AA216/CME345: MODEL REDUCTION - Proper Orthogonal Decomposition

AA216/CME345: MODEL REDUCTION
 Proper Orthogonal Decomposition (POD)

Charbel Farhat
Stanford University
cfarhat@stanford.edu

AA216/CME345: MODEL REDUCTION - Proper Orthogonal Decomposition

Outline

1 Time-continuous Formulation
2 Method of Snapshots for a Single Parametric Configuration
3 The POD Method in the Frequency Domain
4 Connection with SVD
5 Error Analysis
6 Extension to Multiple Parametric Configurations
7 Applications

AA216/CME345: MODEL REDUCTION - Proper Orthogonal Decomposition

Time-continuous Formulation

Nonlinear High-Dimensional Model

$$
\begin{aligned}
\frac{d \mathbf{w}}{d t}(t) & =\mathbf{f}(\mathbf{w}(t), t) \\
\mathbf{y}(t) & =\mathbf{g}(\mathbf{w}(t), t) \\
\mathbf{w}(0) & =\mathbf{w}_{0}
\end{aligned}
$$

- $\mathbf{w} \in \mathbb{R}^{N}$: Vector of state variables

■ $\mathbf{y} \in \mathbb{R}^{\boldsymbol{q}}$: Vector of output variables (typically $q \ll N$)

- $\mathbf{f}(\cdot, \cdot) \in \mathbb{R}^{N}$: completes the specification of the high-dimensional system of equations

AA216/CME345: MODEL REDUCTION - Proper Orthogonal Decomposition

Time-continuous Formulation

POD Minimization Problem

■ Consider a fixed initial condition $\mathbf{w}_{0} \in \mathbb{R}^{N}$
■ Denote the associated state trajectory in the time-interval $[0, \mathcal{T}]$ by

$$
\mathcal{T}_{\mathbf{w}}=\{\mathbf{w}(t)\}_{0 \leq t \leq \mathcal{T}}
$$

AA216/CME345: MODEL REDUCTION - Proper Orthogonal Decomposition

Time-continuous Formulation

POD Minimization Problem

- Consider a fixed initial condition $\mathbf{w}_{0} \in \mathbb{R}^{N}$
- Denote the associated state trajectory in the time-interval $[0, \mathcal{T}]$ by

$$
\mathcal{T}_{\mathbf{w}}=\{\mathbf{w}(t)\}_{0 \leq t \leq \mathcal{T}}
$$

- The Proper Orthogonal Decomposition (POD) method seeks an orthogonal projector $\boldsymbol{\Pi}_{\mathrm{V}, \mathrm{V}}$ of fixed rank k that minimizes the integrated projection error

$$
\int_{0}^{\mathcal{T}}\left\|\mathbf{w}(t)-\boldsymbol{\Pi}_{\mathbf{V}, \mathbf{v}} \mathbf{w}(t)\right\|_{2}^{2} d t=\int_{0}^{\mathcal{T}}\left\|\mathcal{E}_{\mathbf{V}^{\perp}}(t)\right\|_{2}^{2} d t=\left\|\mathcal{E}_{\mathbf{V}^{\perp}}\right\|^{2}=J\left(\boldsymbol{\Pi}_{\mathbf{V}, \mathbf{v}}\right)
$$

AA216/CME345: MODEL REDUCTION - Proper Orthogonal Decomposition

Time-continuous Formulation

Solution of the POD Minimization Problem

Theorem

Let $\widehat{\mathbf{K}} \in \mathbb{R}^{N \times N}$ be the real, symmetric, positive, semi-definite matrix defined as follows

$$
\widehat{\mathbf{K}}=\int_{0}^{\mathcal{T}} \mathbf{w}(t) \mathbf{w}(t)^{T} d t
$$

Let $\hat{\lambda}_{1} \geq \hat{\lambda}_{2} \geq \cdots \geq \hat{\lambda}_{N} \geq 0$ denote the ordered eigenvalues of $\widehat{\mathbf{K}}$ and $\widehat{\phi}_{i} \in \mathbb{R}^{\bar{N}}, i=1, \cdots, N$, denote their associated eigenvectors which are also referred to as the POD modes

$$
\widehat{\mathbf{K}} \widehat{\phi}_{i}=\hat{\lambda}_{i} \widehat{\phi}_{i}, \quad i=1, \cdots, N
$$

The subspace $\widehat{\mathcal{V}}=\operatorname{range}(\widehat{\mathbf{V}})$ of dimension k that minimizes $J\left(\boldsymbol{\Pi}_{\mathbf{v}}, \mathbf{v}\right)$ is the invariant subspace of $\widehat{\mathbf{K}}$ associated with the eigenvalues $\hat{\lambda}_{1} \geq \hat{\lambda}_{2} \geq \cdots \geq \hat{\lambda}_{k}$

AA216/CME345: MODEL REDUCTION - Proper Orthogonal Decomposition

Method of Snapshots for a Single Parametric Configuration

Discretization of POD by the Method of Snapshots

- Solving the eigenvalue problem $\widehat{\mathbf{K}} \widehat{\phi}_{i}=\hat{\lambda}_{i} \widehat{\phi}_{i}$ is in general computationally intractable because: (1) The dimension N of the matrix $\widehat{\mathbf{K}}$ is usually large; and (2) this matrix is usually dense

AA216/CME345: MODEL REDUCTION - Proper Orthogonal Decomposition

Method of Snapshots for a Single Parametric Configuration

Discretization of POD by the Method of Snapshots

- Solving the eigenvalue problem $\widehat{\mathbf{K}} \widehat{\phi}_{i}=\hat{\lambda}_{i} \widehat{\phi}_{i}$ is in general computationally intractable because: (1) The dimension N of the matrix $\widehat{\mathbf{K}}$ is usually large; and (2) this matrix is usually dense
- However, the state data is typically available under the form of discrete "snapshot" vectors

$$
\left\{\mathbf{w}\left(t_{i}\right)\right\}_{i=1}^{N_{\text {snap }}}
$$

AA216/CME345: MODEL REDUCTION - Proper Orthogonal Decomposition

Method of Snapshots for a Single Parametric Configuration

Discretization of POD by the Method of Snapshots

- Solving the eigenvalue problem $\widehat{\mathbf{K}} \widehat{\phi}_{i}=\hat{\lambda}_{i} \widehat{\phi}_{i}$ is in general computationally intractable because: (1) The dimension N of the matrix $\widehat{\mathbf{K}}$ is usually large; and (2) this matrix is usually dense
- However, the state data is typically available under the form of discrete "snapshot" vectors

$$
\left\{\mathbf{w}\left(t_{i}\right)\right\}_{i=1}^{N_{\text {snap }}}
$$

- In this case, $\int_{0}^{\mathcal{T}} \mathbf{w}(t) \mathbf{w}(t)^{T} d t$ can be approximated using a quadrature rule as follows

$$
\mathbf{K}=\sum_{i=1}^{N_{\text {snap }}} \alpha_{i} \mathbf{w}\left(t_{i}\right) \mathbf{w}\left(t_{i}\right)^{T}
$$

where $\alpha_{i}, i=1, \cdots, N_{\text {snap }}$ are the quadrature weights

AA216/CME345: MODEL REDUCTION - Proper Orthogonal Decomposition

Method of Snapshots for a Single Parametric Configuration

Discretization of POD by the Method of Snapshots

- Let $\mathbf{S} \in \mathbb{R}^{N \times N_{\text {snap }}}$ denote the snapshot matrix defined as follows

$$
\mathbf{S}=\left[\begin{array}{lll}
\sqrt{\alpha_{1}} \mathbf{w}\left(t_{1}\right) & \cdots & \sqrt{\alpha_{N_{\text {snap }}}} \mathbf{w}\left(t_{N_{\text {snap }}}\right)
\end{array}\right]
$$

- It follows that

$$
\mathbf{K}=\mathbf{S S}^{\top}
$$

where \mathbf{K} is still a large-scale $(N \times N)$ matrix

AA216/CME345: MODEL REDUCTION - Proper Orthogonal Decomposition

Method of Snapshots for a Single Parametric Configuration

Discretization of POD by the Method of Snapshots

- Note that the non-zero eigenvalues of the matrix $\mathbf{K}=\mathbf{S S}^{T} \in \mathbb{R}^{N \times N}$ are the same as those of the matrix $\mathbf{R}=\mathbf{S}^{T} \mathbf{S} \in \mathbb{R}^{N_{\text {snap }} \times N_{\text {snap }}}$
- Since usually $N_{\text {snap }} \ll N$, it is more economical to solve instead the symmetric eigenvalue problem

$$
\mathbf{R} \psi_{i}=\lambda_{i} \psi_{i}, \quad i=1, \cdots, N_{\text {snap }}
$$

AA216/CME345: MODEL REDUCTION - Proper Orthogonal Decomposition

Method of Snapshots for a Single Parametric Configuration

Discretization of POD by the Method of Snapshots

- Note that the non-zero eigenvalues of the matrix $\mathbf{K}=\mathbf{S S}^{T} \in \mathbb{R}^{N \times N}$ are the same as those of the matrix $\mathbf{R}=\mathbf{S}^{T} \mathbf{S} \in \mathbb{R}^{N_{\text {snap }} \times N_{\text {snap }}}$
- Since usually $N_{\text {snap }} \ll N$, it is more economical to solve instead the symmetric eigenvalue problem

$$
\mathbf{R} \psi_{i}=\lambda_{i} \psi_{i}, \quad i=1, \cdots, N_{\text {snap }}
$$

- However, if \mathbf{S} is ill-conditioned, \mathbf{R} is worse conditioned

$$
\kappa_{2}(\mathbf{S})=\sqrt{\kappa_{2}\left(\mathbf{S}^{\top} \mathbf{S}\right)} \Rightarrow \kappa_{2}(\mathbf{R})=\kappa_{2}(\mathbf{S})^{2}
$$

AA216/CME345: MODEL REDUCTION - Proper Orthogonal Decomposition

Method of Snapshots for a Single Parametric Configuration

Discretization of POD by the Method of Snapshots

- If $\operatorname{rank}(\mathbf{R})=r$, then the first r POD modes ϕ_{i} are given by

$$
\phi_{i}=\frac{1}{\sqrt{\lambda_{i}}} \mathbf{S} \psi_{i}, \quad i=1, \cdots, r
$$

