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Growth and physical properties of epitaxial metastable cubic TaN (001)
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We report the growth of epitaxial metastable B1 NaCl structure (@8l layers. The films were

grown on Mg@d@001) at 600 °C by ultrahigh vacuum reactive magnetron sputter deposition in mixed
Ar/N, discharges maintained at 20 mTd&.67 Pa. X-ray diffraction and transmission electron
microscopy results establish the epitaxial relationship as cube-on-cube{QQQP1L)yyo With
[100]7aNI[100]ygo, While Rutherford backscattering spectroscopy shows that the layers are
overstoichiometric with N/T&1.22+0.02. The room-temperature resistivity is 228 cm with a

small negative temperature dependence between 20 and 400 K. The hardness and elastic modulus,
as determined by nanoindentation measurements, are-8®8and 45716 GPa, respectively.

© 1999 American Institute of PhysidsS0003-695(99)04450-3

Polycrystalline Taly thin films are presently used in a sputtering was carried out in 20 mTo(2.67 Pa mixed
variety of applications including hard wear-resistant coatingsAr(99.9999%/N,(99.999% discharges with l)lfractionst2
on tools, diffusion barriers in integrated circuits, resistors,between 0.05 and 1. Pressure was measured by a capacitance
and mask layers for x-ray lithography. Unlike the more com-manometer and maintained constant with an automatic mass-
mon hard-coating material, the IVB—VA compound TiN, flow controller.
little is known about the fundamental properties of cubic  Sputtering was done at a constant power of 150 W in a
TaN, a metastable VB-VA compound. While the Ti—-N magnetically unbalanced mode, achieved using an external
equilibrium phase diagram is relatively simple with the only pair of Helmholtz coils. These conditions resulted in a film
compounds being tetragonal ,Ni and NaCl-structure TiN, deposition rate of 2.34m h™! with fy_=0.20. A combina-
the Ta—-N system is extremely ri&ﬁ_.ln addition to the equi- (o of probe® growth rate, and film éomposition measure-
librium phases bee Ta, solid-solutianTa(N), hep-y-TaN,  ments showed that the ion-to-Ta ratio incident at the sub-
and hexagonat-TaN, a variety of metastable phases havegiate was 11 with an ion energy of 8 eV. lon irradiation was
been reported. These include tetrago@ala, becs-TaN),  essentially monoenergetic since the charge-exchange mean-
hexagonal WC structurg-TaN, cubic B1 NaCl structure ree patf was more than a factor of two larger than the
& TaN,l ?exagonal T, tetragonal Tals, and tetragonal g psirate sheath width. From previous glow discharge mass
TagNs. ™~ This complexity makes it challenging to grow gpectroscopy measuremehtthe primary ion flux constitu-
phase-pure TajNcompounds and, hence, little is known gniq are AF (94% and N/ (4%).
about fundamental properties of these materials. There are N0 T substrates were polishedk 1x0.05 cn? MgO(00)
reports on single-crystal TgNayers. _ wafers which were cleaned as described in Ref. 8. They were
We expect that cubic TaN, like TFNand.NbI\f which  then mounted on resistively heated Ta platens and inserted
have the same NaCl crystal structure, will have a wid&nis the sample introduction chamber for transport into the

single-phase field and can support large vacancies concentiga,sition chamber. Final cleaning consisted of thermal de-

tions on both cation and anion sublattices. In the case of TiNgassing at 800°C for 1 h, a procedure shown to result in

N/Ti can vary from 0.6 to=1.2 (Ref. 3. sharp Mg@001)1x 1 reflection high-energy electron diffrac-

~ Inthis letter, we present evidence for the growth of ep-jon patternd The target was sputter etched for 5 min, with
itaxial single-crystal TaN thin films on Mg@02). X-ray dif- 5 ghytter shielding the substrate, prior to initiating deposi-
fraction (XRD) and transmission electron microscof¥EM)  ion Film growth temperature, 600 °C including the contri-
indicatg that the alloys are single—phgge B1 NaCl structurg ;sion due to plasma heating, was measured using a pyrom-
TaN with a room-temperature resistivity of 2250 cm.  oer calibrated by a thermocouple bonded to a TaN-coated
Nanoindentation measurements show that the elastic mOdWIgO substrate.

lus of the TaN films is comparable to that of TiN while the The microchemistry of the TaN layers was examined by
hardness is more than 50% higher. Rutherford backscattering spectrometRBS) using 2 MeV

All TaN, films, 0.5 um thick, were grown in a load- et jons and the spectra analyzed usingrbeiP simulation
locked multichamber ultrahigh vacuurtUHV) stainless-  orq4ram? No impurities were detected. Film microstructure

steel dc magnetron sputter deposition system described |, investigated using a combination of XRD, plan-view
detail in Ref. 5. The target was a 99.97% pure Ta disk ane&-gn1  and cross-sectional TEMXTEM). XRD measure-
ments were carried out in powder and high-resolution Philips
dElectronic mail: greene@mrlxp2.mrl.uiuc.edu MRD diffractometers, both with CK, sources.
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FIG. 2. Resistivityp of cubic TaN001) as a function of temperatufe

FIG. 1. XRD scans from a cubic 0&m-thick TaN001) layer grown on
MgO(001) at T,=600 °C: (a) w-26 scan,(b) 220 ¢ scan, andc) w-rocking

curve at B=41.565°. 13) while the lattice constant for bulk cubic TaN prepared by

plasma jet heating of hexagonal TaN is 0.433 ¥m.

o The full width at half maximum intensity/,, of the TaN
Temperature-dependent resistivity measurements wefig  peak is 0.10° compared to 0.04° for the MgO substrate.

