Technology Innovation and Development — The Process of Achieving a Sustainable Energy Future

C. Lowell Miller
Director, Office of Coal Fuels & Industrial Systems
U.S. Department of Energy

Presentation
GCEP Energy Workshop
Frances C. Arrillaga Alumni Center
Stanford University
April 26, 2004
Why Hydrogen?
It’s abundant, clean, efficient, and can be derived from diverse domestic resources.
Drivers of Technology Development

- Acid Rain
 - Clean Air Act
 - Joint Report of Special Envoys
 - Clean Air Act Amendments
 - Prevention of Significant Deterioration Regulations (PSD)

- Clean Hydrogen/Dirty Hydrogen
 - Energy Security
 - Economy
 - Environment
 - Clear Skies Initiative
 - Global Climate Change Initiative
 - FreedomCAR

Clean Coal Technology

Hydrogen Fuel Initiative/FutureGen
Eliminating Acid Rain

- Clean Air Act Amendments (CAAA) require major reduction in SO$_2$, near elimination in 21st century
- Advanced systems redefined state-of-the-art in scrubber technology. These systems can:
 - Cut capital and operating costs nearly in half
 - Produce valuable by-products
 - Mitigate plant efficiency losses
 - Capture multiple air pollutants
- A portfolio of technologies available:
 - Advanced scrubbers
 - Low capital cost sorbent injection systems
 - Clean high energy density fuels
Eliminating Acid Rain

- **Investment:**
 - Between 1979 and 2000, over $223 million invested

- **Return:**
 - FGD technology costs one-third of what it did in the 1970s
 - More than 400 commercial deployments of FGD systems
 - SO\(_2\) emissions at utilities declined from 4.4 pounds per million Btu coal burned in 1970 to 1.1 pounds per million Btu coal burned in 1977 – a 75% reduction
 - Combined direct economic benefit from lower cost FGD technology and resulting environmental improvement estimated at over $50 billion through 2005

- **Result** – acid rain no longer a barrier to coal use
Taking On Smog

- Prior to clean coal technologies, nitrogen oxide control systems not proven in U.S. economy
- Portfolio of cost-effective regulatory options now exists for full range of boiler types that have:
 - Provided real time data for formulating regulations
 - Formed foundation for meeting emission limits into the 21st century
 - Positioned U.S. industry to export NO\textsubscript{x} control technology
- Clean coal technologies include:
 - Low-NO\textsubscript{x} burners
 - Reburning systems
 - Selective catalytic reduction
 - Selective non-catalytic reduction
 - Artificial intelligence controls
Taking On Smog

- **Investment:**
 - Between 1987-1999 nearly $100 million invested — 44% DOE and 56% private

- **Return:**
 - 75% of existing coal fired units have or are currently being retrofit with low-NO\textsubscript{x} burners
 - SCR technology now costs half of what it did in 1980, 30% of U.S. coal fired capacity with or about to have SCR units
 - A projected 60 million ton reduction in U.S. NO\textsubscript{x} emissions from 1970 through 2005
 - Combined direct economic benefit (both lower cost and environmental improvement) estimated at $25 billion through 2025
Pollution Reduction at Coal-Fired Power Plants

Successes to date: pollutant emissions per unit of coal burned have decreased significantly.

Challenges for the future: increased coal use has brought pressure to reduce emissions further (e.g., Clear Skies Initiative).

Average rate of pollutant emissions from U.S. coal-fired power plants:
- PM: 0.5 lb/MM Btu coal burned (1970), 0.03 lb/MM Btu coal burned (1997), 0 lb/MM Btu coal burned (2005)

Coal use for power generation in the U.S.:
- 1970: 7.2 Q EJyr
- 1997: 18.8 Q EJyr
- 2005 (projected): 22.1 Q EJyr
Tampa Electric (TECO) Clean Coal Project
A New Path to Clean Air

TECO’s coal-to-gas plant in Polk County, Florida, is the pioneer of a new type of clean coal plant.

- **SO₂**
 - Older Coal Plant: 2.07
 - Fleet Avg.: 1.2
 - TECO CCT Plant: 0.1
 - Older Coal Plant: 0.6 to 1.2

- **NOₓ**
 - Older Coal Plant: 0.47
 - Fleet Avg.: 0.07 (15 ppm)
 - TECO CCT Plant: 0.07
Wabash River Clean Coal Project
A Case Study for Cleaner Air

The Wabash River Plant in Terre Haute, Indiana, was repowered with gasification technology.