AA216/CME345: MODEL REDUCTION - Proper Orthogonal Decomposition

Method of Snapshots for a Single Parametric Configuration

Discretization of POD by the Method of Snapshots

■ If $\operatorname{rank}(\mathbf{R})=r$, then the first r POD modes ϕ_{i} are given by

$$
\phi_{i}=\frac{1}{\sqrt{\lambda_{i}}} \mathbf{S} \psi_{i}, \quad i=1, \cdots, r
$$

- Let $\boldsymbol{\Phi}=\left[\begin{array}{lll}\phi_{1} & \ldots & \boldsymbol{\phi}_{r}\end{array}\right]$ and $\boldsymbol{\Psi}=\left[\begin{array}{lll}\boldsymbol{\psi}_{1} & \ldots & \boldsymbol{\psi}_{r}\end{array}\right]$ with $\boldsymbol{\Psi}^{\top} \boldsymbol{\Psi}=\mathbf{I}_{r} \Longrightarrow \boldsymbol{\Phi}=\mathbf{S} \boldsymbol{\Psi} \boldsymbol{\Lambda}^{-\frac{1}{2}}$ where

$$
\boldsymbol{\Lambda}=\left[\begin{array}{lll}
\lambda_{1} & & (0) \\
& \ddots & \\
(0) & & \lambda_{r}
\end{array}\right]
$$

AA216/CME345: MODEL REDUCTION - Proper Orthogonal Decomposition

Method of Snapshots for a Single Parametric Configuration

Discretization of POD by the Method of Snapshots

- If $\operatorname{rank}(\mathbf{R})=r$, then the first r POD modes ϕ_{i} are given by

$$
\phi_{i}=\frac{1}{\sqrt{\lambda_{i}}} \mathbf{S} \psi_{i}, \quad i=1, \cdots, r
$$

- Let $\boldsymbol{\Phi}=\left[\begin{array}{lll}\phi_{1} & \ldots & \boldsymbol{\phi}_{r}\end{array}\right]$ and $\boldsymbol{\Psi}=\left[\begin{array}{lll}\boldsymbol{\psi}_{1} & \ldots & \boldsymbol{\psi}_{r}\end{array}\right]$ with $\boldsymbol{\Psi}^{\boldsymbol{T}} \boldsymbol{\Psi}=\mathbf{I}_{r} \Longrightarrow \boldsymbol{\Phi}=\mathbf{S} \boldsymbol{\Psi} \boldsymbol{\Lambda}^{-\frac{1}{2}}$ where

$$
\boldsymbol{\Lambda}=\left[\begin{array}{lll}
\lambda_{1} & & (0) \\
& \ddots & \\
(0) & & \lambda_{r}
\end{array}\right]
$$

- $\mathbf{R} \boldsymbol{\psi}_{i}=\lambda_{i} \boldsymbol{\psi}_{i}, \quad i=1, \cdots, N_{\text {snap }} \Rightarrow \boldsymbol{\Psi}^{T} \mathbf{R} \boldsymbol{\Psi}=\boldsymbol{\Psi}^{T} \mathbf{S}^{\top} \mathbf{S} \boldsymbol{\Psi}=\boldsymbol{\Lambda}$

■ Hence, $\boldsymbol{\Phi}^{\top} \mathbf{K} \boldsymbol{\Phi}=\boldsymbol{\Lambda}^{-\frac{1}{2}} \boldsymbol{\Psi}^{\top} \underbrace{\mathbf{S}^{\top} \mathbf{S}}_{\mathbf{R}^{\top}} \underbrace{\mathbf{S}^{\top} \mathbf{S}}_{\mathbf{R}} \boldsymbol{\Psi} \boldsymbol{\Lambda}^{-\frac{1}{2}}=\boldsymbol{\Lambda}^{-\frac{1}{2}} \boldsymbol{\Lambda} \boldsymbol{\Psi}^{\top} \boldsymbol{\Psi} \boldsymbol{\Lambda} \boldsymbol{\Lambda}^{-\frac{1}{2}}=\boldsymbol{\Lambda}$

AA216/CME345: MODEL REDUCTION - Proper Orthogonal Decomposition

Method of Snapshots for a Single Parametric Configuration

Discretization of POD by the Method of Snapshots

- If $\operatorname{rank}(\mathbf{R})=r$, then the first r POD modes ϕ_{i} are given by

$$
\phi_{i}=\frac{1}{\sqrt{\lambda_{i}}} \mathbf{S} \psi_{i}, \quad i=1, \cdots, r
$$

- Let $\boldsymbol{\Phi}=\left[\begin{array}{lll}\phi_{1} & \ldots & \boldsymbol{\phi}_{r}\end{array}\right]$ and $\boldsymbol{\Psi}=\left[\begin{array}{lll}\boldsymbol{\psi}_{1} & \ldots & \boldsymbol{\psi}_{r}\end{array}\right]$ with $\boldsymbol{\Psi}^{\boldsymbol{T}} \boldsymbol{\Psi}=\mathbf{I}_{r} \Longrightarrow \boldsymbol{\Phi}=\mathbf{S} \boldsymbol{\Psi} \boldsymbol{\Lambda}^{-\frac{1}{2}}$ where

$$
\boldsymbol{\Lambda}=\left[\begin{array}{lll}
\lambda_{1} & & (0) \\
& \ddots & \\
(0) & & \lambda_{r}
\end{array}\right]
$$

- $\mathbf{R} \boldsymbol{\psi}_{i}=\lambda_{i} \boldsymbol{\psi}_{i}, \quad i=1, \cdots, N_{\text {snap }} \Rightarrow \boldsymbol{\Psi}^{T} \mathbf{R} \boldsymbol{\Psi}=\boldsymbol{\Psi}^{T} \mathbf{S}^{\top} \mathbf{S} \boldsymbol{\Psi}=\boldsymbol{\Lambda}$
- Hence, $\boldsymbol{\Phi}^{T} \mathbf{K} \boldsymbol{\Phi}=\boldsymbol{\Lambda}^{-\frac{1}{2}} \boldsymbol{\Psi}^{T} \underbrace{\mathbf{S}^{T} \mathbf{S}}_{\mathbf{R}^{T}} \underbrace{\mathbf{S}^{\top} \mathbf{S}}_{\mathbf{R}} \boldsymbol{\Psi} \boldsymbol{\Lambda}^{-\frac{1}{2}}=\boldsymbol{\Lambda}^{-\frac{1}{2}} \boldsymbol{\Lambda} \boldsymbol{\Psi}^{\top} \boldsymbol{\Psi} \boldsymbol{\Lambda} \boldsymbol{\Lambda}^{-\frac{1}{2}}=\boldsymbol{\Lambda}$
- Since the columns of $\boldsymbol{\Phi}$ are the eigenvectors of \mathbf{K} ordered by decreasing eigenvalues, the optimal orthogonal basis of size $k \leq r$ is

$$
\mathbf{V}=\left[\begin{array}{ll}
\boldsymbol{\Phi}_{k} & \boldsymbol{\Phi}_{r-k}
\end{array}\right]\left[\begin{array}{c}
\mathbf{I}_{k} \\
\mathbf{0}
\end{array}\right]=\boldsymbol{\Phi}_{k}
$$

AA216/CME345: MODEL REDUCTION - Proper Orthogonal Decomposition

The POD Method in the Frequency Domain

Fourier Analysis

- Parseval's theorem ${ }^{1}$ (the Fourier transform is a unitary operator that is, a surjective bounded operator on a Hilbert space preserving the inner product)
$\lim _{\mathcal{T} \rightarrow \infty} \frac{1}{\mathcal{T}} \int_{-\frac{\mathcal{T}}{2}}^{\frac{\mathcal{T}}{2}}\left\|\mathbf{V}^{\top} \mathbf{w}(t)\right\|_{2}^{2} d t=\lim _{\mathcal{T}, \Omega \rightarrow \infty} \frac{1}{2 \pi \mathcal{T}} \int_{-\Omega}^{\Omega}\left\|\mathcal{F}\left[\mathbf{V}^{\top} \mathbf{w}(t)\right]\right\|_{2}^{2} d \omega$
where $\mathcal{F}[\mathbf{w}(t)]=\mathcal{W}(\omega)$ is the Fourier transform of $\mathbf{w}(t)$
- Consequence

$$
\begin{gathered}
\mathbf{V}^{T}\left(\lim _{\mathcal{T} \rightarrow \infty} \frac{1}{\mathcal{T}} \int_{-\frac{\tau}{2}}^{\frac{\mathcal{T}}{2}} \mathbf{w}(t) \mathbf{w}(t)^{T} d t\right) \mathbf{V} \\
=\mathbf{V}^{T}\left(\lim _{\mathcal{T}, \Omega \rightarrow \infty} \frac{1}{2 \pi \mathcal{T}} \int_{-\Omega}^{\Omega} \mathcal{W}(\omega) \mathcal{W}(\omega)^{*} d \omega\right) \mathbf{V}
\end{gathered}
$$

(Proof: see Homework assignment \#2)

