Geometry of Crystals

Crystal is a solid composed of atoms, ions or molecules that demonstrate long range periodic order in three dimensions.
The Crystalline State

<table>
<thead>
<tr>
<th>State of Matter</th>
<th>Fixed Volume</th>
<th>Fixed Shape</th>
<th>Order</th>
<th>Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Isotropic</td>
</tr>
<tr>
<td>Liquid</td>
<td>Yes</td>
<td>No</td>
<td>Short-range</td>
<td>Isotropic</td>
</tr>
<tr>
<td>Solid (amorphous)</td>
<td>Yes</td>
<td>Yes</td>
<td>Short-range</td>
<td>Isotropic</td>
</tr>
<tr>
<td>Solid (crystalline)</td>
<td>Yes</td>
<td>Yes</td>
<td>Long-range</td>
<td>Anisotropic</td>
</tr>
</tbody>
</table>
Crystal Lattice

Not only atom, ion or molecule positions are repetitious – there are certain symmetry relationships in their arrangement.

\[
\text{Crystalline structure} = \text{Basis} + \text{Lattice}
\]
Crystal Lattice

One-dimensional lattice with lattice parameter a

$$r = ua$$

Two-dimensional lattice with lattice parameters a, b and γ

$$r = ua + \nu b$$
Crystal Lattice

\[\mathbf{r} = u \mathbf{a} + v \mathbf{b} + w \mathbf{c} \]
Crystal Lattice

- Lattice vectors, lattice parameters and interaxial angles

A lattice is an array of points in space in which the environment of each point is identical.
Crystal Lattice

Lattice

Not a lattice
Crystal Lattice

Unit cell content
- Coordinates of all atoms
- Types of atoms
- Site occupancy
- Individual displacement parameters
Crystal Lattice

- Usually unit cell has more than one molecule or group of atoms
- They can be represented by symmetry operators
Symmetry

- Symmetry is a property of a crystal which is used to describe repetitions of a pattern within that crystal.
- Description is done using symmetry operators

Translation

\[R \rightarrow R \rightarrow R \]

Rotation (about axis O)

\[\alpha = 360^\circ / n \]

where \(n \) is the *fold* of the axis

\(n = 1, 2, 3, 4 \) or 6)

Mirror reflection

\[\overline{R} \mid \overline{R} \]

Inversion

\[\overline{R} \rightarrow i \overline{R} \]
Two-dimensional Symmetry Elements

1. One-fold axis (no symmetry)
2. Vertical mirror line
3. Vertical and horizontal mirror lines
4. Two-fold rotation axis
5. Three-fold rotation axis
Two-dimensional Symmetry Elements

6. Tree-fold axis + vertical mirror line
7. Four-fold axis
8. Four-fold axis + mirror lines
9. Six-fold axis
10. Six-fold axis + mirror lines

10 two-dimensional crystallographic or plane point groups
The Five Plane Lattices

The oblique p-lattice

The rectangular p-lattice

The rectangular c-lattice

The square p-lattice

The hexagonal p-lattice
Two-dimensional Symmetry Elements

Reflection glide or glide line of symmetry
Two-dimensional Symmetry Elements

The Seventeen Plane Groups

Lattice type: p for primitive, c for centred.
Symmetry elements: m for mirror lines, g for glide lines, 4 for 4-fold axis etc.

Notes: Each group has a symbol and a number in (). The symbol denotes the lattice type (primitive or centered), and the major symmetry elements. The numbers are arbitrary, they are those of the International Tables Vol. 1, pp 58 - 72

Bravais Lattices and Crystal Systems

In three dimensions: point symmetry elements and translational symmetry elements.

For point symmetry elements:
- centers of symmetry
- mirror planes
- inversion axes

For translational symmetry elements:
- glide planes
- screw axes

We end up with 230 space groups (was 17 plane groups) distributed among 14 space lattices (was 5 plane lattices) and 32 point group symmetries (instead of 10 plane point symmetries)
The 14 Space (Bravais) Lattices

- The systematic work was done by Frankenheim in 1835. Proposed 15 space lattices.

