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Abstract. We demonstrate and analyze a new method for
probing electric field strengths using optical second-harmonic
generation. The technique, based on a homodyne detec-
tion scheme, employs interference between the field-induced
second-harmonic radiation from the sample and strong
second-harmonic radiation from a reference. The scheme
provides a linear relationship between the measured second-
harmonic signal strength and the amplitude of the electric
field being probed, thus providing easy calibration of the am-
plitude of the electric field and direct information on its sign.
Experimental results are presented for direct and homodyne
detection of in-plane fields in silicon structures. A discussion
of the expected signal-to-noise characteristics is presented
and the results are compared to experimental findings. Homo-
dyne detection of electric fields with strengths on the order of
100 V/cmcan be achieved with reasonable integration times.

PACS: 42.65.-k; 42.65.Ky; 42.70.Nq

Optical second-harmonic generation (SHG) has been widely
recognized as a surface-sensitive probe in centrosymmetric
materials [1, 2]. As is well known, this sensitivity arises from
the fact that the SHG process is dipole-forbidden in a cen-
trosymmetric medium. The breaking of the inversion sym-
metry at a surface or interface greatly alters SHG from the
sample. The same principle is operative when an electric field
E0 is applied to a centrosymmetric material. The electric field
E0, as a polar vector, acts to lift the inversion symmetry of
the material [2]. The efficiency for SHG is thus strongly influ-
enced and measurement of SHG provides a sensitive probe of
electric fields present within the optical probing volume. The
effect of an applied electric field is thus quite different from
that of an applied magnetic field. The latter can alter existing
SHG contributions, but, as an axial vector, does not cause the
inversion symmetry of the bulk to be lifted [2].

The high sensitivity of SHG for probing of the electric
fields was demonstrated early in the history of nonlinear op-
tics. Such an electric field-induced SHG (EFISH) process was

first reported by Terhune et al. [3] for a calcite sample and ex-
tended soon thereafter to semiconductors and metals by Lee
et al. [4]. More recently, systematic studies of the influence of
electric fields on SHG have been pursued for centrosymmet-
ric media [5–7], as well as for certain non-centrosymmetric
materials with high symmetry [8]. The EFISH process in
aqueous environments has also been intensively investigated
in several interesting regimes [4, 9, 10]. It has been shown to
be both of fundamental interest and a useful tool for prob-
ing chemical processes at interfaces. An especially attractive
feature of the EFISH process for probing electric fields lies
in the possibility for measurements with extremely high time
resolution. Time resolution down to the femtosecond regime
can be achieved by sampling the material system with ul-
trafast pulses from a modelocked laser. This approach has
been applied successfully to study the influence of charge-
carriers on the dynamics of internal electric fields in insu-
lators [10] and semiconductors [11, 12], and to probe mi-
crowave [13] and ultrafast transient electric fields directly in
time domain [14, 15].

While the background-free character of the EFISH pro-
cess in a centrosymmetric medium constitutes the principal
attractive feature of the method, it also imposes certain com-
plications and limitations. In particular, if we do indeed ob-
serve negligible SHG in the absence of the applied fieldE0,
then we expect the induced second-harmonic (SH) polariza-
tion to vary linearly withE0. In this case, the radiated SH field
will also be linear inE0. The measured quantity is, however,
the SH intensityI2ω, which will then scale quadratically with
the electric fieldE0 being probed. Such a quadratic relation
implies both the need for careful calibration and, more impor-
tantly, the loss of information on the sign of the electric field.
While the sign ofE0 can be recovered from a measurement
of the phase of the radiated SH field, it is clearly desirable
to have an experimental methodology free of these compli-
cations. Such a method is the homodyne detection scheme
presented in this paper.