[^0]
AA216/CME345: MODEL REDUCTION - Proper Orthogonal Decomposition

The POD Method in the Frequency Domain

Snapshots in the Frequency Domain

- Let $\widetilde{\mathbf{K}}$ denote the analog to \mathbf{K} in the frequency domain

$$
\widetilde{\mathbf{K}}=\int_{-\Omega}^{\Omega} \mathcal{W}(\omega) \mathcal{W}(\omega)^{*} d \omega \approx \sum_{i=-N_{\text {snap }}^{C}}^{N_{\text {snap }}^{C}} \alpha_{i} \mathcal{W}\left(\omega_{i}\right) \mathcal{W}\left(\omega_{i}\right)^{*}
$$

where $\omega_{-i}=-\omega_{i}$ is

AA216/CME345: MODEL REDUCTION - Proper Orthogonal Decomposition

The POD Method in the Frequency Domain

Snapshots in the Frequency Domain

- Let $\widetilde{\mathbf{K}}$ denote the analog to \mathbf{K} in the frequency domain

$$
\widetilde{\mathbf{K}}=\int_{-\Omega}^{\Omega} \mathcal{W}(\omega) \mathcal{W}(\omega)^{*} d \omega \approx \sum_{i=-N_{\text {snap }}^{\mathrm{C}}}^{N_{\text {snap }}^{\mathrm{C}}} \alpha_{i} \mathcal{W}\left(\omega_{i}\right) \mathcal{W}\left(\omega_{i}\right)^{*}
$$

where $\omega_{-i}=-\omega_{i}$ is

- The corresponding snapshot matrix is

$$
\begin{gathered}
\widetilde{\mathbf{S}}=\left[\begin{array}{lllll}
\sqrt{\alpha_{0}} \mathcal{W}\left(\omega_{0}\right) & \sqrt{2 \alpha_{1}} \operatorname{Re}\left(\mathcal{W}\left(\omega_{1}\right)\right) & \cdots & \sqrt{2 \alpha_{N_{\text {Snap }}^{\mathrm{c}}}} \operatorname{Re}\left(\mathcal{W}\left(\omega_{N_{\text {Snap }}^{\mathrm{C}}}\right)\right) \\
\sqrt{2 \alpha_{1}} \operatorname{lm}\left(\mathcal{W}\left(\omega_{1}\right)\right) & \cdots & \sqrt{2 \alpha_{N_{\text {snap }}^{\mathrm{C}}}} \operatorname{Im}\left(\mathcal{W}\left(\omega_{N_{\text {snap }}^{\mathrm{c}}}\right)\right)
\end{array}\right]
\end{gathered}
$$

AA216/CME345: MODEL REDUCTION - Proper Orthogonal Decomposition

The POD Method in the Frequency Domain

Snapshots in the Frequency Domain

- Let $\widetilde{\mathbf{K}}$ denote the analog to \mathbf{K} in the frequency domain

$$
\widetilde{\mathbf{K}}=\int_{-\Omega}^{\Omega} \mathcal{W}(\omega) \mathcal{W}(\omega)^{*} d \omega \approx \sum_{i=-N_{\text {snap }}^{\mathbb{C}}}^{N_{\text {snap }}^{\mathrm{C}}} \alpha_{i} \mathcal{W}\left(\omega_{i}\right) \mathcal{W}\left(\omega_{i}\right)^{*}
$$

where $\omega_{-i}=-\omega_{i}$ is

- The corresponding snapshot matrix is

$$
\begin{aligned}
& \widetilde{\mathbf{s}}=\left[\begin{array}{llll}
\sqrt{\alpha_{0}} \mathcal{W}\left(\omega_{0}\right) & \sqrt{2 \alpha_{1}} \operatorname{Re}\left(\mathcal{W}\left(\omega_{1}\right)\right) & \cdots & \sqrt{2 \alpha_{N_{\text {Snap }}^{\mathrm{C}}}} \operatorname{Re}\left(\mathcal{W}\left(\omega_{N_{\text {snap }}^{\mathrm{C}}}\right)\right.
\end{array}\right) \\
& \left.\sqrt{2 \alpha_{1}} \operatorname{lm}\left(\mathcal{W}\left(\omega_{1}\right)\right) \ldots \sqrt{2 \alpha_{N_{\text {snap }}^{\mathrm{C}}}} \operatorname{Im}\left(\mathcal{W}\left(\omega_{N_{\text {snnap }}^{\mathrm{C}}}\right)\right)\right]
\end{aligned}
$$

- It follows that

$$
\begin{array}{ll}
\widetilde{\mathbf{K}}=\widetilde{\mathbf{S}} \widetilde{\mathbf{S}}^{T} & \widetilde{\mathbf{R}}=\widetilde{\mathbf{S}}^{T} \widetilde{\mathbf{S}}=\widetilde{\boldsymbol{\Psi}} \tilde{\boldsymbol{\boldsymbol { W }}} \widetilde{\boldsymbol{\Psi}}^{T} \\
\widetilde{\boldsymbol{\Phi}}=\widetilde{\mathbf{S}} \widetilde{\boldsymbol{\Lambda}} \tilde{\mathbf{N}}^{\frac{1}{2}} & \widetilde{\mathbf{V}}=\left[\begin{array}{ll}
\widetilde{\boldsymbol{\Phi}}_{k} & \widetilde{\boldsymbol{\Phi}}_{N-r}
\end{array}\right]\left[\begin{array}{c}
\mathbf{I}_{k} \\
\mathbf{0}
\end{array}\right]=\widetilde{\boldsymbol{\Phi}}_{k}
\end{array}
$$

AA216/CME345: MODEL REDUCTION - Proper Orthogonal Decomposition

The POD Method in the Frequency Domain

Case of Linear-Time Invariant Systems

$$
\begin{aligned}
\mathbf{f}(\mathbf{w}(t), t) & =\mathbf{A} \mathbf{w}(t)+\mathbf{B} \mathbf{u}(t) \\
\mathbf{g}(\mathbf{w}(t), t) & =\mathbf{C w}(t)+\mathbf{D} \mathbf{u}(t)
\end{aligned}
$$

- Single input case: $p=1 \Rightarrow \mathbf{B} \in \mathbb{R}^{N}$
- Time trajectory

$$
\mathbf{w}(t)=e^{\mathbf{A} t} \mathbf{w}_{0}+\int_{0}^{t} e^{\mathbf{A}(t-\tau)} \mathbf{B} u(\tau) d \tau
$$

- Snapshots in the time-domain for an impulse input $u(t)=\delta(t)$ and zero initial condition

$$
\mathbf{w}\left(t_{i}\right)=e^{\mathbf{A} t_{i}} \mathbf{B}, t_{i} \geq 0
$$

- In the frequency domain, the LTI system can be written as

$$
j \omega_{1} \mathcal{W}=\mathbf{A} \mathcal{W}+\mathbf{B}, \omega_{l} \geq 0
$$

and the associated snapshots are $\mathcal{W}\left(\omega_{l}\right)=\left(j \omega_{l} \mathbf{I}-\mathbf{A}\right)^{-1} \mathbf{B}$

AA216/CME345: MODEL REDUCTION - Proper Orthogonal Decomposition

The POD Method in the Frequency Domain

Case of Linear-Time Invariant Systems

- How to sample the frequency domain?

■ approximate time trajectory for a zero initial condition

$$
\boldsymbol{\Pi}_{\tilde{\mathbf{V}}, \widetilde{\mathbf{V}}} \mathbf{w}(t)=\widetilde{\mathbf{V}} \widetilde{\mathbf{V}}^{T} \int_{0}^{t} e^{\mathbf{A}(t-\tau)} \mathbf{B} u(\tau) d \tau
$$

- low-dimensional solution is accurate if the corresponding error is small - that is

$$
\left\|\mathbf{w}(t)-\boldsymbol{\Pi}_{\widetilde{\mathbf{V}}, \widetilde{\mathbf{V}}} \mathbf{w}(t)\right\|=\left\|\left(\mathbf{I}-\widetilde{\mathbf{V}} \widetilde{\mathbf{V}}^{T}\right) \int_{0}^{t} e^{\mathbf{A}(t-\tau)} \mathbf{B} u(\tau) d \tau\right\|
$$

is small, which depends on the frequency content of $u(\tau)$ \Longrightarrow the sampled frequency band should contain the dominant frequencies of $u(\tau)$

AA216/CME345: MODEL REDUCTION - Proper Orthogonal Decomposition

Connection with SVD

Definition

- Given $\mathbf{A} \in \mathbb{R}^{N \times M}$, there exist two orthogonal matrices $\mathbf{U} \in \mathbb{R}^{N \times N}$ $\left(\mathbf{U}^{T} \mathbf{U}=\mathbf{I}_{N}\right)$ and $\mathbf{Z} \in \mathbb{R}^{M \times M}\left(\mathbf{Z}^{T} \mathbf{Z}=\mathbf{I}_{M}\right)$ such that

$$
\mathbf{A}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{Z}^{T}
$$

where $\boldsymbol{\Sigma} \in \mathbb{R}^{N \times M}$ has diagonal entries

$$
\boldsymbol{\Sigma}_{i i}=\sigma_{i}
$$

satisfying

$$
\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{\min (N, M)} \geq 0
$$

and zero entries everywhere else

- $\left\{\sigma_{i}\right\}_{i=1}^{\min (N, M)}$ are the singular values of \mathbf{A}, and the columns of \mathbf{U} and \mathbf{Z} are the left and right singular vectors of \mathbf{A}, respectively

$$
\mathbf{U}=\left[\mathbf{u}_{1} \cdots \mathbf{u}_{N}\right], \quad \mathbf{Z}=\left[\mathbf{z}_{1} \cdots \mathbf{z}_{M}\right]
$$

AA216/CME345: MODEL REDUCTION - Proper Orthogonal Decomposition

Connection with SVD

Properties

- The SVD of a matrix provides many useful information about it (rank, range, null space, norm,...)

■ $\left\{\sigma_{i}^{2}\right\}_{i=1}^{\min (N, M)}$ are the eigenvalues of the symmetric positive, semi-definite matrices $\mathbf{A A}^{T}$ and $\mathbf{A}^{T} \mathbf{A}$
■ $\mathbf{A} \mathbf{z}_{i}=\sigma_{i} \mathbf{u}_{i}, \quad i=1, \cdots, \min (N, M)$

- $\operatorname{rank}(\mathbf{A})=r$, where r is the index of the smallest non-zero singular value
■ if $\mathbf{U}_{r}=\left[\mathbf{u}_{1} \cdots \mathbf{u}_{r}\right]$ and $\mathbf{Z}_{r}=\left[\mathbf{z}_{1} \cdots \mathbf{z}_{r}\right]$ denote the singular vectors associated with the non-zero singular values and $\mathbf{U}_{N-r}=\left[\mathbf{u}_{r+1} \cdots \mathbf{u}_{N}\right]$ and $\mathbf{Z}_{M-r}=\left[\mathbf{z}_{r+1} \cdots \mathbf{z}_{M}\right]$, then

■ $\mathbf{A}=\sigma_{1} \mathbf{u}_{1} \mathbf{z}_{1}^{T}+\cdots+\sigma_{r} \mathbf{u}_{r} \mathbf{z}_{r}^{T}=\sum_{i=1}^{r} \sigma_{i} \mathbf{u}_{i} \mathbf{z}_{i}^{T}$
$\square \operatorname{range}(\mathbf{A})=\operatorname{range}\left(\mathbf{U}_{r}\right) \quad \operatorname{range}\left(\mathbf{A}^{T}\right)=\operatorname{range}\left(\mathbf{Z}_{r}\right)$
$■ \operatorname{null}(\mathbf{A})=\operatorname{range}\left(\mathbf{Z}_{M-r}\right) \quad \operatorname{null}\left(\mathbf{A}^{T}\right)=\operatorname{range}\left(\mathbf{U}_{N-r}\right)$

AA216/CME345: MODEL REDUCTION - Proper Orthogonal Decomposition

Connection with SVD

Application of SVD to Optimality Problems

- Given $\mathbf{A} \in \mathbb{R}^{N \times M}$ with $N \geq M$, which matrix $\mathbf{X} \in \mathbb{R}^{N \times M}$ with $\operatorname{rank}(\mathbf{X})=k<r=\operatorname{rank}(\mathbf{A}) \leq M$ minimizes $\|\mathbf{A}-\mathbf{X}\|_{2}$?