- **SO₂**: Before CCT - 3.1, After CCT - 0.1
- **NOₓ**: Before CCT - 0.8, After CCT - 0.15
Vision for Energy Plants of the Future

- Remove environmental concerns associated with the use of fossil fuels for production of electricity, transportation fuels, and chemicals through technology

- Characteristics of future energy plants
 - “Near-zero” emissions (coal as clean as gas)
 - CO₂ sequestration-ready
 - Flexible (feed stocks, co-products, siting)
 - Highly energy efficient
 - Affordable (competitive with other energy options)
 - Industrial Ecology (waste into by-products)
 - Reduced water requirements
 - Timely deployment of new technology
 - Sustainable

Electricity
Hydrogen
Chemicals
FutureGen

- Produce electricity and hydrogen from coal using advanced technology
- Emit virtually no air pollutants
- Capture and permanently sequester CO₂

Addresses three Presidential initiatives:
- Hydrogen
- Clear Skies
- Climate Change
Why FutureGen is Needed

- FutureGen is a key step to creating a zero-emissions coal energy option
- FutureGen will enable us to:
 - Meet our growing energy needs with zero-emissions coal
 - Secure this country’s economic and energy future through the clean use of coal, our most abundant, strategic, domestic energy resource
 - Remove all environmental concerns over coal’s use, including climate change concerns, by sequestering carbon dioxide emissions from coal power plants
 - Produce clean low-cost hydrogen with zero emissions for power generation or for transportation
- Integration of concepts and components is the key to proving the technical and operational viability
FutureGen Project Concept

- **Coal Gasification-Based Power**
 - **Geological Sequestration**
 - **Enhanced Oil Recovery**

- **Electricity**
- **Hydrogen Pipeline**
- **CO₂ Pipeline**

- **Oil Pipeline**
- **Refinery**
Key Goals of FutureGen

- Verify effectiveness, safety, and permanence of carbon sequestration
- Establish standardized technologies and protocols for CO$_2$ measuring, monitoring, and verification
- Gain domestic and global acceptance for FutureGen concept
- Validate engineering, economic, and environmental viability of coal-based, near-zero emission technologies that, by 2020, will —
 - Produce electricity with < 10% increase in cost compared to non-sequestered systems
 - Produce H$_2$ at $4/\text{MMBtu}$ wholesale price ($0.48 /\text{gal} \text{ gasoline eq.}$) compared to today’s price of $0.70/\text{gal} \text{ gasoline eq.}$
Features of the Project

- Coal-fueled gasification process that produces electricity and hydrogen – 275 MWe [net equivalent output]
- Commercial scale of 1 million tons per year of CO$_2$ captured and sequestered
- Total project cost estimated at $1 billion
- Cost-shared by U. S. Department of Energy [maximum 80%] and industry [minimum 20%]
- Open to international participation through the Carbon Sequestration Leadership Forum
FutureGen Systems

Oxygen Separation

Gasification

Gas Cleaning

Fuels and Chemicals

Coal

By-Products Utilization

H₂/CO₂ Separation

CO₂ Sequestration

Transportation (fuel cell vehicles)

CO₂

Power

Fuel Cell

High Efficiency Turbine

Electricity

Coal Seams

Saline Reservoir

Enhanced Oil Recovery

O₂

e⁻
Boosting Power Plant Efficiencies
First Step Toward Reducing GHG Emissions

- Today’s Coal Plant
- Initial Plant
- Adding Fuel Cell/Turbine
- Adding Co-Product Production

FutureGen Plant

2015
RD&D to Meet Technology Challenges

<table>
<thead>
<tr>
<th>Traditional Advanced Technology</th>
<th>Research Inventions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cryogenic Separation</td>
<td>O₂ Membranes</td>
</tr>
<tr>
<td>Amine Scrubbers</td>
<td>Hydrogen Membranes</td>
</tr>
<tr>
<td>Amine Scrubbers</td>
<td>“Clathrate” CO₂ Separation</td>
</tr>
<tr>
<td>Gas Stream Cleanup</td>
<td>“Dirty” Shift Reactor</td>
</tr>
<tr>
<td>Syngas Turbine</td>
<td>Hydrogen Turbine</td>
</tr>
<tr>
<td>Fuel Cell ($4,000/kW)</td>
<td>SECA Fuel Cell ($400/kW design)</td>
</tr>
<tr>
<td>EOR-based</td>
<td>Sequestration Technology (including in situ CO₂ monitoring)</td>
</tr>
<tr>
<td>Existing Gasifier</td>
<td>Advanced Transport Reactor</td>
</tr>
<tr>
<td>System Integration</td>
<td>“First-of-a-Kind” System Integration</td>
</tr>
<tr>
<td>Plant Controls</td>
<td>“Smart” Dynamic Plant Controls & CO₂ Management Systems</td>
</tr>
</tbody>
</table>
Why Coal?