- In 1848 Bravais pointed that two of his lattices were identical (unfortunate for Frankenheim).

- Today we have 14 Bravais lattices.

\[a, b, c – \text{unit cell lengths}; \alpha, \beta, \gamma - \text{angles between them} \]
Crystal Symmetry

<table>
<thead>
<tr>
<th>Centering of the lattice</th>
<th>Lattice points per unit cell</th>
<th>International symbol</th>
<th>Lattice translation(s) due to centering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primitive</td>
<td>1</td>
<td>P</td>
<td>None</td>
</tr>
<tr>
<td>Base-centered</td>
<td>2</td>
<td>A</td>
<td>1/2(b+c)</td>
</tr>
<tr>
<td>Base-centered</td>
<td>2</td>
<td>B</td>
<td>1/2(a+c)</td>
</tr>
<tr>
<td>Base-centered</td>
<td>2</td>
<td>C</td>
<td>1/2(a+b)</td>
</tr>
<tr>
<td>Body-centered</td>
<td>2</td>
<td>I</td>
<td>1/2(a+b+c)</td>
</tr>
<tr>
<td>Face-centered</td>
<td>4</td>
<td>F</td>
<td>1/2(b+c); 1/2(a+c); 1/2(a+b)</td>
</tr>
<tr>
<td>Rhombohedral</td>
<td>3</td>
<td>R</td>
<td>1/3a+2/3b+2/3c; 2/3a+1/3b+1/3c</td>
</tr>
</tbody>
</table>
The 14 Space (Bravais) Lattices

<table>
<thead>
<tr>
<th>System</th>
<th>Axial lengths and angles</th>
<th>Bravais lattice</th>
<th>Lattice symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cubic</td>
<td>Three equal axes at right angles</td>
<td>Simple</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td>$a = b = c, \quad \alpha = \beta = \gamma = 90^\circ$</td>
<td>Body-centered</td>
<td>I</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Face-centered</td>
<td>F</td>
</tr>
<tr>
<td>Tetragonal</td>
<td>Three axes at right angles, two equal</td>
<td>Simple</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td>$a = b \neq c, \quad \alpha = \beta = \gamma = 90^\circ$</td>
<td>Body-centered</td>
<td>I</td>
</tr>
<tr>
<td>Orthorhombic</td>
<td>Three unequal axes at right angles</td>
<td>Simple</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td>$a \neq b \neq c, \quad \alpha = \beta = \gamma = 90^\circ$</td>
<td>Body-centered</td>
<td>I</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Base-centered</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Face-centered</td>
<td>F</td>
</tr>
<tr>
<td>Rhombohedral*</td>
<td>Three equal axes, equally inclined</td>
<td>Simple</td>
<td>R</td>
</tr>
<tr>
<td></td>
<td>$a = b = c, \quad \alpha = \beta = \gamma \neq 90^\circ$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Two equal coplanar axes at 120°,</td>
<td>Simple</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td>third axis at right angles</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$a = b \neq c, \quad \alpha = \beta = 90^\circ \quad (\gamma = 120^\circ)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hexagonal</td>
<td>Three unequal axes, one pair not at right angles</td>
<td>Simple</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td>$a \neq b \neq c, \quad \alpha = \gamma = 90^\circ \neq \beta$</td>
<td>Base-centered</td>
<td>C</td>
</tr>
<tr>
<td>Monoclinic</td>
<td>Three unequal axes, unequally inclined</td>
<td>Simple</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td>and none at right angles</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$a \neq b \neq c, \quad (\alpha \neq \beta \neq \gamma \neq 90^\circ)$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Also called trigonal.

