-\mathbf{q}(t)\right)
$$

Interpretation: An "equivalent" but different dynamical system is solved \Rightarrow modeling error

AA216/CME345: MODEL REDUCTION - PMOR

Error Analysis

Orthogonal Components of the Error Vector

- Error component orthogonal to V

$$
\mathcal{E}_{\mathbf{V}^{\perp}}(t)=\left(\mathbf{I}_{N}-\boldsymbol{\Pi}_{\mathbf{V}, \mathbf{v}}\right) \mathbf{w}(t)
$$

Interpretation: The exact trajectory does not strictly belong to $\mathcal{V}=$ range $(\mathbf{V}) \Rightarrow$ projection error
■ Error component parallel to \mathbf{V}

$$
\mathcal{E}_{\mathbf{V}}(t)=\mathbf{V}\left(\mathbf{V}^{T} \mathbf{w}(t)-\mathbf{q}(t)\right)
$$

Interpretation: An "equivalent" but different dynamical system is solved \Rightarrow modeling error
■ Note that $\mathcal{E}_{\mathbf{V}^{\perp}}(t)$ can be computed without executing the PROM and therefore can provide an a priori error estimate

AA216/CME345: MODEL REDUCTION - PMOR

Error Analysis

Orthogonal Components of the Error Vector

AA216/CME345: MODEL REDUCTION - PMOR

Error Analysis

Orthogonal Components of the Error Vector

Adapted from A New Look at Proper Orthogonal Decomposition, Rathiman and Petzold, SIAM Journal of Numerical Analysis, Vol. 41, No. 5, 2003.

AA216/CME345: MODEL REDUCTION - PMOR

Error Analysis

Orthogonal Components of the Error Vector

- Again, consider the case of an orthogonal Galerkin projection

■ One can derive an ODE governing the behavior of the error component lying in \mathcal{V} in terms of that lying in \mathcal{V}^{\perp}

$$
\begin{aligned}
\frac{d \mathcal{E}_{\mathbf{V}}}{d t}(t) & =\Pi_{\mathbf{V}, \mathbf{V}}\left(\mathbf{f}(\mathbf{w}(t), t)-\mathbf{f}\left(\mathbf{w}(t)-\mathcal{E}_{\mathbf{V}}(t)-\mathcal{E}_{\mathbf{V} \perp}(t), t\right)\right) \\
\mathcal{E}_{\mathbf{V}}(0) & =\mathbf{0}
\end{aligned}
$$

■ In the case of an autonomous linear system

$$
\frac{d \mathbf{w}}{d t}(t)=\mathbf{A} \mathbf{w}(t)
$$

the error ODE has the simple form

$$
\frac{d \mathcal{E}_{\mathbf{V}}}{d t}(t)=\Pi_{\mathbf{V}, \mathbf{V}}\left(\mathbf{A} \mathcal{E}_{\mathbf{V}}(t)\right)+\Pi_{\mathbf{V}, \mathbf{V}}\left(\mathbf{A} \mathcal{E}_{\mathbf{V} \perp}(t)\right)
$$

where $\mathcal{E}_{\mathbf{V} \perp}(t)$ acts as a forcing term

AA216/CME345: MODEL REDUCTION - PMOR

Error Analysis

Orthogonal Components of the Error Vector

- Then, one can then derive the following error bound

Theorem

$$
\left\|\mathcal{E}_{P R O M}(t)\right\| \leq\left(\left\|F\left(T, \mathbf{V}^{T} \mathbf{A V}\right)\right\|_{2}\left\|\mathbf{V}^{T} \mathbf{A} \mathbf{V}^{\perp}\right\|_{2}+1\right)\left\|\mathcal{E}_{\mathbf{V}^{\perp}}(t)\right\|
$$

where $\|\cdot\|$ denotes the $\mathcal{L}_{2}\left([0, T], \mathbb{R}^{N}\right)$ function norm, $\|f\|_{2}=\sqrt{\int_{0}^{T}\|f(\tau)\|_{2}^{2} d \tau}$, and $F(T, M)$ denotes the linear operator defined by

$$
\begin{aligned}
F(T, \mathbf{M}): \mathcal{L}_{2}\left([0, T], \mathbb{R}^{N}\right) & \rightarrow \mathcal{L}_{2}\left([0, T], \mathbb{R}^{N}\right) \\
\mathbf{u} & \longmapsto t \longmapsto\left(\int_{0}^{t} e^{\mathbf{M}(t-\tau)} \mathbf{u}(\tau) d \tau\right)
\end{aligned}
$$

