Problem 1: Optimality of the Proper Orthogonal Decomposition

The objective of this problem is to develop a proof for the first theorem of Chapter 4 of the lecture notes:

Theorem. Let $\hat{K} \in \mathbb{R}^{N \times N}$ be the real, symmetric, positive semi-definite matrix defined as

$$
\hat{K} = \int_0^T w(t)w^T(t) dt
$$

Let $\hat{\lambda}_1 \geq \hat{\lambda}_2 \geq \cdots \geq \hat{\lambda}_N \geq 0$ denote the ordered eigenvalues of \hat{K}, and $\hat{\phi}_i \in \mathbb{R}^N$, $i = 1, \cdots, N$ their associated eigenvectors – that is,

$$
\hat{K}\hat{\phi}_i = \hat{\lambda}_i\hat{\phi}_i, \ i = 1, \cdots, N
$$

The subspace $\hat{V} = \text{range } (\hat{V})$ of dimension k that minimizes $J(\Pi_{V, V})$ is the invariant subspace of \hat{K} associated with the eigenvalues $\hat{\lambda}_1 \geq \hat{\lambda}_2 \geq \cdots \geq \hat{\lambda}_k$.

1. Show that an orthogonal basis $\hat{V} \in \mathbb{R}^{N \times k}$ that minimizes $J(\Pi_{V, V})$ maximizes

$$
G(\Pi_{V, V}) = \int_0^T \|\Pi_{V, V}w(t)\|^2 dt
$$

2. Show that

$$
G(\Pi_{V, V}) = \int_0^T \|V^T w(t)\|^2 dt
$$

3. Define $q(t) = V^T w(t)$. Show that

$$
\|q(t)\|^2 = \text{trace } (q(t)q^T(t)) = \text{trace } (V^T w(t)w^T(t)V)
$$

4. Show that

$$
G(\Pi_{V, V}) = \text{trace } (V^T \hat{K}V) = \sum_{i=1}^k v_i^T \hat{K}v_i
$$
where \(\mathbf{V} = [\mathbf{v}_1, \cdots, \mathbf{v}_k] \), and conclude that \(\hat{\mathbf{V}} \) is solution of the maximization problem

\[
\max_{\mathbf{V} \in \mathbb{R}^{N \times k}} \text{trace} \left(\mathbf{V}^T \hat{\mathbf{K}} \mathbf{V} \right)
\]

(4)

under the constraint \(\mathbf{V}^T \mathbf{V} = \mathbf{I}_k \).

5. Conclude using the following generalization of Rayleigh’s theorem:

Theorem. Let \(\mathbf{A} \) denote a symmetric matrix with eigenvalues \(\mu_1 \geq \cdots \geq \mu_k > \mu_{k+1} \geq \cdots \).

A solution of the maximization problem

\[
\max_{\mathbf{V} \in \mathbb{R}^{N \times k}, \mathbf{V}^T \mathbf{V} = \mathbf{I}_k} \text{trace} \left(\mathbf{V}^T \mathbf{A} \mathbf{V} \right)
\]

(5)

is given by an orthogonal basis \(\mathbf{V} \) for the invariant subspace of \(\mathbf{A} \) associated with the \(k \) largest eigenvalues of \(\mathbf{A} \).

Problem 2: POD in the Frequency Domain

The goal of this problem is to demonstrate the equivalence between applying POD in the time domain, and applying POD in the frequency domain.

1. Let \(\mathcal{T} > 0 \). Assume that \(\mathbf{w}(t) = 0 \) for \(t < 0 \), and define the \(N \times N \) matrix \(\hat{\mathbf{K}} \) as

\[
\hat{\mathbf{K}} = \int_{-\mathcal{T}}^{\mathcal{T}} \mathbf{w}(t) \mathbf{w}^T(t) dt = \int_{-\mathcal{T}}^{\mathcal{T}} \mathbf{w}(t) \mathbf{w}^T(t) dt
\]

What is the \((i,j)\) entry in \(\hat{\mathbf{K}} \) for \(1 \leq i, j \leq N \)?