The homodyne detection scheme is a well-established
method in which a weak signal of interest is combined with
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a strong reference (or local oscillator) signal. In an appropri-
ate regime, the detected intensity of the superposed signal and
local oscillator varies linearly with the field strength of the
signal. The possibility of benefiting from homodyne detection
for surface SHG was first examined explicitly by Thiansatha-
porn and Superfine in 1995 [16]. In the present study, we
exploit the homodyne method for the measurement of elec-
tric fields through the EFISH process. For this application, the
homodyne detection scheme provides a linear relationship be-
tween the experimentally measured SH intensityI2ω and the
electric fieldE0 being probed. In addition to the desired lin-
earization of the measured response, the homodyne method
may, as we discuss below, improve the signal-to-noise charac-
teristics of the measurement.

The key element in a homodyne measurement is a strong
local oscillator with which to interfere the signal of interest.
In the context of an EFISH measurement, the required ref-
erence is simply an appropriate field-independent SH beam.
In certain cases, it may be possible to make use of the sur-
face dipole or bulk quadrupole SHG response of the sam-
ple itself for this purpose. This approach has, in fact, been
demonstrated in studies of field-induced SHG in silicon struc-
tures [6, 13, 15]. Such an internal reference is very convenient
and produces a reference beam with well-matched tempo-
ral and spatial properties. On the other hand, this approach
may not be appropriate for many situations [17]. In particular,
as we discuss below, optimal performance of the homodyne
measurement requires a local oscillator signal with the ap-
propriate amplitude and phase with respect to the EFISH
radiation. This may be difficult to achieve with an internal
reference signal because of inherent phase differences in the
radiated fields, inadequate amplitude of the reference field,
constraints imposed by polarization selection rules, or the
like. Another method of linearizing the SH response to the
electric fieldE0 of interest is to augmentE0 by a large known
electrical bias field, as has been demonstrated in the detection
of microwave electrical fields in a biased semiconductor by
Ohlhoff et al. [13]. While this approach is simple and effect-
ive, it is obviously restricted in its range of application.

In this paper, we present a detailed description of a general
approach to the problem of homodyne detection for EFISH
measurement. The method makes use of an auxiliary nonlin-
ear crystal (quartz) for the production of the strong reference
SH field [18]. We describe the appropriate methodology for
controlling the amplitude and phase of this reference signal.
Experimental results are presented for the detection of in-
plane electric fields in a silicon structure for both the direct
(background-free) and homodyne detection scheme. The lin-
earization of the response of the SH intensity to the electric
field of interest is demonstrated explicitly. We analyze the
expected signal-to-noise ratios for the direct and homodyne
detection schemes. Favorable characteristics are expected for
the homodyne measurements under circumstances of effect-
ive interference between the EFISH and reference radiation,
as well as modest noise in the probe laser. The trends of
this analysis are verified by the experimental data, although
the improvement predicted for ideal conditions is not fully
achieved. From the signal-to-noise analysis and the experi-
mental data, we find that electrical field strengths on the order
of 100 V/cm are detectable with the homodyne scheme and
reasonable integration times. Further improvements in this
sensitivity may be anticipated.

1 Theoretical considerations

1.1 SH generation

Before discussing the details of the linearization technique,
we first consider the different constituents of the SH polar-
ization from a centrosymmetric sample in the presence of
the electric field of interest,E0. We assume that the electric
field E0 is constant within the volume generating the SH sig-
nal. In the usual limit where perturbation theory applies, we
may write for thei th component of the source polarization in
a sample [2],

P2ω
i = χ (2)D

s, ijk Eωj Eωk δ(z)+χ (2)Q
ijkl Eωj ∇kEωl +χ (3)

ijkl E
ω
j Eωk E0

l . (1)

Here we denote the optical field at the fundamental frequency
ω by Eωi ; χ (2)D

s, ijk is the surface dipole response of the second-

order nonlinearity;χ (2)Q
ijkl is the bulk quadrupole susceptibil-

ity tensor for SHG; andχ (3)
ijkl is the third-order susceptibility

that is responsible for EFISH. The first two terms are field-
independent, while the last term is field-dependent. Both the
surface dipole and bulk quadrupole terms may vanish for
certain special geometries, while the field-induced terms are
retained.