- Error bounds for the nonlinear case can be found in A New Look at Proper Orthogonal Decomposition, Rathiman and Petzold, SIAM Journal of Numerical Analysis, Vol. 41, No. 5, 2003

AA216/CME345: MODEL REDUCTION - PMOR

Preservation of Model Stability

- If \mathbf{A} is symmetric and the projection is an orthogonal Galerkin projection, the stability of the HDM is preserved during the reduction process (Hint: Consider the equivalent HDM and analyze the sign of $\left.\frac{d}{d t}\left(\tilde{\mathbf{w}}^{T} \tilde{\mathbf{w}}\right)\right)$

AA216/CME345: MODEL REDUCTION - PMOR

Preservation of Model Stability

- If \mathbf{A} is symmetric and the projection is an orthogonal Galerkin projection, the stability of the HDM is preserved during the reduction process (Hint: Consider the equivalent HDM and analyze the sign of $\left.\frac{d}{d t}\left(\tilde{\mathbf{w}}^{T} \tilde{\mathbf{w}}\right)\right)$
- However, if \mathbf{A} is not symmetric, the stability of the HDM is not preserved: For example, consider a linear HDM characterized by the following unsymmetric matrix

$$
\mathbf{A}=\left[\begin{array}{cc}
1 & -3.5 \\
0.6 & -2
\end{array}\right]
$$

- consider next the reduced-order basis \mathbf{V}

$$
\mathbf{V}=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

AA216/CME345: MODEL REDUCTION - PMOR

Preservation of Model Stability

- If \mathbf{A} is symmetric and the projection is an orthogonal Galerkin projection, the stability of the HDM is preserved during the reduction process (Hint: Consider the equivalent HDM and analyze the sign of $\left.\frac{d}{d t}\left(\tilde{\mathbf{w}}^{T} \tilde{\mathbf{w}}\right)\right)$
- However, if \mathbf{A} is not symmetric, the stability of the HDM is not preserved: For example, consider a linear HDM characterized by the following unsymmetric matrix

$$
\mathbf{A}=\left[\begin{array}{cc}
1 & -3.5 \\
0.6 & -2
\end{array}\right]
$$

■ the eigenvalues of \mathbf{A} are $\{-0.1127,-0.8873\}$ (stable model)

- consider next the reduced-order basis \mathbf{V}

$$
\mathbf{V}=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

AA216/CME345: MODEL REDUCTION - PMOR

Preservation of Model Stability

■ If \mathbf{A} is symmetric and the projection is an orthogonal Galerkin projection, the stability of the HDM is preserved during the reduction process (Hint: Consider the equivalent HDM and analyze the sign of $\left.\frac{d}{d t}\left(\tilde{\mathbf{w}}^{T} \tilde{\mathbf{w}}\right)\right)$

- However, if \mathbf{A} is not symmetric, the stability of the HDM is not preserved: For example, consider a linear HDM characterized by the following unsymmetric matrix

$$
\mathbf{A}=\left[\begin{array}{cc}
1 & -3.5 \\
0.6 & -2
\end{array}\right]
$$

■ the eigenvalues of \mathbf{A} are $\{-0.1127,-0.8873\}$ (stable model)

- consider next the reduced-order basis \mathbf{V}

$$
\mathbf{V}=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

- $\mathbf{A}_{r}=[1]$ and therefore the Galerkin PROM is not asymptotically stable