performed using a four-point probe with evaporated Al CON-Figure Xc) shows anw-rocking curve, withl',=0.6°, from
tacts in the van der Pauw geometry. The nanoindentatiog,e TaN001) sample corresponding to Fig(al. In-plane
responses of TaN films.we_re dgtermined using a Nano Ingq4 perpendicular x-ray coherence lengghend &, can be
dentor Il instrument. Epitaxial Tit001) layers, also grown  gptained from the widths of the diffracted intensity distribu-

on MgQ(001) and having the same thickness as the TaNjons perpendiculang, and parallelAg,, respectively, to
samples, served as references for calibration purpSsgse the diffraction vector g using the relationshifs &
maximum load was varied from 0.2 to 20 mN and a mini-:27.,/|Agl|:)\/[21“ sind] and £ =2m/|Ag)|=\N/

mum of ten indent sequences was used for each maximufi}-_ cos4] where is the x-ray wavelength. From the data
load. The triangular Berkovich diamond tip was Ca“bratedpresented in Fig. 1, and&, are 21 and 104 nm. The only

following the procedure described in Ref. 11. other reported results for transition-metal nitrides were ob-
Preliminary XRD, TEM, XTEM, and RBS analyses of (.. 4 for epitaxial Sck00D), & =15 nm andé, =57 nm?S

the mlcrostructu.re and composmpn of as-deposited xTaNThe present TaN layers exhibit higher crystalline quality
layers were carried out as a function fof,. As shown be- .t |ower mosaicity.
low, films grown withfy,=0.20 are single-crystal cubic TaN XTEM images reveal uniform layers with abrupt film/
with a N/Ta ratio of 1.22. Decreasin‘gd2 leads to polycrys- substrate interfaces. Plan-view TEM and XTEM selected-
talline layers while the use di2 above 0.20 results in a area electron diffraction patterns are composed of symmetric
rapid increase in resistivity leading to the appearance ofingle-crystal reflections whose positions are consistent with
N-rich second phases. We focus here on the growth of epi€ XRD results showing cube-on-cube epitaxy.
taxial cubic TaN. TaN layers grown Witth2= 0.20 were found by RBS
Only one set of TaN XRD peaks was detected over theanalyses to be overstoichiometric with a N/Ta ratio of 1.22
26 range between 20° and 80° for films grown with, ~ =0.02. This is analogous to the case for epitaxial TiN layers
=0.20. The peaks, centered at 41.57° and 41.67° and invhere N/Ti ratios of up to=1.2 have been reported for
dexed as B1 NaCl structure TaN 002,, and K,,, are  9rowth under §imi|ar conditions, rellativ.ely IQW homplqgous
shown in Fig. 1a). The 42.92° and 43.03° peaks are due tot€mperatures in the presence .of ion irradiaflo@toichio-
MgO 002K, andK,,. XRD scans along the azimuthal Metric TaN(N/Ta=1.0) was obtained witty,=0.125; how-
direction ¢ obtained in the parallel-beam mode withand  ever the films, while primarily epitaxial, contained localized
26 angles optimized for the 220 peaks of MgO and TaN at sareas of polycrystalline growth. The stoichiometric layers
tilt angle of 45° with respect to the surface normal exhibithad a slightly larger 001 lattice constaat,=0.4356 nm, in
four 90°-rotated 220 peaks at the sasangle for both MgO  agreement with results for TiN and NbN in whieh de-
and TaN[Fig. 1(b)]. These results show that the film is epi- creases with increasing vacancy concentration on the cation
taxial with a cube-on-cube relationship, (0@4)/(001)y,c  Sublattice. The lower strain energy associated with the
and[ 100]rnlI[ 100]ygo - growth of overstoichiometric TaN appears to stabilize
The TaN lattice constant in the out-of-plane and in-plangpseudomorphic epitaxial growth. Further increases in N/Ta,
directions determined from symmetric 002 and asymmetridiowever, result in the appearance of N-rich second phases.
113 scans ara, =0.4341 andy;=0.4332 nm. Using a Pois- The room-temperature resistivigyof cubic TaN layers
son ratio of 0.25Ref. 12, we calculate that=97% of the is 225-5 u{)cm, independent of N/Ta ratio between 0.98
misfit strain is relaxed during growth and obtain a relaxedand 1.22. Previously reported values for polycrystalline cu-
lattice constant,=0.4335 nm. Previous reports for poly- bic TaN range from 200 t0>470 uQ cm231817Figure 2
crystalline cubic TaN films deposited by reactive sputteringshowsp(T) for TaN(001) at temperatures from 20 to 400 K.

give a4 values ranging from 0.436 to 0.442 niRefs. 2 and dp/dT is relatively small and negative, Wi(}hvarying from
Downloaded 22 Feb 2011 to 171.67.102.121. Redistribution subject to AIP license or copyright; see http://apl.aip.org/about/rights_and_permissions
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— of 0.25 for the Poisson ratior,y,'? we obtain an elastic
TaN/MgO(001) hold(10s) modulusk of 457+16 GPa. The uncertainty i introduced

3 L 1 .
t=0.5um by vranis only 13 GP&3%). The hardness of the metastable
& B1 NaCl structure Tak00l) is 54% higher than that of
ot hold(108)#" TiN(001) while E is nearly identical.

i In conclusion, we have demonstrated the growth of epi-
taxial single-crystal B1 NaCl structure T&01). The layers
have a room-temperature resistivity of 22&8)cm with a
small negative temperature dependence between 20 and 400
K. The hardness and elastic modulus, as determined by
nanoindentation measurements, are 3@® and 45716

GPa, respectively.
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