Skip to main content Link Menu Expand (external link) Document Search Copy Copied

Summary of Inconsistent Targets

Table of contents

  1. List of 34 inconsistent targets in FFCM-2 optimization
    1. Three inconsistent speciation targets
    2. Nine inconsistent laminar flame speed targets
    3. 22 inconsistent shock tube ignition delay targets
    4. Reference

The table lists the 34 inconsistent targets excluded from FFCM-2 optimization. Inconsistent target data are not necessarily inaccurate. Some of the targets (e.g., three $i$-C4H8 species profile targets) cannot be accurately predicted without aromatic chemistry, which is currently not considered in FFCM-2.

  • Type: The data types are pro (shock-tube speciation), fls (laminar flame speed) and ign (ignition delay).
  • $T$: temperature (K)
  • $p$: pressure (atm)
  • $\phi$: equivalence ratio, where inf indicates thermal pyrolysis experiments (no oxygen)
  • Diluent: diluent of the mixture and mole fraction of the diluent
  • $\sigma_{exp}$: data uncertainty
  • $F$: inconsistency score of a target, calculated by $\dfrac{y_{exp} - y(\mathbf{x})}{2 \sigma_{exp}}$.
  • Method: experimental techniques

List of 34 inconsistent targets in FFCM-2 optimization

Three inconsistent speciation targets

Type Fuel $T$ (K) $p$ (atm) $\phi$ Diluent $X_{spe}$(ppm) $\sigma_{exp}$ $F$ Method Reference
pro IC4H8 1430 2 inf 98% Ar 3471 1.21 -1.24 Mole fraction of allene NKP20201
pro IC4H8 1430 2 inf 98% Ar 3323 1.22 1.11 Mole fraction of propyne NKP20201
pro IC4H8 1430 2 inf 98% Ar 1035 1.32 1.42 Mole fraction of 1,3-butadiene NKP20201

Nine inconsistent laminar flame speed targets

Type Fuel $T$ (K) $p$ (atm) $\phi$ Oxidizer $S_u^o$ (cm/s) $\sigma_{exp}$ $F$ Method Reference
fls CH3OH 400 1 1.3 air 53 5.34 2.01 Spherical (L) LJH20072
fls CH3OH 373 1 1.3 air 47 4.67 2.15 Spherical (L) ZHW20083
fls C2H2 300 1 1.5 13%O2-87%N2 31 2 1.4 Counterflow (L) EZL19904
fls C2H4 298 0.5 1.6 air 36 3.55 -1.1 Counterflow (L) EZL19904
fls C2H4 298 2 1.6 air 22 2.18 -1.02 Counterflow (L) EZL19904
fls C2H4 300 4 1.4 air 35 3.5 1.28 Spherical (L) HAK19985
fls C2H4 300 2 1.4 air 45 2.8 1.39 Spherical (NL) JZZ20056
fls C3H6 300 2 0.8 air 20 2.03 1.5 Spherical (NL) JZZ20056
fls C2H5OH 325 1 1.3 air 33 3.25 1.47 Spherical (L) HT20067

22 inconsistent shock tube ignition delay targets

Type Fuel $T_5$ (K) $p_5$ (atm) $\phi$ Diluent $\tau_{ign} (\mu s)$ $\sigma_{exp}$ $F$ Method Reference
ign CH3OH 1635 2 1 92.3% Ar 137 1.37 -1.58 Onset of CH* NAB20108
ign CH3OH 1606 2.5 0.5 90.0% Ar 24 1.28 1.45 Onset of CH* NB19819
ign CH3OH 1476 2.5 0.5 90.0% Ar 60 1.3 1.52 Onset of CH* NB19819
ign CH3OH 1561 4.5 0.5 90.0% Ar 21 1.29 1.35 Onset of CH* NB19819
ign CH3OH 1397 4.5 0.5 90.0% Ar 55 1.3 1.9 Onset of CH* NB19819
ign C2H2 1314 0.8 1 90.0% Ar 61 1.18 1.81 Onset of CH* KPK201310
ign C2H4 1419 2 3 93.0% Ar 80 1.29 1.3 Onset of CH* SKS201111
ign C2H4 1428 18.6 3 93.0% Ar 58 1.41 -1.43 Onset of CH* SKS201111
ign C2H4 1212 3 1 96.0% Ar 1558 1.48 -1.08 Maximum pres rise BS197212
ign C2H4 1655 3 2 97.5% Ar 144 1.28 -1.29 Maximum pres rise BS197212
ign C2H4 1666 3 2 98.75% Ar 208 1.29 -1.22 Maximum pres rise BS197212
ign C2H6 1502 7.67 1 97.3% Ar 130 1.34 -1.66 Maximum pres rise BCS197213
ign C2H6 1398 7.37 1 97.3% Ar 290 1.38 -1.34 Maximum pres rise BCS197213
ign C2H6 1555 2.15 1 91.0% Ar 95 1.3 -1.72 Maximum pres rise BCS197213
ign C2H6 1410 2.03 1 91.0% Ar 270 1.34 -1.47 Maximum pres rise BCS197213
ign C3H6 1799 5.95 2 94.8% Ar 92 1.52 -1.3 Maximum pres rise BR198514
ign C3H8 1129 67.4 0.5 91.0% Ar 650 1.28 -1.29 Maximum pres rise LHD201115
ign C3H8 1061 63.8 0.5 91.0% Ar 1600 1.3 -1.77 Maximum pres rise LHD201115
ign C3H8 1386 2.55 1 75.0% Ar 65 1.45 1.66 Maximum CH* rise BT199916
ign C3H8 1778 4.14 0.72 98.47% Ar 17 1.31 -1.08 Onset pres Q199817
ign PC3H4 1311 5 0.5 95.5% Ar 832 1.36 1.11 Maximum pres rise CSD199618
ign CH3COCH3 1749 1.02 2 92.5% Ar 110 1.3 -1.1 Maximum CH* rise PBC200919