Theorem (Schmidt-Eckart-Young-Mirsky)

$$
\min _{\mathbf{x}, \operatorname{rank}(\mathbf{X})=k}\|\mathbf{A}-\mathbf{X}\|_{2}=\sigma_{k+1}(\mathbf{A}), \quad \text { if } \sigma_{k}(\mathbf{A})>\sigma_{k+1}(\mathbf{A})
$$

- Hence, $\mathbf{X}=\sum_{i=1}^{k} \sigma_{i} \mathbf{u}_{i} \mathbf{z}_{i}^{T}$, where $\mathbf{A}=\mathbf{U} \Sigma \mathbf{Z}^{T}$, minimizes $\|\mathbf{A}-\mathbf{X}\|_{2}$

AA216/CME345: MODEL REDUCTION - Proper Orthogonal Decomposition

Connection with SVD

Application of SVD to Optimality Problems

- Given $\mathbf{A} \in \mathbb{R}^{N \times M}$ with $N \geq M$, which matrix $\mathbf{X} \in \mathbb{R}^{N \times M}$ with $\operatorname{rank}(\mathbf{X})=k<r=\operatorname{rank}(\mathbf{A}) \leq M$ minimizes $\|\mathbf{A}-\mathbf{X}\|_{2}$?

Theorem (Schmidt-Eckart-Young-Mirsky)

$$
\min _{\mathbf{x}, \operatorname{rank}(\mathbf{X})=k}\|\mathbf{A}-\mathbf{X}\|_{2}=\sigma_{k+1}(\mathbf{A}), \quad \text { if } \sigma_{k}(\mathbf{A})>\sigma_{k+1}(\mathbf{A})
$$

- Hence, $\mathbf{X}=\sum_{i=1}^{k} \sigma_{i} \mathbf{u}_{i} \mathbf{z}_{i}^{T}$, where $\mathbf{A}=\mathbf{U} \Sigma \mathbf{Z}^{T}$, minimizes $\|\mathbf{A}-\mathbf{X}\|_{2}$
- This minimizer is also the unique solution of the related problem (Eckart-Young theorem)

$$
\min _{\mathbf{x}, \operatorname{rank}(\mathbf{X})=k}\|\mathbf{A}-\mathbf{X}\|_{F}
$$

AA216/CME345: MODEL REDUCTION - Proper Orthogonal Decomposition

Connection with SVD

Application of SVD to Optimality Problems

- Given $\mathbf{A} \in \mathbb{R}^{N \times M}$ with $N \geq M$, which matrix $\mathbf{X} \in \mathbb{R}^{N \times M}$ with $\operatorname{rank}(\mathbf{X})=k<r=\operatorname{rank}(\mathbf{A}) \leq M$ minimizes $\|\mathbf{A}-\mathbf{X}\|_{2}$?

Theorem (Schmidt-Eckart-Young-Mirsky)

$$
\min _{\mathbf{x}, \operatorname{rank}(\mathbf{X})=k}\|\mathbf{A}-\mathbf{X}\|_{2}=\sigma_{k+1}(\mathbf{A}), \quad \text { if } \sigma_{k}(\mathbf{A})>\sigma_{k+1}(\mathbf{A})
$$

- Hence, $\mathbf{X}=\sum_{i=1}^{k} \sigma_{i} \mathbf{u}_{i} \mathbf{z}_{i}^{T}$, where $\mathbf{A}=\mathbf{U} \Sigma \mathbf{Z}^{T}$, minimizes $\|\mathbf{A}-\mathbf{X}\|_{2}$
- This minimizer is also the unique solution of the related problem (Eckart-Young theorem)

$$
\min _{\mathbf{X}, \operatorname{rank}(\mathbf{X})=k}\|\mathbf{A}-\mathbf{X}\|_{F}
$$

■ This result explains the concept of "low-rank" approximation and its connection with SVD

AA216/CME345: MODEL REDUCTION - Proper Orthogonal Decomposition

Connection with SVD

Application to Image Compression

- Consider a color image in RGB representation made of $M \times N$ pixels, where $M<N$ (i.e., a landscape image)

■ this image can be represented by an $M \times N \times 3$ real matrix \mathbf{A}_{1}
■ \mathbf{A}_{1} can be converted to a $3 N \times M$ matrix \mathbf{A}_{3} as follows

- finally, \mathbf{A}_{3} can be approximated using SVD as follows

$$
\mathbf{A}_{3}=\sigma_{1} \mathbf{u}_{1} \mathbf{z}_{1}^{T}+\cdots+\sigma_{r} \mathbf{u}_{r} \mathbf{z}_{r}^{T}=\sum_{i=1}^{r} \sigma_{i} \mathbf{u}_{i} \mathbf{z}_{i}^{T}
$$

AA216/CME345: MODEL REDUCTION - Proper Orthogonal Decomposition

Connection with SVD

Application to Image Compression

- Example: $\mathbf{A}_{3} \in \mathbb{R}^{1497 \times 285}$

(a) rank 1

(d) rank 4

(b) rank 2

(e) rank 5

(c) rank 3

(f) rank 6

AA216/CME345: MODEL REDUCTION - Proper Orthogonal Decomposition

Connection with SVD

Application to Image Compression

(g) rank 10

(j) rank 75

(h) rank 20

(k) rank 100

(i) rank 50

(I) rank 285
\Longrightarrow SVD can be used for data compression

AA216/CME345: MODEL REDUCTION - Proper Orthogonal Decomposition

Connection with SVD

Discretization of POD by the Method of Snapshots and SVD
■ The discretization of the POD by the method of snapshots requires computing the eigenspectrum of $\mathbf{K}=\mathbf{S S}^{\top}$

$$
\boldsymbol{\Phi}^{T} \mathbf{K} \boldsymbol{\Phi}=\boldsymbol{\Phi}^{T} \mathbf{S} \mathbf{S}^{T} \boldsymbol{\Phi}=\mathbf{\Lambda}
$$

corresponding to its non-zero eigenvalues

AA216/CME345: MODEL REDUCTION - Proper Orthogonal Decomposition

Connection with SVD

Discretization of POD by the Method of Snapshots and SVD

- The discretization of the POD by the method of snapshots requires computing the eigenspectrum of $\mathbf{K}=\mathbf{S S}^{\top}$

$$
\boldsymbol{\Phi}^{T} \mathbf{K} \boldsymbol{\Phi}=\boldsymbol{\Phi}^{T} \mathbf{S S}^{T} \boldsymbol{\Phi}=\boldsymbol{\Lambda}
$$

corresponding to its non-zero eigenvalues

- Link with the SVD of S

$$
\begin{aligned}
& \mathbf{S}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{Z}^{T}=\left[\begin{array}{ll}
\mathbf{U}_{r} & \mathbf{U}_{N-r}
\end{array}\right]\left[\begin{array}{cc}
\boldsymbol{\Sigma}_{r} & \mathbf{0} \\
\mathbf{0} & \mathbf{0}
\end{array}\right] \mathbf{Z}^{T} \\
& \Longrightarrow \mathbf{K}=\mathbf{U} \boldsymbol{\Sigma}^{2} \mathbf{U}^{T} \quad \text { and } \quad \mathbf{U}^{T} \mathbf{K} \mathbf{U}=\boldsymbol{\Sigma}^{2} \\
& \Longrightarrow \boldsymbol{\Phi}=\mathbf{U}_{r}
\end{aligned} \text { and } \quad \boldsymbol{\Lambda}^{\frac{1}{2}}=\boldsymbol{\Sigma}_{r} \Leftrightarrow \boldsymbol{\Lambda}=\boldsymbol{\Sigma}_{r}^{2} .
$$

AA216/CME345: MODEL REDUCTION - Proper Orthogonal Decomposition

Connection with SVD

Discretization of POD by the Method of Snapshots and SVD

- The discretization of the POD by the method of snapshots requires computing the eigenspectrum of $\mathbf{K}=\mathbf{S S}^{\top}$

$$
\boldsymbol{\Phi}^{T} \mathbf{K} \boldsymbol{\Phi}=\boldsymbol{\Phi}^{T} \mathbf{S S}^{T} \boldsymbol{\Phi}=\boldsymbol{\Lambda}
$$

corresponding to its non-zero eigenvalues

- Link with the SVD of S

$$
\begin{aligned}
& \mathbf{S}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{Z}^{T}=\left[\begin{array}{ll}
\mathbf{U}_{r} & \mathbf{U}_{N-r}
\end{array}\right]\left[\begin{array}{cc}
\boldsymbol{\Sigma}_{r} & \mathbf{0} \\
\mathbf{0} & \mathbf{0}
\end{array}\right] \mathbf{Z}^{T} \\
& \Longrightarrow \mathbf{K}=\mathbf{U} \boldsymbol{\Sigma}^{2} \mathbf{U}^{T} \text { and } \mathbf{U}^{\top} \mathbf{K} \mathbf{U}=\boldsymbol{\Sigma}^{2} \\
& \Longrightarrow \boldsymbol{\Phi}=\mathbf{U}_{r} \quad \text { and } \quad \boldsymbol{\Lambda}^{\frac{1}{2}}=\boldsymbol{\Sigma}_{r} \Leftrightarrow \boldsymbol{\Lambda}=\boldsymbol{\Sigma}_{r}^{2}
\end{aligned}
$$