The magnitude of the SH field at frequency 2ω scales as
the induced SH polarization given by (1) although these two
vectors are, in general, not parallel [2]. In terms of the electric
field E0, the SH field from the sample can be expressed as

E2ω
S,i = E2ω

FI−S,i +κij E
0
j

≡ E2ω
FI−S,i + E2ω

FD,i . (2)

Here, E2ω
FI−S,i represents the field-independent SH radiation

from the sample, which arises from the first two terms in
(1); E2ω

FD,i describes the field-dependent SH response from the
sample, which arises from the last term in (1). The tensorκij ,
relatingE2ω

FD,i to the electric fieldE0
j , depends on the input op-

tical fields, the relevant nonlinear susceptibilityχ (3)
ijkl , and the

Fresnel coefficients at the fundamental and SH frequencies.
Equation (2) is the most general relation between the probed
electric field and the radiated SH field; it reveals the linear re-
lation between the two fields, but allows for the fact that they
need not be parallel.

We consider explicitly the case of probing a sample with
the incoming fundamental beam at normal incidence to the
surface. For isotropic or (100) cubic materials, the first two
terms in (1) vanish [19]. The susceptibility of the remaining
field-induced term has three independent tensor elements for
the SHG process –χ (3)

iiii , χ (3)
iijj , andχ (3)

ijji , where the indices{i , j }
are defined with respect to the crystallographic axes. For the
class of materials considered here, the SH field from the sam-
ple is proportional to the polarization, i.e.,E2ω

S,i ∝ P2ω
i . The

field-dependent SH field along a crystallographic axisi , for
example in the case of an isotropic or a cubic (100) surface,
is given by

E2ω
FD,i ∝ χ (3)

iiii

(
Eωi
)2

E0
i +χ (3)

ijji

(
Eωj
)2

E0
i +2χ (3)

ijij Eωj Eωi E0
j . (3)

If the polarization of the fundamental optical field is aligned
with one of the in-plane crystallographic axes, (3) yields

E2ω
FD,i ∝ χ (3)

iiii

(
Eωi
)2

E0
i (3a)
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and

E2ω
FD,i ∝ χ (3)

ijji

(
Eωj
)2

E0
i . (3b)

Hence by applying either of the above expressions, one can
probe the vector nature of the electric field using SHG. When
these measurements are performed in combination with the
linearization scheme and an appropriate calibration, the am-
plitude and direction of the electric field along the surface can
be conveniently obtained. A more general analysis of the vec-
tor characterization of electric fields, including consideration
of the out-of-plane component of the field will be presented
elsewhere.

In this study, we have employed input and output polar-
izations that are boths-polarized in a near normal-incidence
geometry. Even at incidence angles> 0◦, for this polariza-
tion configuration, the surface dipole term of (1) vanishes
(in isotropic or (100) cubic materials) [19]. For this same
geometry, the bulk quadrupole term is also absent (provided
the input fields are along the (100) surface crystallographic
axes) [19]. Hence the total SH field from the sample arises
only from the field-dependent contribution and is still given
by the simple expression of (3a). Thus, the EFISH field for
thes-in/s-out polarization configuration of our measurement
yields a response proportional to the projection of the fieldE0

along theŝ direction, i.e.,E0 · ŝ. To maximize our sensitivity
to the applied fieldE0, we choose to orientE0 along theŝ,
i.e., E= E0 ŝ.

1.2 Homodyne detection

We now describe the scheme for linearizing the response of
the total SH signal with respect to the electric field. For gener-
ality, consider the case where the sample has an intrinsic field-
independent contribution to the total SHG. Denote the total
field-independent SH field asE2ω

FI = E2ω
FI−S+ E2ω

FI−R, where
E2ω

FI−S and E2ω
FI−R are the background and reference fields

generated by the sample and external sources, respectively.
Assuming that these fields have the same spatial distribution
and polarization, we obtain the total intensity,I2ω ∝ |E2ω

T |2,
with E2ω

T = E2ω
FD+ E2ω

FI :

I2ω ∝
∣∣E2ω

FD

∣∣2+ ∣∣E2ω
FI

∣∣2+2E2ω
FD

∣∣E2ω
FI

∣∣ cosϕ . (4)

In the expression above and in the discussion hereafter, we
take E2ω

FD as a real quantity. The angleϕ is then defined to
be the phase difference between the EFISH signalE2ω

FD and
the field-independent responseE2ω

FI for a specified applied
electric fieldE0.

