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Optimal Offer-Bid Strategy of an Energy Storage
Portfolio: A Linear Quasi-Relaxation Approach

Egill Tómasson, Student Member, IEEE, Mohammad Reza Hesamzadeh, Senior Member, IEEE and
Frank A. Wolak

Abstract—This paper proposes a model of the behavior of
an expected profit-maximizing merchant storage owner with the
ability to exercise unilateral market power. The resulting non-
linear bilevel optimization problem is transformed into a single-
level stochastic bilinear program using the KKT conditions of the
lower-level Independent System Operator (ISO) dispatch prob-
lem. By discretizing the offers and bids of the merchant storage
owner, the problem is formulated as a stochastic disjunctive
program. Using the disjunctive nature of the derived program,
a specialized branch-and-bound algorithm that applies a linear
quasi-relaxation of the merchant storage problem is proposed.
Our solution algorithm is able to solve the problem in an efficient
manner; returning the charge and discharge strategies for the
merchant storage owner that yield the highest expected profits.
Simulations of test systems reveal the various abilities of the
merchant storage owner to exercise unilateral market power.
Those include demand withholding, generation withholding and
under-use which result in an increased congestion in both space
and time when compared to the welfare-maximizing use of
storage. Moreover, numerical results demonstrate the superior
computational performance of the proposed solution algorithm
when benchmarked against current practices in the literature.

Index Terms—Merchant storage, Offer-bid strategy, Bilinear
program, Disjunctive program, Linear quasi-relaxation

NOMENCLATURE
Indices and sets
i Index of units.
n,m Indices of buses.
t Index of time periods.
l Index of discrete offer-bid values.
w Index of stochastic scenarios.
IS Set of strategic storage units.
INS Set of units of non-strategic players.
Variables
p̂it Generation offer of players.
d̂it Demand bid of players.
ĉit Offered price of players.
fnmtw Real power transmission line flow.
pitw Real power generation of players.
ditw Real power demand of players.
sitw State of charge of storage unit.
θntw Voltage angle at bus n.
λ,µ Dual variables.
λ

(2)
ntw Electricity price at bus n.
xPitlw, x

D
itlw, x

C
itlw Binary variables in MILP.

zPitlw, z
D
itlw, z

C
itlw Bilinear term intermediate values.

πPitw, π
D
itw, π

C
itw Bilinear term intermediate values.

yPit , y
D
it , y

C
it Spanning variables.

Parameters
bnm Susceptance of a transmission line.

Dntw Net real power demand at bus n.
ci Variable cost of units.
ρw Probability of scenario w.
Si, Si Charge limits of merchant storage.
S0
i Initial state of charge.
Fnm, Fnm Real flow limits of a transmission line.
Θn, Θn Voltage angle limits on bus n.
P i, P i Real power generation limits of units.
Di, Di Real power demand limits of units.
Cni Node-unit connection matrix.
P̂l, D̂l, Ĉl Discrete offer-bid values.
nP , nD, nC Number of possible discrete values.
MP ,MD,MC Sufficiently large constants.
Operator
I(condition) If operator.

I. INTRODUCTION

ENERGY storage systems have the potential to signifi-
cantly improve the operation of the power system of

today, especially because of the ever increasing generation
from intermittent renewable resources. The applications of
energy storage systems are diverse and include voltage sup-
port [1], frequency regulation, synchronous/non-synchronous
reserve [2] as well as spatio-temporal energy arbitrage [3]–[7].
Furthermore, applications of storage systems for micro grids
and demand response [8], [9] as well as grid-tied applications
of electric vehicle storage [10]–[12] are gaining ground.

It is expected that a decrease in the capital cost of energy
storage systems will eventually spur the deployment of large
amounts of energy storage [13]. This raises the issue of market
power. Exercise of unilateral market power1 is a concern in
today’s electricity markets and numerous mathematical models
have been developed to study such behavior [14]. The author
of [15] quantifies the impact of the exercise of unilateral
market power by a large hydroelectric generation facility in the
western U.S. The author develops a model which solves for a
sub-game perfect equilibrium of a multi-period Cournot game
between strategic producers, one of which owns hydroelectric
capacity with the ability to store water. Reference [16] models
the offer behavior of a plant owner maximizing its expected
profit and with the ability to exercise unilateral market power.
In [17], the framework from [16] is used to test the assumption
of expected profit-maximizing offer behavior in a short-term
electricity market and the results show no evidence against it.

The issue of unilateral market power is especially interesting
in the case of energy storage because storage units can act both

1This term is generally used in the economics literature while the terms
strategic or strategic behavior are more common in the engineering literature.
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as generators and loads. A portfolio of storage units is able
to influence the market price in multiple ways; by creating
congestion in both space and time, by withholding generation
as well as by withholding demand. Looking at the literature,
relatively little focus has been put on studying large, price-
maker storage portfolios. However, recent work such as [18]
evaluates the impact of strategic behavior of an independent
trader operating energy storage systems while the authors
of [19] assess the various consequences, including those of
market power, of storage via a complementarity model of
a stylized Western European power system. Reference [20]
studies how storage, operating as a price maker, may be
optimally operated over an extended period of time. In [21],
the author proposes an optimization framework to coordinate
the operation of large, price-maker, geographically dispersed
storage systems in a nodal transmission-constrained market.