7 crystal systems
Crystal Symmetry

- 7 axial systems + 32 point groups \rightarrow 230 unique space groups
- A 3-D crystal must have one of these 230 arrangements, but the atomic coordinates (i.e. occupied equipoints) may be very different between different crystals

<table>
<thead>
<tr>
<th>Crystal Class</th>
<th>Non-centrosymmetric Point Group</th>
<th>Centrosymmetric Point Group</th>
<th>Minimum Rotational Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triclinic</td>
<td>1</td>
<td>$\bar{1}$</td>
<td>One 1-fold</td>
</tr>
<tr>
<td>Monoclinic</td>
<td>2, m</td>
<td>$2/m$</td>
<td>One 2-fold</td>
</tr>
<tr>
<td>Orthorombic</td>
<td>222, mm2</td>
<td>mmm</td>
<td>Three 2-folds</td>
</tr>
<tr>
<td>Tetragonal</td>
<td>4, 422, 4, 4mm, 42m</td>
<td>4/m, 4/mmm</td>
<td>One 4-fold</td>
</tr>
<tr>
<td>Trigonal</td>
<td>3, 32, 3m</td>
<td>$\bar{3}$, $\bar{3}m$</td>
<td>One 3-fold</td>
</tr>
<tr>
<td>Hexagonal</td>
<td>6, 622, 6, 6mm, 6m2</td>
<td>6/m, 6/mmm</td>
<td>One 6-fold</td>
</tr>
<tr>
<td>Cubic</td>
<td>23, 432, 43m</td>
<td>$m\bar{3}$, $m\bar{3}m$</td>
<td>Four 3-folds</td>
</tr>
</tbody>
</table>
The Symmetry of Bravais Lattices

Point group symmetry of the cube
- Nine mirror planes
- Three four-fold axes
- Four three-fold axes
- Six two-fold axes

Point group symmetry of the orthorhombic cell
- Three mirror planes
- Three two-fold axes
Crystal Axes and the Reciprocal Lattice
Crystal Lattice & Directions

One-dimensional lattice with parameter a

$$r = ua$$

Two-dimensional lattice with parameters a and b

$$r = ua + vb$$

Two-dimensional lattice with parameters a and b
Lattice Directions

For the lattice points u, v, w:

$$\mathbf{r} = u\mathbf{a} + v\mathbf{b} + w\mathbf{c}$$

For the points in space u', v', w' that are not lattice points:

$$\mathbf{r} = u'\mathbf{a} + v'\mathbf{b} + w'\mathbf{c}$$

$$= (n + u_1)\mathbf{a} + (p + v_1)\mathbf{b} + (q + w_1)\mathbf{c}$$

$$= (n\mathbf{a} + p\mathbf{b} + q\mathbf{c}) + (u_1\mathbf{a} + v_1\mathbf{b} + w_1\mathbf{c})$$

n, p, q – integers

u_1, v_1, w_1 – fractions
Indexing Lattice Directions

- Direction must pass through the origin
- Coordinates of point P (in fractions of a, b and c) are 1, $\frac{1}{2}$, 1 \Rightarrow [212]
- For point Q coordinates are $\frac{1}{2}$, $\frac{1}{4}$, $\frac{1}{2}$ \Rightarrow [212]

[212] – defines direction for OL

For OS – the direction is [110]

\[
\mathbf{r}_{102} = 2\mathbf{a} + \mathbf{b} + 2\mathbf{c}
\]
\[
\mathbf{r}_{110} = \mathbf{a} + \mathbf{b} + 0\mathbf{c}
\]
Indexing Lattice Directions

Specific direction ⇒ [uvw]

Family of directions ⇒ <uvw>

Example:

<310>

[3-10]
Indexing Lattice Directions

- Directions related by symmetry are called *directions of a form*.