Reference

  1. Nagaraja, S. S., Kukkadapu, G., Panigrahy, S., Liang, J., Lu, H., Pitz, W. J., & Curran, H. J. (2020). A pyrolysis study of allylic hydrocarbon fuels. International Journal of Chemical Kinetics, 52, 964–978.’  2 3

  2. Liao, S. Y., Jiang, D. M., Huang, Z. H., Zeng, K., & Cheng, Q. (2007). Determination of the laminar burning velocities for mixtures of ethanol and air at elevated temperatures. Applied Thermal Engineering, 27, 374–380.’ 

  3. Zhang, Zhiyuan, Huang, Z., Wang, X., Xiang, J., Wang, X., & Miao, H. (2008). Measurements of laminar burning velocities and Markstein lengths for methanol–air–nitrogen mixtures at elevated pressures and temperatures. Combustion and Flame, 155, 358–368.’ 

  4. Egolfopoulos, F. N., Zhu, D. L., & Law, C. K. (1990). Experimental and numerical determination of laminar flame speeds: Mixtures of C2-hydrocarbons with oxygen and nitrogen. Symposium (International) on Combustion, 23, 471–478.’  2 3

  5. Hassan, M. I., Aung, K. T., Kwon, O. C., & Faeth, G. M. (1998). Properties of laminar premixed hydrocarbon/air flames at various pressures. Journal of Propulsion and Power, 14, 479–488.’ 

  6. Jomaas, G., Zheng, X. L., Zhu, D. L., & Law, C. K. (2005). Experimental determination of counterflow ignition temperatures and laminar flame speeds of C2–C3 hydrocarbons at atmospheric and elevated pressures. Proceedings of the Combustion Institute, 30, 193–200.’  2

  7. Hara, T., & Tanoue, K. (2006). Laminar flame speed of ethanol, n-heptane, iso-octane air mixtures. JSAE Paper, 20068518.’ 

  8. Noorani, K. E., Akih-Kumgeh, B., & Bergthorson, J. M. (2010). Comparative High Temperature Shock Tube Ignition of C1-C4 Primary Alcohols. Energy & Fuels, 24, 5834–5843.’ 

  9. Natarajan, K., & Bhaskaran, K. A. (1981a). An experimental and analytical study of methanol ignition behind shock waves. Combustion and Flame, 43, 35–49.’  2 3 4

  10. Kosarev, I. N., Pakhomov, A. I., Kindysheva, S. V., & Aleksandrov, N. L. (2013). Ignition of acetylene by high-voltage nanosecond discharge. Technical Physics Letters 2013 39:7, 39, 606–608.’ 

  11. Saxena, S., Kahandawala, M. S. P., & Sidhu, S. S. (2011). A shock tube study of ignition delay in the combustion of ethylene. Combustion and Flame, 158, 1019–1031.’  2

  12. Baker, J. A., & Skinner, G. B. (1972). Shock-tube studies on the ignition of ethylene-oxygen-argon mixtures. Combustion and Flame, 19, 347–350.’  2 3

  13. Burcat, A., Crossley, R. W., Scheller, K., & Skinner, G. B. (1972). Shock tube investigation of ignition in ethane-oxygen-argon mixtures. Combustion and Flame, 18, 115–123.’  2 3 4

  14. Burcat, A., & Radhakrishnan, K. (1985). High temperature oxidation of propene. Combustion and Flame, 60, 157–169.’ 

  15. Lam, K. Y., Hong, Z., Davidson, D. F., & Hanson, R. K. (2011). Shock tube ignition delay time measurements in propane/O2/argon mixtures at near-constant-volume conditions. Proceedings of the Combustion Institute, 33, 251–258.’  2

  16. Brown, C. J., & Thomas, G. O. (1999). Experimental studies of shock-induced ignition and transition to detonation in ethylene and propane mixtures. Combustion and Flame, 117, 861–870.’ 

  17. Qin, Z. (1998). Reaction mechanism of propane oxidation.’ 

  18. Curran, H., Simmie, J. M., Dagaut, P., Voisin, D., & Cathonnet, M. (1996). The ignition and oxidation of allene and propyne: Experiments and kinetic modeling. Symposium (International) on Combustion, 26, 613–620.’ 

  19. Pichon, S., Black, G., Chaumeix, N., Yahyaoui, M., Simmie, J. M., Curran, H. J., & Donohue, R. (2009). The combustion chemistry of a fuel tracer: Measured flame speeds and ignition delays and a detailed chemical kinetic model for the oxidation of acetone. Combustion and Flame, 156, 494–504.’ 


Back to top

Copyright © 2023 Stanford Foundational Fuel Chemistry Model Initiative