In line with the work in [21], this paper studies the operation
of a profit-maximizing merchant storage owner with the ability
to exercise unilateral market power. The paper is motivated by
the recent FERC order to allow medium to large scale storage
resources to directly participate in the wholesale market (either
through direct bidding or self-scheduling). Worldwide there
has also been a growing trend for more storage resources to
participate in wholesale markets. The point of the model is
to understand what could happen in the future when storage
capacity is expected to increase and the potential of one firm
to own a significant amount of storage is likely. The problem
formulation is a bilevel one where in the upper-level problem,
the merchant storage owner makes offers and bids to the
market in order to maximize its expected profit, subject to
the lower-level optimal dispatch problem of the independent
system operator (ISO) for a variety of possible scenarios. The
main contributions of this paper are:

1) A derivation of a stochastic disjunctive program model
for finding the optimal offer-bid strategy of a merchant
storage portfolio which maximizes the expected profit
over several possible market scenarios.

2) A Specialized Branch-and-Bound (SBB) solution algo-
rithm that applies a linear quasi-relaxation which sig-
nificantly reduces the computational requirements when
solving the merchant storage problem.

3) Both the proposed stochastic disjunctive programming
model and the SBB solution algorithm are benchmarked
against current practices in the literature for modeling
and solving these types of problems.

The rest of the paper is organized as follows. Section II covers
the mathematical model where the physical constraints of the
system are listed and the market players of the system are
introduced. A stochastic bilevel merchant storage problem
is then derived and using the Karush-Kuhn-Tucker (KKT)
conditions as well as bid discretization, it is reformulated
as a single-level stochastic disjunctive program. Section III
derives a specialized solution algorithm that applies a linear
quasi-relaxation of the merchant storage problem and solves
the problem in a computationally efficient way. Sections IV
and V show an illustrative example and numerical simulations,
respectively, of test systems that confirm the performance of

the proposed method. Section VI concludes the paper.

II. MATHEMATICAL MODEL

The market is composed of two types of market players;
a single large merchant storage owner whose units are in the
set IS and traditional generators whose units are in the set
INS . Index i represents all units in the market. The production
of each player at time t, scenario w is represented by pitw
and the demand of each player is represented by ditw. The
production and demand are limited by the lower and upper
limits (P i, P i) and (Di, Di), respectively. The charging power
of a storage unit is represented by ditw (unit acts as a load)
and the discharging power of a storage unit is represented by
pitw (unit acts as a generator). Without loss of generality, the
storage units are assumed to have ideal round-trip efficiencies.
The storage level of each storage unit is represented by sitw
and the storage capacity is limited by the lower and upper
limits (Si, Si). The initial state of charge is represented by
S0
i . The storage owner chooses its offer price and quantity

pairs to maximize its expected profits. The storage owner
computes the expected profits associated with a combination
of offer price and quantity pairs by solving a lower-level ISO
market equilibrium several times for a variety of possible
scenarios. The expected profits are the probability weighted
sum of these realized profit outcomes. The ISO is assumed to
solve an optimization problem minimizing the as offered cost
of generation and therefore the complete optimization problem
that the merchant storage owner needs to solve is a bilevel one.

A. Stochastic Bilevel Program

The bilevel merchant storage problem is given in (1).

maximize
p̂it,d̂it,ĉit

∑
i∈IS ,t,w

ρw
∑
n

Cniλ
(2)
ntw(pitw − ditw) (1a)

subject to:

p̂itd̂it = 0, ∀(i ∈ IS)t, (1b)

P i ≤ p̂it ≤ P i, Di ≤ d̂it ≤ Di, ∀(i ∈ IS)t, (1c)

p̂it = P i, d̂it = 0, ĉit = ci, ∀(i ∈ INS)t, (1d)

sitw = si,t−1,w + S0
i I(t = 1)

+ ditw − pitw, ∀(i ∈ IS)tw, (1e)

Si ≤ sitw ≤ Si, ∀(i ∈ IS)tw, (1f)

where {λ(2)
ntw, pitw, ditw} ∈

arg
{

minimize
pitw,ditw,fnmtw,θntw

∑
i,t

(pitw − ditw)ĉit (1g)

subject to:

fnmtw = −bnm(θntw − θmtw) : λ
(1)
nmtw, ∀nmtw, (1h)∑

i

(pitw − ditw)Cni

−
n6=m∑
m

fnmtw = Dntw : λ
(2)
ntw, ∀ntw, (1i)

Fnm ≤ fnmtw ≤ Fnm : µ
(1)
nmtw, µ

(2)
nmtw, ∀nmtw, (1j)

Θn ≤ θntw ≤ Θn : µ
(3)
ntw, µ

(4)
ntw, ∀ntw, (1k)
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P i ≤ pitw ≤ p̂it : µ
(5)
itw, µ

(6)
itw, ∀itw, (1l)

Di ≤ ditw ≤ d̂it : µ
(7)
itw, µ

(8)
itw, ∀itw

}
. (1m)