If the reference field is much larger than the signal field,
i.e., |E2ω

FI | � |E2ω
FD|, then

I2ω ∝
∣∣E2ω

FI

∣∣2+2E2ω
FD

∣∣E2ω
FI

∣∣ cosϕ . (4a)

Since E2ω
FD ∝ E0, it becomes clear from (4a) that, provided

ϕ 6= π/2 total SH intensityI2ω (a) depends linearly on the
electric fieldE0, and (b) yields the sign information ofE0.

To linearize the signal by the homodyne detection scheme,
we may rely on any SH signal of appropriate amplitude and
phase. If the field-independent signal from the sample itself is
relatively strong and exhibits a relative phase with respect to

the field-induced signal near 0 orπ, then an auxiliary refer-
ence may not be necessary. Such was the case in the study of
Nahata and Heinz [15], in which the authors used the surface
SH dipole radiation to linearize the response to the terahertz
electric field. In the present case as mentioned above, we have
employed special geometries in which the field-independent
SH response of the sample is absent, i.e.,E2ω

FI−S= 0.
To supply the required field-independent SH radiation, we

used a quartz crystal located along the probe laser beam path
before the sample. By employing the dispersion between the
fundamental and SH beams in air, we can vary the relative
SH phase between the quartz reference and the sample by
changing their relative separationL. The corresponding phase
difference is simply given by

∆ϕair= 2ω

c
∆nL , (5)

where ∆n = n(2ω)−n(ω) is the difference in the refrac-
tive indices of air at the SH and fundamental frequencies.
A direct calculation of the oscillation period using the pub-
lished refractive index of air [20] yields∆L = 46 mm for
the fundamental wavelength ofλ= 770 nmrelevant for our
experiments.

The amplitude of the SH field from the quartz reference,
after passing through an analyzer, can also be adjusted. This is
accomplished by rotating the crystal about its surface normal.
We may develop this idea more explicitly by taking into ac-
count the 32 point-group symmetry of the quartz crystal. For
normal incidence excitation of az-cut crystal, we access only
a single independent element of the nonlinear optical suscep-
tibility tensor,χ (2)

x′x′x′ , wherex′ is a crystallographic axis [21].
The components of the SH field from the quartz reference in
the laboratory frame are found to be

(
E2ω

FI−R,x
E2ω

FI−R,y

)
∝
[

cos 3θ − cos 3θ sin 3θ
sin 3θ − sin 3θ − cos 3θ

]
(
Eωx
)2(

Eωy
)2

2Eωx Eωy

 , (6)

whereθ is the angle between the laboratoryx and the crystal-
lographicx′ axes. Assuming, for example, that the input po-
larization is fixed alongx, one obtains from (6) the field com-
ponentsE2ω

FI−R,x ∝ cos 3θ(Eωx )
2 and E2ω

FI−R,y ∝ sin 3θ(Eωx )
2.

Thus, both the amplitude and sign of the reference field from
the quartz crystal along a given polarization can be controlled.
Consequently, by rotating and translating the quartz plate
relative to the sample, one gains full control of the amplitude
and relative phase of the reference field.

