!**************************************************************************** ! ! 39-species reduced mechanism ! genrated by: Tianfeng Lu, tlu@engr.uconn.edu ! University of Connecticut ! 20-May-2018 ! ! based on ! ! HyChem model for Jet A (A2) and GEVO ATJ (C1) ! Version 2.1 - High temperature chemistry ! ! Copyright © 2018 HyChem ! !**************************************************************************** ! ! HyChem model for Jet A (A2) and GEVO ATJ (C1) ! Version 2.1 - High temperature chemistry ! ! K. Wang, R. Xu, T. Parise, J. Shao, A. Movaghar, D.J. Lee, J. Park, ! Y. Gao, T. Lu, F.N. Egolfopoulos, D.F. Davidson, R.K. Hanson, ! C.T. Bowman, H. Wang, A physics-based approach to modeling real-fuel ! combustion chemistry - IV. HyChem Modeling of Combustion Kinetics of ! a Bio-derived Jet Fuel and its Blends with a Conventional Jet A, ! Combustion and Flame 198 (2018) 477–489. ! ! Please contact Hai Wang at haiwang@stanford.edu for questions and comments. ! ! Copyright © 2018 HyChem ! !**************************************************************************** ! ! Model description: This is a combined HyChem model for A2 and C1 mixture. ! It describes the A2/C1 thermal decomposition and uses USC Mech IIa as the ! foundational fuel chemistry model. The cracked products considered are ! C2H4, i-C4H8, C3H6, H2, CH4, C6H6, C7H8, CH3, and H. The oxidation ! kinetics of these cracking products are described by USC Mech IIa. ! !**************************************************************************** ELEMENTS O H C N END SPECIES POSF10325 POSF11498 C2H4 CH4 C3H6 iC4H8 C4H81 H2 C2H6 CO C6H6 C2H2 C6H5CH3 C5H6 pC3H4 aC3H4 CH3 O2 H OH HO2 O H2O H2O2 CH2O CO2 C2H5 CH2CO C3H3 aC3H5 C2H3CHO iC4H7 C5H4O C5H5 C6H5CH2 C6H5O C6H4O2 C6H5CHO N2 END REACTIONS END