Uncertainties in the market are captured by probabilistic sce-
narios, indexed by w with probabilities ρw. The main source
of uncertainty is the net demand Dntw, which depends on
the intermittent generation. Scenarios are constructed based
on forecasts of the demand and intermittent generation. In the
upper-level problem, the merchant storage owner maximizes
the expected profit over the time horizon and the different sce-
narios. The resulting solution is the generation offer quantity
p̂it, the demand bid quantity d̂it and the price ĉit. Note that
they are independent of the scenarios. The term

∑
n Cniλ

(2)
ntw

in the upper-level objective function represents the nodal price
that player i is exposed to. λ(2)

ntw is the nodal price and Cni is
a binary node-unit connection matrix. Constraint (1b) makes
sure that in each time period, the storage units submit offers
or bids to the market either as a generator or as a load [21].
The offer-bid values p̂it and d̂it must confine to the physical
limits of each unit (1c). Constraints (1d) ensure that the non-
strategic players offer their true capacities P i and bids ci
and that their demand is zero. One can also treat the bids
of the non-strategic generators as uncertain by using several
scenarios for them because they may have private information.
The energy balance of the storage units is captured by (1e) and
the energy limits by (1f). The storage owner is considered
responsible for the energy limits so those constraints appear
in the upper-level problem [21]. The lower-level ISO dispatch
problem minimizes the as offered generation cost in the system
while taking into account the power flow constraints (1h) and
the energy balance on each bus (1i). There are also lower and
upper limits on the real power flows fnmtw (1j), the voltage
angles θntw (1k) and the dispatch values pitw and ditw (1l)–
(1m). The lower-level dual variables are given after the colon.

The formulation above assumes that the merchant storage
owner submits price-quantity pairs to the market, that is
offers or bids that contain both price and quantity. The model
in (1) can also capture self-scheduling, e.g. offers or bids
without a price component, if minor changes are made to
the formulation. Specifically, the lower-level objective function
becomes

∑
i,t(pitw ĉit−ditwûit) where for all storage units the

submitted generation offer price ĉit is zero, and the submitted
demand bid price ûit is a sufficiently high constant [21].

The above model is in general very hard to solve because: i)
it is bilevel, ii) it is non-linear and iii) transmission congestion
implies that small changes in offer behavior can create large
changes in realized market outcomes.

B. The proposed stochastic disjunctive program

In order to compose a single-level stochastic optimization
problem from the stochastic bilevel program given in (1), the
KKT conditions are derived for the lower-level problem. The
stationary conditions are given in (2).

∂L

∂fnmtw
= λ

(1)
nmtw − λ

(2)
ntwI(n 6= m)− µ(1)

nmtw

+ µ
(2)
nmtw = 0, ∀nmtw, (2a)

∂L

∂θnmtw
=
∑
m

[bnmλ
(1)
nmtw − bmnλ

(1)
mntw]

− µ(3)
nw + µ(4)

nw = 0, ∀ntw, (2b)
∂L

∂pitw
=
∑
n

[Cniλ
(2)
ntw]− µ(5)

itw + µ
(6)
itw = ĉit, ∀itw, (2c)

∂L

∂ditw
=
∑
n

[Cniλ
(2)
ntw] + µ

(7)
itw − µ

(8)
itw = ĉit, ∀itw. (2d)

All complementary slackness conditions are collected in the
strong duality condition given in (3).∑

i,t

(pitw − ditw)ĉi =
∑
n,t

λ
(2)
ntwDntw

+
∑
n,m,t

[µ
(2)
nmtwFnm − µ

(1)
nmtwFnm]

+
∑
n,t

[µ
(4)
ntwΘn − µ(3)

ntwΘn] +
∑
i,t

[µ
(6)
itwp̂it − µ

(5)
itwP i]

+
∑
i,t

[µ
(8)
itwd̂it − µ

(7)
itwDi], ∀w.

(3)

There are bilinear terms that appear in the objective function
(1a) as well as the strong duality constraint (3). These terms
are

∑
n Cniλ

(2)
ntw(pitw − ditw), µ(6)

itwp̂it and µ
(8)
itwd̂it. Using

(2c), (2d) and the complementary slackness (CS) conditions
for constraints (1l) and (1m), the objective function can be
rewritten as can be seen in (4).∑
i∈IS ,t,w

ρw
∑
n

Cniλ
(2)
ntw(pitw − ditw)

(2c), (2d)
=

∑
i∈IS ,t,w

ρw

[
(pitw − ditw)ĉit + µ

(5)
itwpitw − µ

(6)
itwpitw

+ µ
(7)
itwditw − µ

(8)
itwditw

]
(CS)
=

∑
i∈IS ,t,w

ρw

[
(pitw − ditw)ĉit︸ ︷︷ ︸

πC
itw

+ µ
(5)
itwP i − µ

(6)
itwp̂it︸ ︷︷ ︸
πP
itw

+µ
(7)
itwDi − µ

(8)
itwd̂it︸ ︷︷ ︸
πD
itw

]
(4)

The bilinear terms have therefore been reduced to (pitw −
ditw)ĉit, µ

(6)
itwp̂it and µ

(8)
itwd̂it where each term is a contin-

uous variable multiplied by an offer-bid value. We assume
discrete offer-bid values which can take values from a pos-
sible pool of ordered values p̂it ∈ {P̂1, P̂2, ..., P̂nP