1.3 Analysis of signal-to-noise ratio

We now consider briefly the signal-to-noise characteristics for
homodyne detection [22] and direct detection of SH meas-
urements of the electric fieldE0. We treat as the dominant
sources of noise in the measurement, the detection shot noise
and any incoherent detection noise. For simplicity, we as-
sume that the laser fluctuations are negligible and that there is
complete spatial, temporal, and spectral overlap between the
field-dependent and field-independent SH radiation. The in-
fluence of the laser fluctuation, as well as the degree of partial
coherence in the interference of the fields is examined in [16]
for the case of a general homodyne measurement.
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In this analysis, we derive the relevant signal-to-noise
ratio (SNR) for a homodyne measurement, which can be spe-
cialized into a direct measurement by taking the limit of no
local oscillator. We assume, in accordance with our measure-
ments and common experimental practice, that the SH sig-
nals are detected by photon counting techniques. For a given
measurement with a specified data collection time, we may
then defineNFI as the number of counts arising from the field-
independent termE2ω

FI , i.e., the local oscillator signal from the
sample and the reference source in the absence of the elec-
tric field; NI as the number of counts from incoherent noise
sources such as photomultiplier dark current, stray light, and
circuit noise; andNT as the total number of counts obtained
during a measurement. In terms of these quantities, we iden-
tify the number of signal counts as

NS≡ NT−NFI−NI , (7)

which gives explicitly the field-dependent part of the meas-
ured response. It follows from (4) that the number of signal
counts obtained in the homodyne measurement is

NS= NFD+2
√

NFDNFI cosϕ , (8)

where NFD is the number of counts associated with field-
dependent radiationE2ω

FD, i.e., the EFISH signal that arises
from the sample. For convenience, we assume that cosϕ ≥ 0
in the ensuing discussion.

The quantity of interest in the SNR calculation is the stan-
dard deviation of the number of signal counts,∆NS. If we
assume that the incoherent noise and the field-independent
SH count rates are not subject to drift, we may then perform
one lengthy and accurate measurement of these quantities. If
we perform such measurements then we may use these values
to determine the signal counts in a given measurement from
the total number of counts without the introduction of any
additional error. In this event,∆NS=∆NT. The standard de-
viation∆NT is governed by the expected Poisson statistics of
the total number of counts; hence

∆NT =
√

NT . (9)

In this expression and below, symbols for the number of
counts such asNT should be interpreted as representing the
mean value of the corresponding measured quantity. We may
then define the SNR [23] as

SNR≡ NS

∆NS
= NS√

NS+NFI+NI
. (10)

Two limits are of particular interest: the case of no local os-
cillator (NFI = 0) and the case of a strong local oscillator
(NFI� NFD). The first situation corresponds to direct detec-
tion of the signal; the second, when combined withϕ = 0,
corresponds to an ideal homodyne measurement. For the di-
rect measurement, we find immediately that

SNR(NFI = 0)=
√

NFD√
1+NI/NFD

. (11)

For the homodyne measurement in the linearized regime
of NFI � NFD and cosϕ 6= 0, the corresponding expression

reads

SNR(NFI� NFD)≈ 2
√

NFD cosϕ√
1+NI/NFI

. (12)

A comparison of the direct and homodyne measure-
ment techniques reveals two noteworthy points. First, in the
limit where incoherent noise is negligible in both detec-
tion schemes, homodyning improves the SNR by a factor
of two (for ϕ = 0) over that for direct detection. This situ-
ation reflects the fact that we measure only the relevant
phase component of the SH field in the homodyne scheme.
Second, examination of the two denominators of (11) and
(12), respectively,(1+ NI/NFD)

−1/2 and (1+ NI/NFI)
−1/2,

demonstrates the well-known advantage of homodyne de-
tection in the presence of an incoherent noise background.
By the choice of a sufficiently strong optical bias field in
the homodyne measurement, we may, in principle, reduce
the factorNI/NFI to an arbitrary extent. This is equivalent
to eliminating the degradation of the SNR associated with
incoherent noise sources. From a practical standpoint, a ho-
modyne measurement should allow one to reduce the typical
stringent requirements on ambient light levels or photomulti-
plier dark current typically associated with photon counting
of weak signals. The homodyne method may also enhance
the attractiveness of detectors, such as avalanche or p-i-n pho-
todiodes, which exhibit favorable quantum efficiency but are
usually associated with higher electronic noise than photo-
multiplier tubes [24].