$\Longrightarrow \mathbf{U}_{k} \in \mathbb{R}^{N \times r}$ is to be identified with $\mathbf{X} \in \mathbb{R}^{N \times M}, N \geq M \geq r$

AA216/CME345: MODEL REDUCTION - Proper Orthogonal Decomposition

Connection with SVD

Discretization of POD by the Method of Snapshots and SVD

- The discretization of the POD by the method of snapshots requires computing the eigenspectrum of $\mathbf{K}=\mathbf{S S}^{\top}$

$$
\boldsymbol{\Phi}^{T} \mathbf{K} \boldsymbol{\Phi}=\boldsymbol{\Phi}^{T} \mathbf{S S}^{T} \boldsymbol{\Phi}=\boldsymbol{\Lambda}
$$

corresponding to its non-zero eigenvalues

- Link with the SVD of S

$$
\begin{aligned}
& \mathbf{S}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{Z}^{T}=\left[\begin{array}{ll}
\mathbf{U}_{r} & \mathbf{U}_{N-r}
\end{array}\right]\left[\begin{array}{cc}
\boldsymbol{\Sigma}_{r} & \mathbf{0} \\
\mathbf{0} & \mathbf{0}
\end{array}\right] \mathbf{Z}^{T} \\
& \Longrightarrow \mathbf{K}=\mathbf{U} \boldsymbol{\Sigma}^{2} \mathbf{U}^{T} \quad \text { and } \quad \mathbf{U}^{T} \mathbf{K} \mathbf{U}=\boldsymbol{\Sigma}^{2} \\
& \Longrightarrow \boldsymbol{\Phi}=\mathbf{U}_{r} \quad \text { and } \quad \boldsymbol{\Lambda}^{\frac{1}{2}}=\boldsymbol{\Sigma}_{r} \Leftrightarrow \boldsymbol{\Lambda}=\boldsymbol{\Sigma}_{r}^{2}
\end{aligned}
$$

$\Longrightarrow \mathbf{U}_{k} \in \mathbb{R}^{N \times r}$ is to be identified with $\mathbf{X} \in \mathbb{R}^{N \times M}, N \geq M \geq r$

- Computing the SVD of \mathbf{S} is usually preferred to computing the eigendecomposition of $\mathbf{R}=\mathbf{S}^{\top} \mathbf{S}$ because, as noted earlier

$$
\kappa_{2}(\mathbf{R})=\kappa_{2}(\mathbf{S})^{2}
$$

AA216/CME345: MODEL REDUCTION - Proper Orthogonal Decomposition

Error Analysis

Reduction Criterion

■ How to choose the size k of the Reduced-Order Basis (ROB) V obtained using the POD method

- start from the property of the Frobenius norm of \mathbf{S}

$$
\|\mathbf{S}\|_{F}=\sqrt{\sum_{i=1}^{r} \sigma_{i}^{2}(\mathbf{S})} \quad\left(\text { recall }\|\mathbf{S}\|_{F}=\sqrt{\operatorname{trace}\left(\mathbf{S}^{T} \mathbf{S}\right)}=\sqrt{\operatorname{trace}\left(\mathbf{S S}^{T}\right)}\right)
$$

AA216/CME345: MODEL REDUCTION - Proper Orthogonal Decomposition

Error Analysis

Reduction Criterion

- How to choose the size k of the Reduced-Order Basis (ROB) V obtained using the POD method
- start from the property of the Frobenius norm of \mathbf{S}

$$
\|\mathbf{S}\|_{F}=\sqrt{\sum_{i=1}^{r} \sigma_{i}^{2}(\mathbf{S})} \quad\left(\text { recall }\|\mathbf{S}\|_{F}=\sqrt{\operatorname{trace}\left(\mathbf{S}^{T} \mathbf{S}\right)}=\sqrt{\operatorname{trace}\left(\mathbf{S S}^{T}\right)}\right)
$$

- consider the error measured with the Frobenius norm induced by the truncation of the POD basis

$$
\left\|\left(\mathbf{I}_{N}-\mathbf{V} \mathbf{V}^{T}\right) \mathbf{S}\right\|_{F}=\sqrt{\sum_{i=k+1}^{r} \sigma_{i}^{2}(\mathbf{S})}
$$

AA216/CME345: MODEL REDUCTION - Proper Orthogonal Decomposition

Error Analysis

Reduction Criterion

- How to choose the size k of the Reduced-Order Basis (ROB) V obtained using the POD method
- start from the property of the Frobenius norm of \mathbf{S}

$$
\|\mathbf{S}\|_{F}=\sqrt{\sum_{i=1}^{r} \sigma_{i}^{2}(\mathbf{S})} \quad\left(\operatorname{recall}\|\mathbf{S}\|_{F}=\sqrt{\operatorname{trace}\left(\mathbf{S}^{T} \mathbf{S}\right)}=\sqrt{\operatorname{trace}\left(\mathbf{S S}^{T}\right)}\right)
$$

- consider the error measured with the Frobenius norm induced by the truncation of the POD basis

$$
\left\|\left(\mathbf{I}_{N}-\mathbf{V} \mathbf{V}^{T}\right) \mathbf{S}\right\|_{F}=\sqrt{\sum_{i=k+1}^{r} \sigma_{i}^{2}(\mathbf{S})}
$$

- the square of the relative error gives an indication of the magnitude of the "missing" information

$$
\mathcal{E}_{\mathrm{POD}}(k)=\frac{\sum_{i=1}^{k} \sigma_{i}^{2}(\mathbf{S})}{\sum_{i=1}^{r} \sigma_{i}^{2}(\mathbf{S})} \Rightarrow 1-\mathcal{E}_{\mathrm{POD}}(k)=\frac{\sum_{i=k+1}^{r} \sigma_{i}^{2}(\mathbf{S})}{\sum_{i=1}^{r} \sigma_{i}^{2}(\mathbf{S})}
$$

AA216/CME345: MODEL REDUCTION - Proper Orthogonal Decomposition

Error Analysis

Reduction Criterion

- How to choose the size k of the ROB \mathbf{V} obtained using the POD method (continue)

$$
\mathcal{E}_{\mathrm{POD}}(k)=\frac{\sum_{i=1}^{k} \sigma_{i}^{2}(\mathbf{S})}{\sum_{i=1}^{r} \sigma_{i}^{2}(\mathbf{S})}
$$

- $\mathcal{E}_{\text {POD }}(k)$ represents the relative energy of the snapshots captured by the k first POD basis vectors
■ k is usually chosen as the minimum integer for which

$$
1-\mathcal{E}_{\mathrm{POD}}(k) \leq \epsilon
$$

for a given tolerance $0<\epsilon<1$ (for instance $\epsilon=0.1 \%$)

AA216/CME345: MODEL REDUCTION - Proper Orthogonal Decomposition

Error Analysis

Reduction Criterion

- How to choose the size k of the ROB \mathbf{V} obtained using the POD method (continue)

$$
\mathcal{E}_{\mathrm{POD}}(k)=\frac{\sum_{i=1}^{k} \sigma_{i}^{2}(\mathbf{S})}{\sum_{i=1}^{r} \sigma_{i}^{2}(\mathbf{S})}
$$

- $\mathcal{E}_{\text {POD }}(k)$ represents the relative energy of the snapshots captured by the k first POD basis vectors
■ k is usually chosen as the minimum integer for which

$$
1-\mathcal{E}_{\mathrm{POD}}(k) \leq \epsilon
$$

for a given tolerance $0<\epsilon<1$ (for instance $\epsilon=0.1 \%$)

- this criterion originates from turbulence applications

AA216/CME345: MODEL REDUCTION - Proper Orthogonal Decomposition

Error Analysis

Reduction Criterion

■ Recall the model reduction error components

$$
\begin{aligned}
\mathcal{E}_{\mathrm{PROM}}(t) & =\mathcal{E}_{\mathbf{V}^{\perp}}(t)+\mathcal{E}_{\mathbf{V}}(t) \\
& =\left(\mathbf{I}_{N}-\Pi_{\mathbf{V}, \mathbf{v}}\right) \mathbf{w}(t)+\mathbf{V}\left(\mathbf{V}^{T} \mathbf{w}(t)-\mathbf{q}(t)\right)
\end{aligned}
$$

- denote $\mathcal{E}_{\text {PROM }}^{\text {snap }}=\left[\begin{array}{lll}\mathcal{E}_{\text {PROM }}\left(t_{1}\right) & \cdots & \mathcal{E}_{\text {PROM }}\left(t_{N_{\text {snap }}}\right)\end{array}\right]$

AA216/CME345: MODEL REDUCTION - Proper Orthogonal Decomposition

Error Analysis

Reduction Criterion

- Recall the model reduction error components

$$
\begin{aligned}
\mathcal{E}_{\mathrm{PROM}}(t) & =\mathcal{E}_{\mathbf{V}^{\perp}}(t)+\mathcal{E}_{\mathbf{V}}(t) \\
& =\left(\mathbf{I}_{N}-\Pi_{\mathbf{V}, \mathbf{v}}\right) \mathbf{w}(t)+\mathbf{V}\left(\mathbf{V}^{T} \mathbf{w}(t)-\mathbf{q}(t)\right)
\end{aligned}
$$

$■$ denote $\mathcal{E}_{\text {PROM }}^{\text {snap }}=\left[\begin{array}{lll}\mathcal{E}_{\text {PROM }}\left(t_{1}\right) & \cdots & \mathcal{E}_{\text {PROM }}\left(t_{N_{\text {snap }}}\right)\end{array}\right]$

- $\left\|\left[\mathcal{E}_{\mathbf{V}} \perp\left(t_{1}\right) \quad \cdots \quad \mathcal{E}_{\mathbf{V} \perp}\left(t_{N_{\text {snap }}}\right)\right]\right\|_{F}=\sqrt{\sum_{i=k+1}^{r} \sigma_{i}^{2}(\mathbf{S})}$