}, d̂it ∈
{D̂1, D̂2, ..., D̂nD

} and ĉit ∈ {Ĉ1, Ĉ2, ..., ĈnC
}. Therefore,

one can rewrite the bilinear terms in the following disjunctive
manner:

µ
(6)
itwp̂it =

nP∨
l=1

µ
(6)
itwP̂l, µ

(8)
itwd̂it =

nD∨
l=1

µ
(8)
itwD̂l,

(pitw − ditw)ĉit =

nC∨
l=1

(pitw − ditw)Ĉl,

(5)

where the disjunction is represented by the disjunction (OR)
operator

∨
. One can then rewrite the whole stochastic bilevel

program as the stochastic disjunctive program (6).

maximize
Ω

∑
i∈IS ,t,w

ρw

[ nC∨
l=1

(pitw − ditw)Ĉl+
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µ
(5)
itwP i −

nP∨
l=1

µ
(6)
itwP̂l + µ

(7)
itwDi −

nD∨
l=1

µ
(8)
itwD̂l

]
subject to: (6)
(1b)− (1f), (1h)− (1m), (2a)− (2d),

(3) rewritten with (5),

µ
(1)
nmtw, µ

(2)
nmtw, µ

(3)
ntw, µ

(4)
ntw ≤ 0 ,

µ
(5)
itw, µ

(6)
itw, µ

(7)
itw, µ

(8)
itw ≤ 0,

where the set of decision variables is Ω = {p̂it, d̂it, ĉit, pitw,
ditw, sitw, θntw, fnmtw, λ(1)

nmtw, λ(2)
ntw, µ(1)

nmtw, µ(2)
nmtw, µ(3)

ntw,
µ

(4)
ntw, µ(5)

itw, µ(6)
itw, µ(7)

itw, µ(8)
itw}. Program (6) can be solved by

the binary expansion approach [22]. Taking the disjunctive
term

∨nP

l=1 µ
(6)
itwP̂l as an example, one can introduce binary

variables xPitl where
∑nP

l=1 x
P
itl = 1 and write the disjunction

as:

−MPxPitl ≤ zPitlw ≤MPxPitl, ∀itlw,
−MP (1− xPitl) ≤ zPitlw − µ

(6)
itwP̂l ≤M

P (1− xPitl), ∀itlw,

where MP is a sufficiently large constant, and zPitlw are
continuous variables that are enforced to take the value of the
bilinear term for a single index l. The disjunctive term can then
be written as

∨nP

l=1 µ
(6)
itwP̂l =

∑nP

l=1 z
P
itlw and the offer value as

p̂it =
∑nP

l=1 P̂lx
P
itl. The same approach can be used to rewrite

the other disjunctive terms. Additional constraints p̂it ≤ P iait
and d̂it ≤ Di(1 − ait) where ait ∈ {0, 1} are introduced to
ensure that in each period, each storage unit participates in
the market either as a generator or as a load. This formulation
allows the merchant storage problem to be written as a mixed-
integer linear program (MILP) and the standard branch-and-
bound algorithm can be used to solve it. A continuous linear
relaxed optimization problem is then formed by allowing the
binary variables to be continuous in the range from zero to
one. Branches are created by finding a non-binary solution
variable and setting it to zero at one node and to one at the
other. The problem with the MILP formulation is however that
it contains a large number of binary variables and the choice
of MP , MD and MC affects the performance of the solver.
To tackle these shortcomings, following [22] we propose an
alternative way to deal with the bilinear terms.

In the mixed integer linear formulation, each of the offer-
bid values is expressed as a convex combination of discrete
values. Instead of such a formulation, we propose that only
two discrete values are used for the offer-bid values; a lower
bound and an upper bound. Taking p̂it as an example, p

it
and pit represent the lower and upper bounds, respectively. A
continuous variable yPit is introduced to span the range of p̂it:

p̂it = p
it
yPit + pit(1− yPit ), 0 ≤ yPit ≤ 1, (7)

and the disjunction is enforced by the constraint
nP∨
l=1

[p
it
yPit + pit(1− yPit ) = P̂l]. (8)

The continuous variable µ(6)
itw that appears in the disjunctive

term is then represented by the sum of two values

µ
(6)
itw = µ

(6)−
itw + µ

(6)+
itw , (9)

and the bilinear term µ
(6)
itwp̂it can be written as

πPitw = (µ
(6)−
itw + µ

(6)+
itw )[p

it
yPit + pit(1− yPit )]. (10)

The reformulation is equivalent for µ(8)
itwd̂it and (pitw−ditw)ĉit

resulting in πDitw and πCitw, respectively. Subsequently, one can
write the stochastic disjunctive program as given in (11).

maximize
Ω

∑
i∈IS ,t,w

ρw

[
πCitw + µ

(5)
itwP i − π

P
itw + µ

(7)
itwDi − πDitw

]
subject to:
(1b)− (1f), (1h)− (1m), (2a)− (2d),

(7)− (10) [Equiv. for µ(8)
itwd̂it and (pitw − ditw)ĉit], (11)

(3) rewritten with πPitw, πDitw, πCitw,

µ
(1)
nmtw, µ

(2)
nmtw, µ

(3)
ntw, µ

(4)
ntw ≤ 0,

µ
(5)
itw, µ

(6)
itw, µ

(7)
itw, µ

(8)
itw ≤ 0,

where the set of decision variables is Ω = {p̂it, d̂it, ĉit, pitw,
ditw, sitw, θntw, fnmtw, λ(1)

nmtw, λ(2)
ntw, µ(1)

nmtw, µ(2)
nmtw, µ(3)

ntw,
µ

(4)
ntw, µ(5)

itw, µ(6)
itw, µ(7)

itw, µ(8)
itw}.