Specific direction $\Rightarrow [uvw]$
Family of directions $\Rightarrow <uvw>$

We have: [111], [-111], [-1-1-1], [11-1], ...
The Crystallographic Planes

\[
\begin{align*}
1 & 1 \\
2 & 1 \\
1 & 4 \\
1 & \infty \\
\end{align*}
\]

\[
\begin{align*}
1 & 1 \\
1/2 & 1 \\
1 & 1/4 \\
1 & 1/\infty \\
\end{align*}
\]

\[
\begin{align*}
1 & 1 \\
1 & 2 \\
4 & 1 \\
1 & 0 \\
\end{align*}
\]

\[
(11) \\
(12) \\
(41) \\
(10) \\
\]
Definition of the Miller Indices

Let's draw a plane at $2 \times a$, $5 \times b$, $2 \times c$.

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>The intercepts</td>
<td>2</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>The reciprocals</td>
<td>1/2</td>
<td>1/5</td>
<td>1/2</td>
</tr>
<tr>
<td>Multiply by 10</td>
<td>5</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>The Miller indices</td>
<td>(525)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Specific plane $\Rightarrow (hkl)$

Family of planes $\Rightarrow \{hkl\}$
Definition of the Miller Indices

- For plane A \(a/2, b/2, \text{ and } 1c \Rightarrow 2, 2, 1 \Rightarrow \text{ plane is } (221)\)
- For plane B \(1a, 1b, \text{ and } 2c \Rightarrow 1, 1, 1/2 \Rightarrow 2, 2, 1 \Rightarrow \text{ plane is } (221)\)
- For plane C \(3a/2, 3b/2, \text{ and } 3c \Rightarrow 2/3, 2/3, 1/3 \Rightarrow 2, 2, 1 \Rightarrow \text{ plane is } (221)\)
- For plane D \(2a, 2b, \text{ and } 4c \Rightarrow 1/2, 1/2, 1/4 \Rightarrow 2, 2, 1 \Rightarrow \text{ plane is } (221)\)

By the set of crystallographic planes \(hkl\), we mean a set of parallel equidistant planes, one of which passes through the origin, and the next nearest makes intercepts \(a/h, b/k, \text{ and } c/l\) on the three crystallographic axes.

The integers \(hkl\) are usually called the Miller indices.
Miller Indices
Miller Indices and Zone Axis Symbols

Closures for crystallographic indices

\([uvw]\) = square brackets designate a direction in the lattice from the origin to a point. Used to collectively include all the faces of a crystals whose intersects (i.e., edges) parallel each other. These are referred to as crystallographic zones and they represent a direction in the crystal lattice.

\(<uvw>\) – designate family of directions.

\((hkl)\) = parenthesis designate a crystal face or a family of planes throughout a crystal lattice.

\(\{hkl\}\) = "squiggly" brackets or braces designate a set of faces that are equivalent by the symmetry of the crystal. The set of face planes results in the crystal form. \(\{100\}\) in the isometric class includes \((100), (010), (001), (-100), (0-10)\) and \((00-1)\), while for the triclinic \(\{100\}\) only the \((100)\) is included.

d-spacing is defined as the distance between adjacent planes. When X-rays diffract due to interference amongst a family of similar atomic planes, then each diffraction plane may be reference by it's indices \(d_{hkl}\).
Miller Indices and Zone Axis Symbols

For cubic crystal:

- Direction symbols
 - <100> ⇒ [100], [-100], [010], [0 -10], [001], [00 -1]
 - <111> ⇒ [11 -1], [-1 -11], [1 -11], [-11 -1], [-111], [1 -1 -1], [111], [-1 -1 -1]
 - <110> ⇒ 12 combinations

- Miller indices
 - {100} ⇒ (100), (-100), (010), (0 -10), (001), (00 -1)

Orthorhombic crystal
Lattice Plane Spacings

- For crystal with orthogonal axes:
 \[OA \cos \alpha = ON \rightarrow (a / h) \cos \alpha = d_{hkl} \rightarrow \cos \alpha = \left(\frac{h}{a} \right) d_{hkl} \]

- For angles \(\beta \) and \(\gamma \):
 \[\cos \beta = \left(\frac{k}{b} \right) d_{hkl} \]
 \[\cos \gamma = \left(\frac{l}{c} \right) d_{hkl} \]

