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ABSTRACT 

The set of nX n orthostochastic matrices with the topology induced by the 
Euclidean matric is shown to be compact and path-connected. For n < 3, the set of 
orthostochastic matrices is identical to the set of doubly stochastic matrices. In this 
paper, it is shown that for n > 3 the orthostochastic matrices are not everywhere 
dense in the set of doubly stochastic matrices, thus answering a question of L. Mirsky 
in his survey article on doubly stochastic matrices [2]. 

Denote by u?l. (n) the set of rr x n unitary matrices, and let 9 (n) repre- 

sent the set of doubly stochastic (d.s.) matrices (those matrices with non- 

negative real entries and row and column sums equal to 1). Define a matrix 

function f from the set of nX n complex matrices to the set of n X n real 

matrices 

f:C nxn+Rnxn> bY f (A)=laii12. 

PROPOSITION. f is continuous with respect to the usuul topologies. 

Equivalently, considering R ” ’ ” with the product topology, riiof is con- 

tinuous for all projections 7riii of R nXn onto R. But (riiof)(A) = laii12 = ai&& so 

~~~~~ is a composition of continuous functions; hence it is continuous. 

*This work was carried out during the summer of 1976 while the author was taking part in 
the NSF Undergraduate Research Participation Program at California State University, 

Hayward. 
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DEFINITION. A matrix 0 is called orthostochastic (o.s.) if and only if 
there exists a unitary matrix U satisfying (Iuii12) = (oii). 

The set of fl X n 0.~. matrices CO (n) is just the continuous image of the set 
of fr X n unitary matrices; that is, 6 (TZ) =f( %( n)). Consequently, information 
about 6 (n) follows from results for q(n). 

LEMMA. Q(n) is a compact, path-connected subs-pace of Cnx”. 

Proof. 

(i) Compactness. q(n) C ZnX”, the unit cube, which is compact. So it 
suffices to establish that Q(n) is closed. Introduce a notation for the inner 
product of two columns of a complex matrix by 

gij : c nXn+C with gii(A)= i aki$. 
k=l 

Then define 

Sji = {A E Cnx” :gii(A)=l}=g;‘({l}) 

Sij={AECnX” :g&A)=O} =g;‘({O}) for i#i. 

The singleton sets (0) and {l} are closed in the metric space C. Futther- 
more, each gij, being a composition of continuous functions, is continuous. 
Hence, each Sji is closed, since it is just the inverse image of a closed set 
under a continuous mapping. From the characterization of the set of unitary 
matrices as those complex matrices with orthonormal columns, it follows that 
Q(n)= 17~,~!$~. S’ mce q(n) is a finite intersection of closed sets, 9L( n) is 
closed and therefore compact. 

(ii) Path-connectedness. It is first shown that the set of diagonal unitary 
matrices is path-connected. The unit circle in the complex plane, S ’ = {Z E 
C : IzI = I}, is path-connected. Therefore the product set ill= ,S ’ is aho 

path-connected. Now the diagonal unitary matrices (the complex matrices 
with zero entries everywhere except for elements of unit modulus along the 
main diagonal) form a subspace which is homeomorphic to II:_ ,S ‘. 

By the spectral theorem, any U E %(n) is unitarily similar to a diagonal 
unitary matrix: 

U= V*DV, 



= u u {V*DV} 
VE%(n) / D=%(n) 

diagonal ! 

= U TV> where TV= u { v*ov>. 
V DEL’71(n) 

diagonal 
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and accordingly, 

%(n) = ( U E cnxn : U=V*DVwithD,VE%(n)andDdiagonal} 

Now TV, the continuous image of the path-connected set of diagonal unitary 
matrices, is path-connected. Choosing D = I in the similarity transformation 
gives that Z E TV for all V. Consequently, as is well known, Q(n) is 
path-connected, since %(n) is the union of the path-connected sets TV, each 
of which contains the common point I. W 

Employing standard theorems from topology, the results for 0 (n) are 
obtained readily, as illustrated below. 

THEOREM 1. Co (n) is a compact, path-connected subs-pace of R nX *. 

Proof. Since ‘IL(n) is compact and path-connected, its continuous image 
f (%( n)) = CO (n) enjoys the same properties. n 

From the fact that the row and column vectors of a unitary matrix have a 
norm of 1, one sees that every orthostochastic matrix is doubly stochastic. In 
a paper on doubly stochastic matrices [2], L. Mirsky posed the question of 
whether the orthostochastic matrices are dense in the set of doubly 
stochastic matrices. This question can be answered easily once it is estab- 
lished that 0 (n) is a proper subset of 9 (n) for n > 3. 

THEOREM 2. 

O(n)=q(n) fm n=1,2. 

O(n)#g(n) for n>3. 

Proof. For n=l, let U=(l)E’%(n). Then O=f(U)=(l)EQ(l) and 
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9(1)={(1)}C6(1). In the case n=2, let 
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i 

al/2 
u, = 

-(l-a)1’2 

(l-4”2 (-qq2) ! O<a<l, 
&/2 

then 

o,= ( 1”a ‘u”)=f(Ua)El’(2)* 

However, 

g(2)={ (Uij)ER2X2 : uii > 0, al, + u12= a,,+ u22= a,, + a21 = a21 + u22= l} 

= (( Lx 
yq:O<,<l d(2). 

1 

For larger n, it suffices to show that there exists a d.s. matrix which is not O.S. 

Consider the matrix 

D(3)=; ‘: :, : @B(3), 

i 1 1 1 0 

which is attributed to A. J. Hoffmann [l]. Let 

u=(uii)Ef-’ (o(3)). 

Then 

since JUICY’= ~u~~~~=O. Since neither ugl nor Gs2 is zero (as Ju31j2= Ju3212= f), 
g,,(U) #O. That is, D (3) is not the image under f of any unitary matrix, 
hence D (3) $? 8 (3). 
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analogous reasoning proves that D (n) e 8 (n). 

THEOREM 3. O(n)isrwtdensein ?Il(n)ffMn>3. 

Proof. Suppose 0 (n) were dense in 9 (n), that is, Cl c (n) = 9 (n). 
Theorem 1 states that Cl 8 (n) = 0 (n). It follows that 8 (n) = ‘?I (n), which 
contradicts Theorem 2. Therefore, Cl 13 (n) # 9 (n) for n > 3 and the theorem 
is proved. 
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