The stochastic disjunctive program (11) can be solved
directly by applying a specialized branch-and-bound solution
approach that was proposed in [22]. The disjunctive formu-
lation allows one to branch on the range of offer-bid values
instead of binary variables. As an example, if an offer p̂it
can take values in the set {0, 10, 20, 30, 40, 50}MW, one can
enforce the constraint 0 ≤ p̂it ≤ 20 in one branch and the
constraint 30 ≤ p̂it ≤ 50 in the other. In order for such a
branch-and-bound approach to work properly, one needs a
relaxed optimization problem to give a upper bound on the
objective value. Unfortunately, the straightforward continuous
relaxation of (11) is both non-linear and non-convex and does
therefore not provide a suitable way of obtaining an upper
bound. It is however possible to obtain an upper bound by
applying quasi-relaxation.

Definition. For a given constrained maximization problem P ,
a problem Q is a quasi-relaxation of P if for every feasible
solution of P with objective value equal to v, there is a feasible
solution of Q having an objective function value greater than
or equal to v. The optimal value of Q is an upper bound on
the optimal value of P .

One can derive a quasi-relaxation as follows. Looking at the
stochastic disjunctive program given in (11), everything is lin-
ear except for (1b) and the constraints given in (8) and (10) as
well as their equivalents for µ(8)

itwd̂it and (pitw−ditw)ĉit. First,
we drop constraint (1b) which will be dealt with directly in the
solution algorithm in Section III. Then consider the following
linear constraints in (12) which are obtained by dropping the
disjunctive constraints in (8) and rewriting constraints (10).
MP represents a sufficiently large constant. The constraints
for µ(8)

itwd̂it and (pitw − ditw)ĉit are equivalent.

πPitw = p
it
µ

(6)−
itw + pitµ

(6)+
itw , (12a)

−MP yPit ≤ µ
(6)−
itw ≤ 0, (12b)

−MP (1− yPit ) ≤ µ
(6)+
itw ≤ 0, (12c)
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5

[Equivalent for µ(8)
itwd̂it and (pitw − ditw)ĉit]. (12d)

Remark 1. Let (11Q) denote the optimization problem that
results from taking problem (11), dropping constraint (1b) and
replacing constraints (8) and (10) as well as the equivalent
constraints for the other bilinear terms µ(8)

itwd̂it and (pitw −
ditw)ĉit with constraints (12) .

Lemma 1. Problem (11Q) is a linear program and a quasi-
relaxation of problem (11). See Appendix for proof.

Lemma 2. If p̂itd̂it = 0, ∀(i ∈ IS)t, and each yPit , y
D
it , yCit

is binary in a solution of (11Q), that solution is feasible in
(11). See Appendix for proof.

III. SOLUTION ALGORITHM

Lemmas 1 and 2 can be used to derive a Specialized Branch-
and-Bound (SBB) solution algorithm that solves the merchant
storage problem (11). The SBB algorithm differs from the
standard branch-and-bound algorithm (BB) used to solve the
binary expansion MILP model in the following aspects:

1) The SBB algorithm branches on the lower and up-
per bounds of offer-bid values (p

it
, pit), (dit, dit), and

(cit, cit) instead of branching on binary values in the
BB algorithm.

2) The SBB algorithm uses the quasi-relaxation model in
(11Q) to find valid upper bounds, while the BB algo-
rithm uses a linear continuous relaxation by allowing the
binary variables to be continuous in the range [0, 1].

The solution algorithm is shown in Algorithm 1. In the
algorithm, variable x̂it represents any of the offer-bid values
p̂it, d̂it or ĉit in order to simplify the algorithm and it is
accompanied by the corresponding spanning variable yXit . For
clarity, sets X and X include all lower and upper bounds for all
of the offer-bid values for all i and t. The algorithm can branch
on any single offer-bid value.2 In order to make sure that the
merchant storage owner participates in the market either as a
generator or a demand, the following feasibility cut is applied
when a branch is created. Whenever the algorithm branches
on a single offer quantity p̂it and a branch is created where
the lower bound p

it
is greater than zero, the corresponding

demand bid d̂it is set to zero in that branch. Similarly,
whenever the algorithm branches on a single bid quantity d̂it
and a branch is created where the lower bound dit is greater
that zero, the corresponding generation offer quantity p̂it is
set to zero in that branch. This enforces constraint (1b).

IV. ILLUSTRATIVE EXAMPLE

1) Price-quantity bidding and offering: For the illustrative
example, a 5-node system is used. The system is based on
the PJM 5-bus system of the MATPOWER package [23]. The
following changes have been made to the system in order to
make it suitable for illustration:

1) A generator on bus 1 has been replaced by a wind farm
on bus 3 with an installed capacity of 300 MW.