AA216/CME345: MODEL REDUCTION - Proper Orthogonal Decomposition

Error Analysis

Reduction Criterion

- Recall the model reduction error components

$$
\begin{aligned}
\mathcal{E}_{\mathrm{PROM}}(t) & =\mathcal{E}_{\mathbf{V}^{\perp}}(t)+\mathcal{E}_{\mathbf{V}}(t) \\
& =\left(\mathbf{I}_{N}-\Pi_{\mathbf{V}, \mathbf{v}}\right) \mathbf{w}(t)+\mathbf{V}\left(\mathbf{V}^{T} \mathbf{w}(t)-\mathbf{q}(t)\right)
\end{aligned}
$$

■ denote $\mathcal{E}_{\text {PROM }}^{\text {snap }}=\left[\begin{array}{lll}\mathcal{E}_{\text {PROM }}\left(t_{1}\right) & \cdots & \mathcal{E}_{\text {PROM }}\left(t_{N_{\text {snap }}}\right)\end{array}\right]$

- $\left\|\left[\mathcal{E}_{\mathbf{V} \perp}\left(t_{1}\right) \quad \cdots \quad \mathcal{E}_{\mathbf{V} \perp}\left(t_{N_{\text {snap }}}\right)\right]\right\|_{F}=\sqrt{\sum_{i=k+1}^{r} \sigma_{i}^{2}(\mathbf{S})}$
- hence

$$
\left.1-\mathcal{E}_{\mathrm{POD}}(k)=\frac{\|\left[\mathcal{E}_{\mathbf{V} \perp}\left(t_{1}\right)\right.}{\cdots} \quad \mathcal{E}_{\mathbf{V} \perp}\left(t_{N_{\text {snap }}}\right)\right] \|_{F}^{2} .
$$

and

$$
1-\mathcal{E}_{\mathrm{POD}}(k) \leq \frac{\left\|\mathcal{E}_{\mathrm{PROM}}^{\text {snap }}\right\|_{F}^{2}}{\sum_{i=1}^{r} \sigma_{i}^{2}(\mathbf{S})}
$$

- note that the energy criterion is valid only for the sampled snapshots

AA216/CME345: MODEL REDUCTION - Proper Orthogonal Decomposition

Extension to Multiple Parametric Configurations

The Steady-State Case

- Consider the parametrized steady-state high-dimensional system of equations

$$
\mathbf{f}(\mathbf{w} ; \boldsymbol{\mu})=\mathbf{0}, \boldsymbol{\mu} \in \mathcal{D} \subset \mathbb{R}^{d}, \boldsymbol{\mu}=\left[\boldsymbol{\mu}_{1}, \cdots, \boldsymbol{\mu}_{d}\right]^{T}
$$

AA216/CME345: MODEL REDUCTION - Proper Orthogonal Decomposition

Extension to Multiple Parametric Configurations

The Steady-State Case

- Consider the parametrized steady-state high-dimensional system of equations

$$
\mathbf{f}(\mathbf{w} ; \boldsymbol{\mu})=\mathbf{0}, \boldsymbol{\mu} \in \mathcal{D} \subset \mathbb{R}^{d}, \boldsymbol{\mu}=\left[\boldsymbol{\mu}_{1}, \cdots, \boldsymbol{\mu}_{d}\right]^{T}
$$

- Consider the goal of constructing a ROB and the associated projection-based PROM for computing the approximate solution

$$
\mathbf{w}(\boldsymbol{\mu}) \approx \mathbf{V} \mathbf{q}(\boldsymbol{\mu}), \boldsymbol{\mu} \in \mathcal{D}
$$

AA216/CME345: MODEL REDUCTION - Proper Orthogonal Decomposition

Extension to Multiple Parametric Configurations

The Steady-State Case

- Consider the parametrized steady-state high-dimensional system of equations

$$
\mathbf{f}(\mathbf{w} ; \boldsymbol{\mu})=\mathbf{0}, \boldsymbol{\mu} \in \mathcal{D} \subset \mathbb{R}^{d}, \boldsymbol{\mu}=\left[\boldsymbol{\mu}_{1}, \cdots, \boldsymbol{\mu}_{d}\right]^{T}
$$

- Consider the goal of constructing a ROB and the associated projection-based PROM for computing the approximate solution

$$
\mathbf{w}(\boldsymbol{\mu}) \approx \mathbf{V} \mathbf{q}(\boldsymbol{\mu}), \boldsymbol{\mu} \in \mathcal{D}
$$

- Question: How do we build a global ROB V that can capture the solution in the entire parameter domain \mathcal{D} ?

AA216/CME345: MODEL REDUCTION - Proper Orthogonal Decomposition

Extension to Multiple Parametric Configurations

Choice of Snapshots

- Lagrange basis

$$
\mathbf{V} \subset \operatorname{span}\left\{\mathbf{w}\left(\boldsymbol{\mu}^{(1)}\right), \cdots, \mathbf{w}\left(\boldsymbol{\mu}^{(s)}\right)\right\} \Rightarrow N_{\text {snap }}=s
$$

AA216/CME345: MODEL REDUCTION - Proper Orthogonal Decomposition

Extension to Multiple Parametric Configurations

Choice of Snapshots

- Lagrange basis

$$
\mathbf{V} \subset \operatorname{span}\left\{\mathbf{w}\left(\boldsymbol{\mu}^{(1)}\right), \cdots, \mathbf{w}\left(\boldsymbol{\mu}^{(s)}\right)\right\} \Rightarrow N_{\text {snap }}=s
$$

- Hermite basis

$$
\begin{gathered}
\mathbf{V} \subset \operatorname{span}\left\{\mathbf{w}\left(\boldsymbol{\mu}^{(1)}\right), \frac{\partial \mathbf{w}}{\partial \mu_{1}}\left(\boldsymbol{\mu}^{(1)}\right), \cdots, \mathbf{w}\left(\boldsymbol{\mu}^{(s)}\right), \frac{\partial \mathbf{w}}{\partial \mu_{d}}\left(\boldsymbol{\mu}^{(s)}\right)\right\} \\
\Rightarrow N_{\text {snap }}=s \times(d+1)
\end{gathered}
$$

AA216/CME345: MODEL REDUCTION - Proper Orthogonal Decomposition

Extension to Multiple Parametric Configurations

Choice of Snapshots

- Lagrange basis

$$
\mathbf{V} \subset \operatorname{span}\left\{\mathbf{w}\left(\boldsymbol{\mu}^{(1)}\right), \cdots, \mathbf{w}\left(\boldsymbol{\mu}^{(s)}\right)\right\} \Rightarrow N_{\text {snap }}=s
$$

- Hermite basis

$$
\begin{gathered}
\mathbf{V} \subset \operatorname{span}\left\{\mathbf{w}\left(\boldsymbol{\mu}^{(1)}\right), \frac{\partial \mathbf{w}}{\partial \mu_{1}}\left(\boldsymbol{\mu}^{(1)}\right), \cdots, \mathbf{w}\left(\boldsymbol{\mu}^{(s)}\right), \frac{\partial \mathbf{w}}{\partial \mu_{d}}\left(\boldsymbol{\mu}^{(s)}\right)\right\} \\
\Rightarrow N_{\text {snap }}=s \times(d+1)
\end{gathered}
$$

- Taylor basis

$$
\begin{aligned}
& \mathrm{v} \subset \operatorname{span}\left\{\mathrm{w}\left(\mu^{(1)}\right), \frac{\partial \mathrm{w}}{\partial \mu_{1}}\left(\mu^{(1)}\right), \frac{\partial^{2} w}{\partial \mu_{1}^{2}}\left(\mu^{(1)}\right), \cdots, \frac{\partial^{q} \mathrm{w}}{\partial \mu_{1}^{q}}\left(\mu^{(1)}\right), \cdots, \frac{\partial w}{\partial \mu_{d}}\left(\mu^{(1)}\right), \cdots, \frac{\partial^{q} w}{\partial \mu_{d}^{q}}\left(\mu^{(1)}\right)\right\} \\
& \Rightarrow N_{\text {snap }}=1+d+\frac{d(d+1)}{2}+\cdots+\frac{(d+q-1)!}{(d-1)!q!}=1+\sum_{i=1}^{q} \frac{(d+i-1)!}{(d-1)!i!}
\end{aligned}
$$

AA216/CME345: MODEL REDUCTION - Proper Orthogonal Decomposition

Extension to Multiple Parametric Configurations

Design of Numerical Experiments

- How one chooses the s parameter samples $\boldsymbol{\mu}^{(1)}, \cdots, \boldsymbol{\mu}^{(s)}$ where to compute the snapshots $\left\{\mathbf{w}\left(\boldsymbol{\mu}^{(1)}\right), \cdots, \mathbf{w}\left(\boldsymbol{\mu}^{(s)}\right)\right\}$?
- the location of the samples in the parameter space will determine the accuracy of the resulting global PROM in the entire parameter domain $\mathcal{D} \subset \mathbb{R}^{d}$
- Possible approaches

■ uniform sampling for parameter spaces of moderate dimensions ($d \leq 5$) and moderately computationally intensive High-Dimensional Models (HDMs)

- Latin Hypercube Sampling (LHS) for higher-dimensional parameter spaces and moderately computationally intensive HDMs
- adaptive, goal-oriented, greedy sampling that exploits an error indicator to focus on the PROM accuracy, for higher-dimensional parameter spaces and computationally intensive HDMs

AA216/CME345: MODEL REDUCTION - Proper Orthogonal Decomposition

Extension to Multiple Parametric Configurations

Non-adaptive Sampling: Latin Hypercube, Orthogonal, and Random Samplings

- Sampling methods grounded in statistics

AA216/CME345: MODEL REDUCTION - Proper Orthogonal Decomposition

Extension to Multiple Parametric Configurations

Non-adaptive Sampling: Latin Hypercube, Orthogonal, and Random Samplings

- Sampling methods grounded in statistics

■ Latin Hypercube Sampling (LHS). First, the total number of sample points is set and then for each sample point, the row and column where the sample point is taken is remembered - ensures that the set of random numbers is representative of the real variability

- latin square: A square grid containing sample positions where there is only one sample in each row and each column
- a latin hypercube: Generalization of this concept to an arbitrary number of dimensions, where a single point is sampled in each axis-aligned hyperplane containing it