- Abundant reserves
- Low and stable prices
- Technology improvements
 - Could enable near-zero emissions of air pollutants/GHGs

U.S. Fossil Fuel Reserves/Production Ratio

- Coal: 246 years
- Oil: 11.7 years
- Natural Gas: 9.2 years

Sources:
- EIA-U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Reserves: 2001 Annual Report, November 2002;
The Hydrogen from Coal Program

FutureGen

Gasification
Fuel Cells

Production

Shifting
• Catalysts
• Reactors

Synthesis Gas-Derived Hydrogen-Rich Liquid Fuels
• Fuels Reforming
Catalysts/Reactors

Separations
• Advanced Hydrogen Separation
• Advanced CO₂ Separation
• Absorption/Solvent Systems

Polishing Filters (for ultra-clean hydrogen production)

Advanced Concept
• Combined WGS and H₂ separation with gas cleanup

Delivery

Hydrogen & Natural Gas Mixtures
• Define feasible, low-cost delivery routes

Storage

Carbon Nanotubes

Other Storage

Utilization

Engines
• Hydrogen/Natural Gas Mix

Polishing Filters (for ultra-clean hydrogen production)

Computational Science and Modeling – Supporting Sciences
Hydrogen from Coal

A. Gasifier Optimization
 • Gasifier modification for hydrogen

B. Hydrogen Production
 • Shift reactors for hydrogen
 • Low-cost conversion
 • Gas polishing

C. Hydrogen Separation
 • Impurity-tolerant membranes
 • Advanced separations

D. Hydrogen Quality & Utilization
 • Hydrogen cleanup and tailoring as needed to meet market requirements
 • High-quality hydrogen for fuel cells and pipelines
 • Advanced high density, safe storage, and transport
 • Technology/Systems
Hydrogen from Coal Program
Components and Product Areas

Coal (CH) → Gasification

Synthesis Gas: CO, CO₂, H₂, H₂O, SO₂

Ash/Slag → Gas Cleaning

Sulfur Particulates

Depleted Air → HRSG/ST Power

H₂O → SOFC

H₂O

CO/H₂ → Water Gas Shift & Membrane Separation

CO₂ → Syngas Conversion

F-T CH₃OH

Air → Combustion Turbine

HRSG/ST Power → CO₂ Sequestration

H₂ → Reforming

H₂ Storage

CO₂ Sequestration

Key:

Gasification
IEP/Coal Utilization By-Products
Fuel Cells ATS
CO₂ Sequestration
Coal Fuels & Hydrogen
Climate Change —
Why is Sequestration Important?

- May be only option that removes enough carbon to stabilize CO₂ concentrations in atmosphere
- Only approach that doesn’t require countries to overhaul energy infrastructures
- May prove to be lowest cost carbon management option

The FutureGen plant will be a first-of-its-kind project by the U.S. electric power industry to prove that large-scale sequestration is safe and practicable
CO₂ Capture and Storage
Develop Technology Options for GHG Management Team

- Technologies must be safe and environmentally acceptable
- They should result in:
 - <10% increase in cost of energy services (<$10/ton CO₂ avoided) for capture, transport, and storage
 - Measurement, Monitoring, & Verification protocols for assurance of permanent storage
- Support the Global Climate Change Initiative
 - Contributes to reducing carbon intensity by 18% by 2012
 - Provides portfolio of commercially ready technologies for 2012 assessment

Cost Performance Goals

<table>
<thead>
<tr>
<th>Year</th>
<th>COE Penalty IGCC Plants (% Increase)</th>
<th>COE Penalty PC Plants (% Increase)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2002</td>
<td>30</td>
<td>80</td>
</tr>
<tr>
<td>2007</td>
<td>20</td>
<td>45</td>
</tr>
<tr>
<td>2012</td>
<td>10</td>
<td>20</td>
</tr>
</tbody>
</table>
U.S. Carbon Sequestration Program

Core R&D
- Capture CO₂
- Measurement Monitoring & Verification
- Non-CO₂ GHG Mitigation
- Breakthrough Concepts

Integration
- FutureGen
 Integrated Sequestration, Hydrogen and Energy Research Initiative