2Since branching terminates when the y’s are binary, convergence is ensured
just as is the case with the standard branch-and-bound algorithm.

Algorithm 1: The SBB algorithm with linear quasi-
relaxation.

Input : Linear quasi-relaxed problem (11Q) and discrete values {P̂1,
P̂2, ..., P̂nP }, {D̂1, D̂2, ..., D̂nD} and {Ĉ1, Ĉ2, ..., ĈnC }.

Set lower and upper bounds (p
it
, pit) = (P̂1, P̂nP ),

(dit, dit) = (D̂1, D̂nD ) and (cit, cit) = (Ĉ1, ĈnC ) .

Set LB = −∞.

Branch(X ,X ).

if LB = −∞ then
Problem is infeasible.

else
sol∗ is optimal for (11).

Function Branch(X ,X )
if (11Q) has a feasible solution sol with objective z > LB then

if some yXit /∈ {0, 1} and xit 6= xit then
Let X̂l be the largest value in the set
{X̂1, X̂2, ..., X̂nX } that is smaller than
xity

X
it + xit(1− yXit ).

Branch(X ′,X ), where X ′ is identical to X apart from
that xit = X̂l+1

Branch(X ,X ′), where X ′ is identical to X apart from
that xit = X̂l

else
Let LB = z and sol∗ = sol with
x̂it = xity

X
it + xit(1− yXit ).

Output: Optimal solution sol∗.

1

2 3

5

4

L1 L6

L2

L3

L4 L5

G1 G4

G3G2
G7

LD1 LD2 LD3

+−
G6

+−G5

Fig. 1. The single-line diagram of the illustrative example.

2) Two merchant storage units with an installed genera-
tion/demand capacity of 100 MW and a storage capacity
of 400 MWh each have been connected to buses 3 and
4, respectively.

3) All transmission lines with unlimited capacity in the
original system have a capacity of 400 MW.

4) The marginal cost of generator 3 has been increased
from $ 40/MWh to $ 60/MWh.

The single-line diagram of the illustrative example is shown
in Fig. 1. Generator data are given in Table I.

The merchant storage owner optimizes its operation over a
horizon of 4 time periods. The variable cost of the merchant
storage units is considered to be negligible and their round-
trip efficiency is considered to be 100 %. The merchant storage
owner submits price-quantity pairs to the market with a price
of either 0 $/MWh or 50 $/MWh as well as quantity of either
0 %, 50 %, 75 %, or 100 % of the 100 MW installed capacity.
The bus loads are increasing over the horizon and are assumed
to be known deterministically. In order to add stochasticity to
the system, there are 3 equiprobable scenarios possible for the
wind farm connected to bus 3 (1: low, 2: medium, 3: high). In
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TABLE I
GENERATOR DATA FOR THE ILLUSTRATIVE EXAMPLE.

Unit # Type P i /Di [MW] Cost, ci [$/MWh] Bus
1 Dispatchable 40 / 0 15 1
2 Dispatchable 520 / 0 30 3
3 Dispatchable 200 / 0 60 4
4 Dispatchable 600 / 0 10 5
5 Storage 100 / 100 0 3
6 Storage 100 / 100 0 4
7 Wind 300 / 0 0 3
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Fig. 2. Illustrative example results for the two storage units. Benchmark case
(blue), strategic case (red) and price deviation at the buses corresponding to
the two units (green). Thick black lines represent offer-bid values and colored
bars represent dispatch or price deviation.

all scenarios the wind power production is decreasing over the
horizon. The total load is considered to be the residual load
after the wind power has been deducted from the bus loads.

Fig. 2 shows the charging and discharging (red) of the
merchant storage units as well as their submitted offer-bid
values to the market (black). For comparison, the figure also
shows a benchmark case where the ISO controls the dispatch
of the storage units completely (blue). Lastly, the figure shows
the price deviation at the corresponding buses between the
benchmark case and the strategic case (green). The results
of the illustrative example show various types of strategic
behavior from the merchant storage owner when compared
to the benchmark case where the ISO completely controls
the dispatch of the storage units. Some empirically relevant
takeaways from the illustrative example are the following:

Demand withholding: The units withhold demand in periods
1 and 2 by bidding a fraction of their demand capacity. This
results in a decrease in the price compared to the benchmark
case on both buses in period 1 (for scenarios 2 and 3) which
means that the storage units can charge at a lower price. This
behavior also results in less stored energy in periods 3 and 4,
which helps to drive up the price during those periods.

Generation withholding: In period 3, both units withhold
their generation capacity. Furthermore in period 4, unit 6
withholds its generation capacity. This behavior results in a

TABLE II
TOTAL PROFIT BY SCENARIO AS WELL AS EXPECTED PROFIT OF THE

GENERATING UNITS OVER THE HORIZON.