- Since for orthogonal axes:
 \[\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1 \]

- We write:
 \[\left(\frac{h}{a} \right)^2 d_{hkl}^2 + \left(\frac{k}{b} \right)^2 d_{hkl}^2 + \left(\frac{l}{c} \right)^2 d_{hkl}^2 = 1 \]

- For a cubic crystal \(a = b = c \), hence
 \[\frac{1}{d_{hkl}^2} = \frac{h^2 + k^2 + l^2}{a^2} \]
Lattice Plane Spacings

Cubic:
\[\frac{1}{d^2} = \frac{h^2 + k^2 + l^2}{a^2} \]

Tetragonal:
\[\frac{1}{d^2} = \frac{h^2 + k^2 + l^2}{a^2 + c^2} \]

Hexagonal:
\[\frac{1}{d^2} = \frac{4(h^2 + h k + k^2)}{3a^2} + \frac{l^2}{c^2} \]

Rhombohedral:
\[\frac{1}{d^2} = \frac{(h^2 + k^2 + l^2)\sin^2 \alpha + 2(h k + k l + h l)\cos^2 \alpha - \cos \alpha}{a^2(1 - 3\cos^2 \alpha + 2\cos^3 \alpha)} \]

Orthorhombic:
\[\frac{1}{d^2} = \frac{h^2}{a^2} + \frac{k^2}{b^2} + \frac{l^2}{c^2} \]

Monoclinic:
\[\frac{1}{d^2} = \frac{1}{\sin^2 \beta} \left(\frac{h^2}{a^2} + \frac{k^2 \sin^2 \beta}{b^2} + \frac{l^2}{c^2} - \frac{2h l \cos \beta}{a c} \right) \]

Triclinic:
\[\frac{1}{d^2} = \frac{1}{V^2} \left(S_{11} h^2 + S_{22} k^2 + S_{33} l^2 + 2S_{12} h k + 2S_{23} k l + 2S_{13} h l \right) \]

\[V = \text{volume of unit cell} \]
\[S_{11} = b^2 c^2 \sin^2 \alpha, \]
\[S_{22} = a^2 c^2 \sin^2 \beta, \]
\[S_{33} = a^2 b^2 \sin^2 \gamma, \]
\[S_{12} = abc^2 (\cos \alpha \cos \beta - \cos \gamma), \]
\[S_{23} = a^2 b c (\cos \beta \cos \gamma - \cos \alpha), \]
\[S_{13} = a b^2 c (\cos \gamma \cos \alpha - \cos \beta). \]
Special Case: Trigonal & Hexagonal Lattices

- (1 -10), (100), and (010) are indices different in type but describe crystallographically equivalent lattice planes.
- Introducing the fourth axis – U. We have Miller-Bravais indices \((hkil)\).
- All indices of the planes are of the same form – \(\{10\ -10\}\).

\[h + k + i = 0 \Rightarrow i = -(h + k) \Rightarrow \{hk.l\}\]
The Reciprocal Lattice

Reciprocal lattice vectors

\[\mathbf{d}_1^* = K / d_1, \]
\[\mathbf{d}_2^* = K / d_2, \]
\[\mathbf{d}_3^* = K / d_3 \]

\(K \) – is a constant
The Reciprocal Lattice
The Reciprocal Lattice

Monoclinic unit cell planes \(\{h0l\} \)

Reciprocal lattice vectors

Reciprocal lattice unit cell

\[
\mathbf{a}^* = d_{100}^* \quad \text{and} \quad |\mathbf{a}^*| = 1/d_{100};
\]

\[
\mathbf{c}^* = d_{001}^* \quad \text{and} \quad |\mathbf{c}^*| = 1/d_{001}.
\]
The Reciprocal Lattice