AA216/CME345: MODEL REDUCTION - Proper Orthogonal Decomposition

Extension to Multiple Parametric Configurations

Non-adaptive Sampling: Latin Hypercube, Orthogonal, and Random Samplings

- Sampling methods grounded in statistics
- Latin Hypercube Sampling (LHS). First, the total number of sample points is set and then for each sample point, the row and column where the sample point is taken is remembered - ensures that the set of random numbers is representative of the real variability
- latin square: A square grid containing sample positions where there is only one sample in each row and each column
- a latin hypercube: Generalization of this concept to an arbitrary number of dimensions, where a single point is sampled in each axis-aligned hyperplane containing it
- Orthogonal Sampling. First, the sample space is divided into equally probable subspaces and then all sample points are simultaneously chosen, ensuring that the total set of sample points is a Latin Hypercube sample and that each subspace is sampled with the same density - ensures that the set of random numbers is a very good representative of the real variability

AA216/CME345: MODEL REDUCTION - Proper Orthogonal Decomposition

Extension to Multiple Parametric Configurations

Non-adaptive Sampling: Latin Hypercube, Orthogonal, and Random Samplings

- Sampling methods grounded in statistics
- Latin Hypercube Sampling (LHS). First, the total number of sample points is set and then for each sample point, the row and column where the sample point is taken is remembered - ensures that the set of random numbers is representative of the real variability
- latin square: A square grid containing sample positions where there is only one sample in each row and each column
- a latin hypercube: Generalization of this concept to an arbitrary number of dimensions, where a single point is sampled in each axis-aligned hyperplane containing it
- Orthogonal Sampling. First, the sample space is divided into equally probable subspaces and then all sample points are simultaneously chosen, ensuring that the total set of sample points is a Latin Hypercube sample and that each subspace is sampled with the same density - ensures that the set of random numbers is a very good representative of the real variability
- Random Sampling. New sample points are generated without taking into account the previously generated sample points - no specific guarantees

AA216/CME345: MODEL REDUCTION - Proper Orthogonal Decomposition

Extension to Multiple Parametric Configurations

Non-adaptive Sampling: Latin Hypercube, Orthogonal, and Random Samplings

- Sampling methods grounded in statistics
- Latin Hypercube Sampling (LHS). First, the total number of sample points is set and then for each sample point, the row and column where the sample point is taken is remembered - ensures that the set of random numbers is representative of the real variability
- latin square: A square grid containing sample positions where there is only one sample in each row and each column
- a latin hypercube: Generalization of this concept to an arbitrary number of dimensions, where a single point is sampled in each axis-aligned hyperplane containing it
- Orthogonal Sampling. First, the sample space is divided into equally probable subspaces and then all sample points are simultaneously chosen, ensuring that the total set of sample points is a Latin Hypercube sample and that each subspace is sampled with the same density - ensures that the set of random numbers is a very good representative of the real variability
- Random Sampling. New sample points are generated without taking into account the previously generated sample points - no specific guarantees
- None of these methods knows anything about the HDM or PROM to be constructed

AA216/CME345: MODEL REDUCTION - Proper Orthogonal Decomposition

Extension to Multiple Parametric Configurations

Adaptive Sampling: Greedy Approach

- Ideally, one can build a PROM progressively and update it (increase its dimension) by considering additional samples $\boldsymbol{\mu}^{(i)}$ and corresponding solution snapshots at the locations of the parameter space where the current PROM is the most inaccurate - that is,

$$
\boldsymbol{\mu}^{(i)}=\underset{\boldsymbol{\mu} \in \mathcal{D}}{\operatorname{argmax}}\left\|\mathcal{E}_{\mathrm{PROM}}(\boldsymbol{\mu})\right\|=\underset{\boldsymbol{\mu} \in \mathcal{D}}{\operatorname{argmax}}\|\mathbf{w}(\boldsymbol{\mu})-\mathbf{V q}(\boldsymbol{\mu})\|
$$

- $\mathbf{q}(\boldsymbol{\mu})$ can be efficiently computed
- but the cost of obtaining $\mathbf{w}(\boldsymbol{\mu})$ can be high \Rightarrow eventually an intractable approach

AA216/CME345: MODEL REDUCTION - Proper Orthogonal Decomposition

Extension to Multiple Parametric Configurations

Adaptive Sampling: Greedy Approach

- Ideally, one can build a PROM progressively and update it (increase its dimension) by considering additional samples $\boldsymbol{\mu}^{(i)}$ and corresponding solution snapshots at the locations of the parameter space where the current PROM is the most inaccurate - that is,

$$
\boldsymbol{\mu}^{(i)}=\underset{\boldsymbol{\mu} \in \mathcal{D}}{\operatorname{argmax}}\left\|\mathcal{E}_{\mathrm{PROM}}(\boldsymbol{\mu})\right\|=\underset{\boldsymbol{\mu} \in \mathcal{D}}{\operatorname{argmax}}\|\mathbf{w}(\boldsymbol{\mu})-\mathbf{V} \mathbf{q}(\boldsymbol{\mu})\|
$$

- $\mathbf{q}(\boldsymbol{\mu})$ can be efficiently computed
- but the cost of obtaining $\mathbf{w}(\boldsymbol{\mu})$ can be high \Rightarrow eventually an intractable approach
■ Idea: rely on an economical a posteriori error estimator/indicator
■ option 1: error bound

$$
\left\|\mathcal{E}_{\mathrm{PROM}}(\boldsymbol{\mu})\right\| \leq \Delta(\boldsymbol{\mu})
$$

- option 2: error indicator based on the norm of the (affordable) residual

$$
\|\mathbf{r}(\boldsymbol{\mu})\|=\|\mathbf{f}(\mathbf{V q}(\boldsymbol{\mu}) ; \boldsymbol{\mu})\|
$$

AA216/CME345: MODEL REDUCTION - Proper Orthogonal Decomposition

Extension to Multiple Parametric Configurations

Adaptive Sampling: Greedy Approach

- Ideally, one can build a PROM progressively and update it (increase its dimension) by considering additional samples $\boldsymbol{\mu}^{(i)}$ and corresponding solution snapshots at the locations of the parameter space where the current PROM is the most inaccurate - that is,

$$
\boldsymbol{\mu}^{(i)}=\underset{\boldsymbol{\mu} \in \mathcal{D}}{\operatorname{argmax}}\left\|\mathcal{E}_{\mathrm{PROM}}(\boldsymbol{\mu})\right\|=\underset{\boldsymbol{\mu} \in \mathcal{D}}{\operatorname{argmax}}\|\mathbf{w}(\boldsymbol{\mu})-\mathbf{V q}(\boldsymbol{\mu})\|
$$

- $\mathbf{q}(\boldsymbol{\mu})$ can be efficiently computed
- but the cost of obtaining $\mathbf{w}(\boldsymbol{\mu})$ can be high \Rightarrow eventually an intractable approach
■ Idea: rely on an economical a posteriori error estimator/indicator
■ option 1: error bound

$$
\left\|\mathcal{E}_{\mathrm{PROM}}(\boldsymbol{\mu})\right\| \leq \Delta(\boldsymbol{\mu})
$$

■ option 2: error indicator based on the norm of the (affordable) residual

$$
\|\mathbf{r}(\boldsymbol{\mu})\|=\|\mathbf{f}(\mathbf{V} \mathbf{q}(\boldsymbol{\mu}) ; \boldsymbol{\mu})\|
$$

■ For this purpose, \mathcal{D} is typically replaced by a large discrete set of candidate parameters $\left\{\boldsymbol{\mu}^{\star^{(1)}}, \cdots, \boldsymbol{\mu}^{\star^{(c)}}\right\} \subset \mathcal{D}$

AA216/CME345: MODEL REDUCTION - Proper Orthogonal Decomposition

Extension to Multiple Parametric Configurations

Adaptive Sampling: Greedy Approach

- Greedy procedure based on the norm of the residual as an error indicator

AA216/CME345: MODEL REDUCTION - Proper Orthogonal Decomposition

Extension to Multiple Parametric Configurations

Adaptive Sampling: Greedy Approach

- Greedy procedure based on the norm of the residual as an error indicator
- Algorithm (given a termination criterion)

1 randomly select a first sample $\boldsymbol{\mu}^{(1)}$
2 solve the HDM-based problem

$$
\mathbf{f}\left(\mathbf{w}\left(\boldsymbol{\mu}^{(1)}\right) ; \boldsymbol{\mu}^{(1)}\right)=\mathbf{0}
$$

3 build a corresponding ROB V
4 for $i=2, \cdots$
5 solve

$$
\boldsymbol{\mu}^{(i)}=\underset{\boldsymbol{\mu} \in\left\{\boldsymbol{\mu}^{\star^{(1)}}, \cdots, \boldsymbol{\mu}^{(c)}\right\}}{\operatorname{argmax}}\|\mathbf{r}(\boldsymbol{\mu})\|
$$

6 solve the HDM-based problem

$$
\mathbf{f}\left(\mathbf{w}\left(\boldsymbol{\mu}^{(i)}\right) ; \boldsymbol{\mu}^{(i)}\right)=\mathbf{0}
$$

7 build a ROB V based on the snapshots (or in this case, samples) $\left\{\mathbf{w}\left(\boldsymbol{\mu}^{(1)}\right), \cdots, \mathbf{w}\left(\boldsymbol{\mu}^{(i)}\right)\right\}$

AA216/CME345: MODEL REDUCTION - Proper Orthogonal Decomposition

Extension to Multiple Parametric Configurations

The Unsteady Case

- Parameterized HDM

$$
\frac{d \mathbf{w}}{d t}(t ; \boldsymbol{\mu})=\mathbf{f}(\mathbf{w}(t ; \boldsymbol{\mu}), t ; \boldsymbol{\mu})
$$

- Lagrange basis

$$
\mathbf{v} \subset \operatorname{span}\left\{\mathbf{w}\left(t_{1} ; \boldsymbol{\mu}^{(1)}\right), \cdots, \mathbf{w}\left(t_{N_{t}} ; \boldsymbol{\mu}^{(1)}\right), \cdots, \mathbf{w}\left(t_{1} ; \boldsymbol{\mu}^{(s)}\right), \cdots, \mathbf{w}\left(t_{N_{t}} ; \boldsymbol{\mu}^{(s)}\right)\right\} \Rightarrow N_{\text {snap }}=s \times N_{t}
$$