Infrastructure
- Regional Partnerships
 - Engage regional, state, local government entities
 - Determine benefits of sequestration to region
 - Baseline region for sources and sinks
 - Establish monitoring and verification protocols
 - Address regulatory, environmental, & outreach issues
 - Test sequestration technology at small scale
Carbon Sequestration Roadmap

Regulatory Approval and Compliance, Acceptance in GHG Trading Context

MMV R&D
- Ecosystem health
- Soil carbon measurement
- Subsurface transport, monitoring and modeling
- Surface leak detection

Regional Partnerships
- Baseline
- Infrastructure
- Stakeholders

Sequestration Field Tests

Capture R&D
- CO₂ storage optimization
- Site assessment capability
- Storage permanence
- Untested formation types

Sequestration R&D
- Chemical sorbents
- Physical sorbents
- Electrochemical pumps
- Membranes

Pilot-scale CO₂ Capture Tests

Integration of CO₂ Capture and Storage

Breakthrough Concepts
- Advanced capture
- Subsurface conversion
- Niche opportunities

Commercially Ready Sequestration Systems

Integration of CO₂ Capture with SOₓ, NOₓ, and Hg Control
Carbon Sequestration Program

A. Sequestration R&D
- CO₂ storage optimization
- Site assessment and best practices
- Storage permanence
- Untested formation types

B. Capture R&D
- Chemical & physical sorbents
- Membranes
- Oxyfuel combustion
- Chemical looping

C. Measurement, Monitoring, & Verification
- Ecosystem health
- Soil carbon measurement
- Subsurface transport, monitor/model
- Surface leak detection

D. Breakthrough Concepts
- Advanced capture/conversion
- Niche opportunities

E. Regional Partnerships
- Baseline/Infrastructure/Outreach
- Technology validation & deployment
Seven Regional Carbon Sequestration Partnerships
Carbon Sequestration Leadership Forum

- Forum for planning international multi-lateral sequestration projects including FutureGen
- Ministerial-level representatives
- Other nations invited to first meeting, June 2003 in Washington, DC

Benefits of international involvement in FutureGen
- Enrich intellectual talent pool
- Maximize global applicability and acceptance
- Leverage funds
- Help build consensus on climate change
International Partnership for the Hydrogen Economy (IPHE)

Secretary Abraham – Paris, France, April 28, 2003

“So, tonight, I would like to propose an International Partnership for the Hydrogen Economy”

The Partnership would:

- Develop common codes and standards for hydrogen fuel utilization
- Establish cooperative efforts to advance the research, development, and deployment of hydrogen production, storage, transport, and end-use technologies
- Strengthen exchanges of pre-competitive information necessary to build the kind of common hydrogen infrastructures necessary to allow this transformation to take place
- Formalize joint cooperation on hydrogen R&D to enable sharing of information necessary to develop hydrogen-fueling infrastructure
“The vision of the International Partnership for the Hydrogen Economy is that a participating country’s consumers will have the practical option of purchasing a competitively priced hydrogen power vehicle, and be able to refuel it near their homes and places of work, by 2020.”

Secretary of Energy Spencer Abraham
April 28, 2003
International Partnership for Hydrogen Economy

The Partners

<table>
<thead>
<tr>
<th>Country</th>
<th>Flag</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia</td>
<td></td>
</tr>
<tr>
<td>Brazil</td>
<td></td>
</tr>
<tr>
<td>Canada</td>
<td></td>
</tr>
<tr>
<td>China</td>
<td></td>
</tr>
<tr>
<td>India</td>
<td></td>
</tr>
<tr>
<td>Italy</td>
<td></td>
</tr>
<tr>
<td>Japan</td>
<td></td>
</tr>
<tr>
<td>Norway</td>
<td></td>
</tr>
<tr>
<td>European Commission</td>
<td></td>
</tr>
<tr>
<td>France</td>
<td></td>
</tr>
<tr>
<td>Germany</td>
<td></td>
</tr>
<tr>
<td>Iceland</td>
<td></td>
</tr>
<tr>
<td>Russia</td>
<td></td>
</tr>
<tr>
<td>South Korea</td>
<td></td>
</tr>
<tr>
<td>United Kingdom</td>
<td></td>
</tr>
<tr>
<td>United States</td>
<td></td>
</tr>
</tbody>
</table>

IPHE Partners’ Economy:
- Over $35 trillion in GDP, 85% of world GDP
- Nearly 3.5 billion people
- Over 75% of electricity used worldwide
- Greater than two-thirds of CO₂ emissions and energy consumption
Conclusion

Clean Hydrogen From Coal
via Technology Innovation
and/or Development
Is a Reality