$h0l$ section

$h1l$ section
The Reciprocal Lattice

- Consider a real space unit cell with real lattice basis vectors \(\mathbf{a}, \mathbf{b} \) and \(\mathbf{c} \).
- We define a set of reciprocal lattice basis vectors by:

\[
\mathbf{a}^* = \frac{1}{V} (\mathbf{b} \times \mathbf{c}) = \frac{\mathbf{b} \times \mathbf{c}}{\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})}
\]

\[
\mathbf{b}^* = \frac{1}{V} (\mathbf{c} \times \mathbf{a})
\]

\[
\mathbf{c}^* = \frac{1}{V} (\mathbf{a} \times \mathbf{b})
\]

- \(\mathbf{c}^* \) \perp a-b plane
- Volume of real space unit cell

volume of real space unit cell

volume of real space unit cell
The Reciprocal Lattice

Just like we can define a real space lattice in terms of our real space lattice vectors, we can define a reciprocal space lattice in terms of our reciprocal space lattice vectors:

\[\mathbf{r}^* = \mathbf{d}_{hkl}^* = h\mathbf{a}^* + k\mathbf{b}^* + l\mathbf{c}^* \]

The real and reciprocal space lattice vectors form an orthonormal set:

\[\begin{align*}
\mathbf{a}^* \cdot \mathbf{b} &= \mathbf{a}^* \cdot \mathbf{c} = 0 \\
\mathbf{a}^* \cdot \mathbf{a} &= 1 \\
\text{similar for } \mathbf{b}^* \text{ and } \mathbf{c}^*
\end{align*} \]

We can define a reciprocal unit cell with volume \(V^* \):

\[V^* = \mathbf{a}^* \cdot (\mathbf{b}^* \times \mathbf{c}^*) \]

\[V^* \cdot V = 1 \]

Now we can write:

\[\mathbf{r}_{uvw} = u\mathbf{a} + v\mathbf{b} + w\mathbf{c} \]

\[\mathbf{d}_{hkl}^* = h\mathbf{a}^* + k\mathbf{b}^* + l\mathbf{c}^* \]
The Reciprocal Lattice

Plan of a cubic I crystal \perp z-axis

Reciprocal lattice points
The Reciprocal Lattice

Cubic F reciprocal lattice unit cell of a cubic I direct lattice

Cubic I reciprocal lattice unit cell of a cubic F direct lattice
The Reciprocal Lattice

- **d-spacing of lattice planes**

 \[d_{hkl}^* = h\mathbf{a}^* + k\mathbf{b}^* + l\mathbf{c}^* \]

 \[d_{hkl}^* \cdot d_{hkl}^* = \frac{1}{d_{hkl}^2} = (h\mathbf{a}^* + k\mathbf{b}^* + l\mathbf{c}^*) \cdot (h\mathbf{a}^* + k\mathbf{b}^* + l\mathbf{c}^*) \]

 for orthorombic, tetragonal, cubic: \[\mathbf{a}^* \cdot \mathbf{b}^* = 0 \]

 therefore:

 \[\frac{1}{d_{hkl}^2} = h\mathbf{a}^* \cdot h\mathbf{a}^* + k\mathbf{b}^* \cdot k\mathbf{b}^* + l\mathbf{c}^* \cdot l\mathbf{c}^* = \frac{h^2}{a^2} + \frac{k^2}{b^2} + \frac{l^2}{c^2} \]

 \[\left(\mathbf{a}^* \cdot \mathbf{a}^* = \frac{1}{a^2} \right) \]

- **Angle \(\rho \)** between plane normals \((h_1 k_1 l_1)\) and \((h_2 k_2 l_2)\)

 the angle between two vectors is \[\cos \rho = \frac{\mathbf{a} \cdot \mathbf{b}}{ab} \]

 therefore:

 \[\cos \rho = \frac{d_{h_1 k_1 l_1}^* \cdot d_{h_2 k_2 l_2}^*}{\left| d_{h_1 k_1 l_1}^* \right| \left| d_{h_2 k_2 l_2}^* \right|} \]