- A posteriori error estimator/indicator
- option 1: error bound

$$
\left\|\mathcal{E}_{\text {PROM }}(\mu)\right\|=\left(\int_{0}^{T}\left\|\mathcal{E}_{\text {PROM }}(t ; \mu)\right\|^{2} d t\right)^{1 / 2} \leq \Delta(\mu)
$$

- option 2: error indicator based on the norm of the (affordable) residual

AA216/CME345: MODEL REDUCTION - Proper Orthogonal Decomposition

Extension to Multiple Parametric Configurations

The Unsteady Case

- Parameterized HDM

$$
\frac{d \mathbf{w}}{d t}(t ; \boldsymbol{\mu})=\mathbf{f}(\mathbf{w}(t ; \boldsymbol{\mu}), t ; \boldsymbol{\mu})
$$

- Lagrange basis

$$
\mathbf{v} \subset \operatorname{span}\left\{\mathbf{w}\left(t_{1} ; \boldsymbol{\mu}^{(1)}\right), \cdots, \mathbf{w}\left(t_{N_{t}} ; \boldsymbol{\mu}^{(1)}\right), \cdots, \mathbf{w}\left(t_{1} ; \boldsymbol{\mu}^{(s)}\right), \cdots, \mathbf{w}\left(t_{N_{t}} ; \boldsymbol{\mu}^{(s)}\right)\right\} \Rightarrow N_{\text {snap }}=s \times N_{t}
$$

- A posteriori error estimator/indicator
- option 1: error bound

$$
\left\|\mathcal{E}_{\text {PROM }}(\mu)\right\|=\left(\int_{0}^{T}\left\|\mathcal{E}_{\text {PROM }}(t ; \mu)\right\|^{2} d t\right)^{1 / 2} \leq \Delta(\mu)
$$

- option 2: error indicator based on the norm of the (affordable) residual

$$
\|\mathbf{r}(\boldsymbol{\mu})\|=\left(\int_{0}^{T}\|\mathbf{r}(t ; \boldsymbol{\mu})\|^{2} d t\right)^{1 / 2}=\sqrt{\int_{0}^{T}\left\|\frac{d \mathbf{w}}{d t}(t ; \boldsymbol{\mu})-\mathbf{f}(\mathbf{V} \mathbf{q}(t ; \boldsymbol{\mu}), t ; \boldsymbol{\mu})\right\|^{2} d t}
$$

AA216/CME345: MODEL REDUCTION - Proper Orthogonal Decomposition

Extension to Multiple Parametric Configurations

The Unsteady Case

- Greedy procedure based on the residual norm as an error indicator

AA216/CME345: MODEL REDUCTION - Proper Orthogonal Decomposition

Extension to Multiple Parametric Configurations

The Unsteady Case

- Greedy procedure based on the residual norm as an error indicator
- Algorithm (given a termination criterion)

1 randomly select a first sample $\boldsymbol{\mu}^{(1)}$
2 solve the HDM-based problem

$$
\frac{d \mathbf{w}}{d t}\left(t ; \boldsymbol{\mu}^{(1)}\right)=\mathbf{f}\left(\mathbf{w}\left(t ; \boldsymbol{\mu}^{(1)}\right), t ; \boldsymbol{\mu}^{(1)}\right)
$$

3 build a ROB V based on the snapshots

$$
\left\{\mathbf{w}\left(t_{1} ; \boldsymbol{\mu}^{(1)}\right), \cdots, \mathbf{w}\left(t_{N_{t}} ; \boldsymbol{\mu}^{(1)}\right)\right\}
$$

4 for $i=2, \cdots$
5 solve

$$
\boldsymbol{\mu}^{(i)}=\underset{\boldsymbol{\mu} \in\left\{\boldsymbol{\mu}^{\star^{(1)}}, \cdots, \boldsymbol{\mu}^{\star}(c)\right.}{\operatorname{argmax}}\|\mathbf{r}(\boldsymbol{\mu})\|
$$

6 solve the HDM-based problem

$$
\frac{d \mathbf{w}}{d t}\left(t ; \boldsymbol{\mu}^{(i)}\right)=\mathbf{f}\left(\mathbf{w}\left(t ; \boldsymbol{\mu}^{(i)}\right), t ; \boldsymbol{\mu}^{(i)}\right)
$$

7 build a ROB V based on the snapshots

$$
\left\{\mathbf{w}\left(t_{1} ; \boldsymbol{\mu}^{(1)}\right), \cdots, \mathbf{w}\left(t_{N_{t}} ; \boldsymbol{\mu}^{(i)}\right)\right\}
$$

AA216/CME345: MODEL REDUCTION - Proper Orthogonal Decomposition

Applications

Image Compression

- Recall $1-\mathcal{E}_{\mathrm{POD}} \leq \epsilon ; \quad 0<\epsilon<1$

(m) $\epsilon<10^{-1} \Rightarrow$ rank 2

(p) $\epsilon<10^{-4} \Rightarrow$ rank 210

(n) $\epsilon<10^{-2} \Rightarrow$ rank 47

(q) $\epsilon<10^{-5} \Rightarrow$ rank 249

(o) $\epsilon<10^{-3} \Rightarrow$ rank 138

(r) $\epsilon<10^{-6} \Rightarrow$ rank 269

AA216/CME345: MODEL REDUCTION - Proper Orthogonal Decomposition

Applications

Image Compression

AA216/CME345: MODEL REDUCTION - Proper Orthogonal Decomposition

Applications

Second-Order Dynamical System

AA216/CME345: MODEL REDUCTION - Proper Orthogonal Decomposition

Applications

Second-Order Dynamical System

- LTI form

AA216/CME345: MODEL REDUCTION - Proper Orthogonal Decomposition

Applications

Second-Order Dynamical System

- LTI form
- $N_{u}=48$ masses $\Rightarrow N=96$ degrees of freedom in state space form
- Transfer function of the HDM (frequency domain, $q=1 \Rightarrow$ scalar)

$$
\mathbf{H}(s ; \boldsymbol{\mu})=\mathbf{C}(\boldsymbol{\mu})\left(s \mathbf{l}_{N}-\mathbf{A}(\boldsymbol{\mu})\right)^{-1} \mathbf{B}(\boldsymbol{\mu})+\mathbf{D}(\boldsymbol{\mu}), \quad s \in \mathbb{C}
$$

AA216/CME345: MODEL REDUCTION - Proper Orthogonal Decomposition

Applications

Second-Order Dynamical System

- LTI form
- $N_{u}=48$ masses $\Rightarrow N=96$ degrees of freedom in state space form
- Transfer function of the HDM (frequency domain, $q=1 \Rightarrow$ scalar)

$$
\mathbf{H}(s ; \mu)=\mathbf{C}(\mu)\left(s \mathbf{l}_{N}-\mathbf{A}(\mu)\right)^{-1} \mathbf{B}(\mu)+\mathbf{D}(\mu), \quad s \in \mathbb{C}
$$

- Projection-based Model Order Reduction (PMOR) using POD in the frequency domain
- Transfer function of the PROM (frequency domain, $q=1 \Rightarrow$ scalar)

$$
\mathbf{H}_{r}(s ; \boldsymbol{\mu})=\mathbf{C}_{r}(\boldsymbol{\mu})\left(s \mathbf{I}_{k}-\mathbf{A}_{r}(\boldsymbol{\mu})\right)^{-1} \mathbf{B}_{r}(\boldsymbol{\mu})+\mathbf{D}_{r}(\boldsymbol{\mu}), \quad s \in \mathbb{C}
$$

AA216/CME345: MODEL REDUCTION - Proper Orthogonal Decomposition

Applications

Second-Order Dynamical System

- Nyquist plots

\Rightarrow this leads to the choice of a PROM of size $k=18$

AA216/CME345: MODEL REDUCTION - Proper Orthogonal Decomposition

Applications

Second-Order Dynamical System

- Bode diagram for a PROM of size $k=18$

Bode Diagram

AA216/CME345: MODEL REDUCTION - Proper Orthogonal Decomposition

Applications

Fluid System - Advection-Diffusion

- HDM $(N=5,402)$

AA216/CME345: MODEL REDUCTION - Proper Orthogonal Decomposition

Applications

Fluid System - Advection-Diffusion

- POD modes

AA216/CME345: MODEL REDUCTION - Proper Orthogonal Decomposition

Applications

Fluid System - Advection-Diffusion

- Projection error (singular values decay)

AA216/CME345: MODEL REDUCTION - Proper Orthogonal Decomposition

Applications

Fluid System - Advection-Diffusion

- POD-based PROM ($k=1$ and $k=2$)

AA216/CME345: MODEL REDUCTION - Proper Orthogonal Decomposition

Applications

Fluid System - Advection-Diffusion

- POD-based PROM ($k=3$ and $k=4$)

AA216/CME345: MODEL REDUCTION - Proper Orthogonal Decomposition

Applications

Fluid System - Advection-Diffusion

- POD-based PROM ($k=5$ and $k=6$)

HDM, $\mathrm{t}=2$

ROM $(k=5), t=2$

$\operatorname{ROM}(\mathrm{k}=6), \mathrm{t}=2$

HDM, $\mathbf{t = 4}$

ROM($k=5$), $t=4$

ROM($k=6$), $t=4$

HDM, $\mathbf{t = 6}$

$\operatorname{ROM}(\mathrm{k}=5), \mathrm{t}=6$

$\operatorname{ROM}(\mathrm{k}=6), \mathrm{t}=6$

HDM, $\mathbf{t = 8}$

$\operatorname{ROM}(k=5), t=8$

$\operatorname{ROM}(\mathrm{k}=6), \mathrm{t}=8$

AA216/CME345: MODEL REDUCTION - Proper Orthogonal Decomposition

Applications

Fluid System - Advection-Diffusion

- Model reduction error $\mathcal{E}_{\text {PROM }}(t)$

AA216/CME345: MODEL REDUCTION - Proper Orthogonal Decomposition

Applications

Fluid System - Advection-Diffusion

■ Model reduction error $\mathcal{E}_{\text {PROM }}(t)$ and projection error $\mathcal{E}_{\mathbf{V} \perp}(t)$

[^0]: ${ }^{1}$ Rayleigh's energy theorem, Plancherel's theorem