Unit # Profit [$]
w = 1 w = 2 w = 3 E[Profit] ∆E[Profit]

1 2933.7 2597.5 2597.5 2709.6 947.3
2 13932.9 13932.9 13932.9 13932.9 9288.6
3 0 0 0 0 0
4 0 3000.0 0 1000.0 1000.0
5 1339.7 2089.7 2339.7 1923.0 841.0
6 3008.6 4255.7 4505.7 3923.4 2303.3
7 5169.9 8539.7 15879.4 9863.0 -451.5

price increase compared to the benchmark case and therefore
a higher expected profit for both units.

Portfolio effect: The abovementioned generation withhold-
ing of the units also shows a portfolio effect where the actions
of one unit benefit the storage portfolio as a whole.

Increased profit: Table II shows the profit of the generating
units over the horizon. The expected profit of the storage port-
folio over the three scenarios and four periods is $ 5846.4. The
last column shows how the expected profit of the generators
compares with their expected profit from the benchmark case.
The strategic actions of the two storage units result in an
expected profit that is more than double the expected profit of
the benchmark case ($ 2702.1). Moreover, the strategic actions
of the storage units increase the expected profit of all of the
other generators apart from generator 3 and the wind farm.
This is because the storage owner manages to decrease the
prices somewhat when there is high wind power production
and increases the prices when there is lower wind production.

Under-use: While the expected profit is increased, the
expected amount of energy sold by storage is around 25 %
less in the strategic case than in the benchmark case; storage
is under-used compared to the welfare-maximising use. In the
benchmark case, the ISO flattens out the prices to minimize
the generation costs. When the storage portfolio is controlled
strategically, the owner tries to maintain the price difference
while finding a trade-off between sold energy and price.

2) Self-scheduling: In this case the storage owner submits
self-schedule bids and offers, that is without a price compo-
nent, to the market instead of price-quantity pairs. The SBB
algorithm is run again for the illustrative example where the
merchant storage owner is allowed to submit self-schedule
offer-bid values of 0 %, 20 %, 40 %, 60 %, 80 % or 100 % of
the installed capacity which for both units is 100 MW. For this
case, the expected profit of the storage portfolio is $ 5815.0.

V. NUMERICAL SIMULATION

This section shows numerical simulations of larger test
systems along with a comparison of the generation cost for i)
the case without storage, ii) the case with competitive storage
as well as iii) the case with strategic storage. Lastly, com-
putational comparison demonstrates the superior performance
of the proposed solution algorithm when benchmarked against
current practices in the literature.

1) IEEE 24-bus system with transmission constraints – self-
scheduling: In this case, we run the SBB algorithm on the
IEEE 24-bus, 32-unit system where the two 400 MW nuclear
units in the system are assumed to be off-line. The simulation
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Fig. 3. IEEE 24-bus system results for the two storage units. Benchmark case
(blue), strategic case (red) and price deviation at the buses corresponding to
the two units (green). Thick black lines represent offer-bid values and colored
bars represent dispatch or price deviation.

is carried out for 4 periods, 3 scenarios and there are two
merchant storage units in the market (units 33 and 34); both
of which have a storage capacity of 1000 MWh. They are
connected to buses 13 and 15. There are 3 equiprobable
scenarios possible for a 400 MW wind farm connected to
bus 17 (1: high, 2: medium, 3: low). The units are allowed to
submit self-schedule offer-bid values of 0 %, 25 %, 50 %, 75 %
or 100 % of their 200 MW installed capacity to the market.
The results are represented in Fig. 3 where one can see how
the units are able to strategically decrease the system price
substantially during the first 2 periods as well as increase the
price in the third period. These strategic actions increase their
expected profit over the 3 scenarios and 4 periods from $ 655.9
in the benchmark case to $ 3856.0 in the strategic case.

2) IEEE 24-bus system without transmission constraints –
self-scheduling: The SBB algorithm is run on the same IEEE
24-bus system without considering transmission constraints.
The simulation is carried out for 12 periods and there is a
single merchant storage unit in the market which has a storage
capacity of 1000 MWh. The unit is allowed to submit self-
schedule offer-bid values of either 0 %, 25 %, 50 %, 75 %, or
100 % of its 300 MW installed capacity to the market. The
unit is able to strategically apply generation withholding in
order to increase the system price substantially and increase
its expected profit from $ 7983.6 in the benchmark case to
$ 40049.9 in the strategic case.

3) IEEE 118-bus without transmission constraints – price-
quantity bidding: Finally, the SBB algorithm is run on the
IEEE 118-bus system without considering transmission con-
straints for a horizon of 8 periods. A 2000 MWh storage unit
submits price-quantity pairs with a price of either 0 $/MWh or
40 $/MWh as well as quantity of either 0 %, 50 % or 100 % of
its installed capacity of 600 MW. The strategic actions of the
player increase its expected profit over the eight periods from
zero in the benchmark case to $ 12000 in the strategic case.

TABLE III
COMPARISON OF EXPECTED GENERATION COST FOR THE SIMULATIONS.

Case Without Case With Case With
Storage Competitive Storage Strategic Storage

(Benchmark) (Strategic)
Illustr. ex. I $ 80580 $ 72367 $ 74246
Illustr. ex. II $ 80580 $ 72367 $ 74277
24-bus I $ 125170 $ 118896 $ 119524
24-bus II $ 691567 $ 641036 $ 645797
118-bus $ 852852 $ 839325 $ 840852
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0

100

200

Nodes explored
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pt
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] Proposed SBB algorithm
Gurobi BB algorithm

Fig. 4. Convergence of the optimality gap for the two solution algorithms
for the 24-bus I case.