2. Let \(\Omega > 0 \). Denote by \(\mathcal{W}(\omega) \in \mathbb{C}^N \) the Fourier transform of \(\mathbf{w}(t) \), and define the \(N \times N \) matrix \(\tilde{\mathbf{K}} \) as

\[
\tilde{\mathbf{K}} = \int_{-\Omega}^{\Omega} \mathcal{W}(\omega) \mathcal{W}(\omega)^* d\omega
\]

where \((\)^*\) denotes the complex conjugate transpose operation. What is the \((i,j)\) entry in \(\tilde{\mathbf{K}} \) for \(1 \leq i, j \leq N \)?

3. Recall Parseval’s theorem for real square-integrable functions \(a(t) \in \mathbb{R} \) and \(b(t) \in \mathbb{R} \) and their Fourier transforms \(\mathcal{A}(\omega) \in \mathbb{C} \) and \(\mathcal{B}(\omega) \in \mathbb{C} \):

\[
\lim_{\mathcal{T} \to \infty} \frac{1}{\mathcal{T}} \int_{-\mathcal{T}}^{\mathcal{T}} a(t)b(t) dt = \lim_{\mathcal{T}, \Omega \to \infty} \frac{1}{2\pi\mathcal{T}} \int_{-\Omega}^{\Omega} \mathcal{A}(\omega) \mathcal{B}(\omega) d\omega
\]

where \((\)^*\) denotes the complex conjugate operation. Show that

\[
\lim_{\mathcal{T} \to \infty} \frac{1}{\mathcal{T}} \int_{-\mathcal{T}}^{\mathcal{T}} \mathbf{w}(t) \mathbf{w}^T(t) dt = \lim_{\mathcal{T}, \Omega \to \infty} \frac{1}{2\pi\mathcal{T}} \int_{-\Omega}^{\Omega} \mathcal{W}(\omega) \mathcal{W}(\omega)^* d\omega
\]

(Note that Parseval’s theorem cannot be applied directly as it is only stated for scalar valued functions \(a(t) \) and \(b(t) \).)
4. Show that for any $V \in \mathbb{R}^{N \times k}$,

$$V^T \left(\lim_{T \to \infty} \frac{1}{T} \int_{-T}^{T} w(t)w^T(t) dt \right) V = V^T \left(\lim_{T, \Omega \to \infty} \frac{1}{2\pi T} \int_{-\Omega}^{\Omega} W(\omega)W(\omega)^* d\omega \right) V$$

and conclude on the equivalence between applying POD in the time domain and applying POD in the frequency domain.

Problem 3: Model Reduction by Residual Minimization

Consider the parameterized, linear, steady-state, High-Dimensional Model (HDM)

$$A(\mu)w(\mu) = b(\mu) \quad (6)$$

where $\mu \in \mathbb{R}^d$ is the parameter vector, $w \in \mathbb{R}^N$ is the HDM solution, $A \in \mathbb{R}^{N \times N}$, and $b \in \mathbb{R}^N$. Let $V \in \mathbb{R}^{N \times k}$ be a Reduced-Order Basis (ROB), and

$$w(\mu) \approx Vq(\mu) \quad (7)$$

where $q \in \mathbb{R}^k$, denote the considered approximate solution of the above problem.

1. Let $q \in \mathbb{R}^k$ and $\mu \in \mathbb{R}^d$. What is the residual $r(q; \mu)$ associated with equation (6) and the approximation (7)?

2. Let $H \in \mathbb{R}^{N \times N}$ denote a Symmetric Positive Definite matrix (SPD). For a fixed $\mu \in \mathbb{R}^d$, one can determine the reduced state vector $q(\mu)$ as

$$q(\mu) = \arg\min_{z \in \mathbb{R}^k} \frac{1}{2} \|r(z; \mu)\|_H^2 \quad (8)$$

where

$$\|v\|_H = \sqrt{v^T Hv} \quad (9)$$

What is the linear system of equations corresponding to the first-order optimality conditions associated with the minimization problem (8)? (Hint: write the function to be minimized as a quadratic function of z.)

3. When $H = I_N$, what are the corresponding equations? What is the name of this system in the context of the least-squares method?

4. For a fixed $\mu \in \mathbb{R}^d$, is there a specific choice of H that leads to a Galerkin projection? Are there any associated restrictions on $A(\mu)$?