4) Generation cost comparison: Table III shows a compar-
ison of the expected generation cost for the benchmark case
and the strategic case. The generation cost is decreased when
storage is introduced for all simulations, both in the benchmark
case and in the strategic case. The generation cost is however
lower in the benchmark case than in the strategic case.

5) Computational Comparison: Table IV shows the compu-
tational requirements of the Gurobi BB algorithm for solving
the binary expansion MILP model and the SBB algorithm
for solving the proposed disjunctive program (11). The SBB
algorithm is implemented by the authors using a Python
interface. In order to get a fair comparison, the Gurobi BB
does not apply pre-solve algorithms or other heuristics. For
the simulations performed, the proposed SBB algorithm is
orders of magnitude more efficient than Gurobi BB in terms of
nodes explored. For the two price-quantity bidding cases (the
illustrative example I and the 118-bus), as well as the self-
schedule 24-bus II case, SBB finds the optimal solution while
Gurobi BB fails to find a proven optimal solution. Fig. 4 shows
a graphical comparison of the optimality gap convergence for
the two algorithms (proposed SBB and Gurobi BB) for the
24-bus I case.

VI. CONCLUSION

This paper proposes a stochastic disjunctive programming
model for finding the optimal offer-bid strategy of a merchant

TABLE IV
COMPARISON OF THE COMPUTATIONAL REQUIREMENTS OF THE

DIFFERENT SIMULATIONS AND ALGORITHMS. THE COMPLEXITY OF THE
MILP MODEL IS ALSO REPORTED IN TERMS OF THE NUMBER OF

CONTINUOUS VARIABLES, BINARY VARIABLES AND CONSTRAINTS.

Simulation Nodes Explored MILP complexity
SBB Gurobi BB cont. bin. constr.

Illustr. Ex. I 1.31×106 * 1584 88 2395
Illustr. Ex. II 59623 1.96×106 1608 104 2555
24-bus I 47155 8.90×106 7400 88 8203
24-bus II 69103 * 3348 132 3781
118-bus 1.11×106 * 4064 72 4313
* No proven optimal solution found after 10 million nodes explored
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storage portfolio. The interaction between the merchant stor-
age owner and the ISO is modeled as a stochastic bilevel
optimization model and then reformulated as a stochastic
disjunctive program. Employing the disjunctive nature of the
optimization model, a specialized branch-and-bound algorithm
is proposed. The proposed SBB solution algorithm branches
on the ranges of discrete variables (rather than binary variables
in the standard BB algorithm). To find a relaxed solution of
the proposed stochastic disjunctive program, first the concept
of quasi-relaxation is defined. Then a linear quasi-relaxation
is derived for the case of the merchant storage model. Both
the proposed disjunctive programming model and the SBB
solution algorithm are benchmarked against current practices
in literature for modeling and solving these types of problems
(binary expansion MILP model and Gurobi BB). The numeri-
cal results confirm the performance of the modeling approach
and its solution algorithm for dealing with the optimal offer-
bid strategy of an energy storage portfolio. Although the
modeling approach and the SBB algorithm are derived in
the context of a merchant storage offer-bid model, the same
modeling approach and solution algorithm might be applicable
for other stochastic bilevel optimization problems.

APPENDIX

Proof of Lemma 1. The same approach as in [22] is used for
proof of this lemma. Consider any feasible solution (p̂it, d̂it,
ĉit, µ

(6)
itw, µ(8)

itw, pitw, ditw) to (11). It suffices to construct a
feasible solution (p̂it, d̂it, ĉit, µ

(6)′

itw , µ(8)′

itw , p′itw, d′itw) of (11Q)
since the latter has the same objective value in (11Q) as the
former does in (11). Let

µ
(6)−′

itw = yPit (µ
(6)−
itw + µ

(6)+
itw ) (13a)

µ
(6)+′

itw = (1− yPit )(µ
(6)−
itw + µ

(6)+
itw ) (13b)

µ
(8)−′

itw = yDit (µ
(8)−
itw + µ

(8)+
itw ) (13c)

µ
(8)+′

itw = (1− yDit )(µ
(8)−
itw + µ

(8)+
itw ) (13d)

p−
′

itw = yCit (p
−
itw + p+

itw) (13e)

p+′

itw = (1− yCit )(p−itw + p+
itw) (13f)

d−
′

itw = yCit (d
−
itw + d+

itw) (13g)

d+′

itw = (1− yCit )(d−itw + d+
itw) . (13h)

which is clearly feasible in (11Q). Furthermore, substituting
(13a)–(13h) into (11Q) results in the same constraints as in
(11), apart from the disjunctive constraints. All other con-
straints in (11Q) are identical to their counterparts in (11).

Proof of Lemma 2. The same approach as in [22] is used for
proof of this lemma. When a variable yit is either 0 or 1,
the offer-bid value is either at the lower bound or the upper
bound of that branch, both of which are valid discrete values
and therefore fulfill the disjunctive constraints.
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