For completeness, we consider the case whereNFI� NFD
andϕ = π/2. In this situation, the interference between the
signal and the reference is lost so that an increase inNFI
simply increases the corresponding shot-noise in the detected
signal and decreases the corresponding SNR. The explicit ex-
pression for the SNR is

SNR(NFI� NFD; ϕ= π/2)≈
√

NFD√
1+ (NFI+NI)/NFD

. (13)

In this instance, asNFI is increased, the SNR decreases mono-
tonically. It approaches zero for large values ofNFI where the
shot noise of the field-independent contribution completely
overwhelms the signal. This relation, as well as theϕ depen-
dence in (12), demonstrates the sensitivity of the SNR to the
relative phase between the SH signal and reference fields, and
highlights the importance of maintaining an in-phase relation-
ship between these two waves.

We now extend the SNR calculations of the direct and
homodyne schemes to the corresponding measurements per-
formed with differential detection. In such measurements, the
electric field E0 being probed is turned on and off at some
specified modulation frequency. The SH signals are then ac-
cumulated for both the on and off states, and the results are
subtracted from one another to yield the field-dependent re-
sponse. A differential detection scheme of this sort is attrac-
tive in cases where the average count rates from either the
SH signal or the incoherent background experience drift. The
assumption made above about our ability to determineNFI
and NI with high accuracy in a single long measurement is
then invalid, and the differential technique may be favored or
required. The differential detection scheme will reduce, for
example, the influence of laser noise and drift, which have not
been included in our analysis of the SNR.
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For differential detection with square wave modulation
and equal on and off cycles, we find the following expressions
for the cases parallel to those of (11)–(13):

SNRDiff =
√

NFD√
1+2NI/NFD

, (11′)

SNRDiff (NFI� NFD)≈
√

2NFD cosϕ√
1+NI/NFI

, (12′)

and

SNRDiff (NFI� NFD; ϕ= π/2)≈
√

NFD√
1+2(NFI+NI)/NFD

,

(13′)

where the number of counts in these expressions should now
be interpreted as corresponding to a duty cycle of 1/2. The
degradation in the SNR in these relations compared with the
previous detection scheme results from the presence of addi-
tional variance in the background signals during the off cycle
without a concomitant increase in the strength of the signal.
Indeed we can obtain these formulas for differential detection
simply by making the substitutionNFI→ 2NFI andNI→ 2NI
in the denominator of (10).

Let us examine these equations. In the limit of negligi-
ble incoherent background, we note the following: (1) For
direct detection, we obtain SNRDiff = √NFD, which is ex-
pected for a shot-noise-limited signal; and (2) for homodyne
detection withϕ = 0, there is now only a factor of

√
2 im-

provement over the direct measurement, in contrast to a factor
of 2 improvement using a non-differential measurement. In
the limit of a large incoherent background, (11′) becomes
SNRDiff = NFD/

√
2NI , also as expected. More generally, we

see that the SNR for a homodyne measurement always ex-
ceeds that for the corresponding direct measurement by a fac-
tor of

√
2, but this enhancement factor may be much greater

when large incoherent noise sources are present.
Before leaving this topic, we would like to recall that the

importance of laser noise increases as one approaches a more
and more idealized homodyne measurement, i.e., in the limit
of NFI/NFD→∞. This regime provides optimal lineariza-
tion and optimal suppression of incoherent noise, but makes
the requirement for laser noise increasingly severe, as the
fractional modulation induced by the signal becomes increas-
ingly weak. Thus, from a practical point of view, the stability
and noise characteristics of the pump laser source influence
the choice of the desired optical bias field. It is necessary to
obtain a proper balance between linearity and excessive sen-
sitivity to laser noise.

Another limitation to be considered concerns the degree
of interference between the signal and reference fields. The
quality of the interference can be degraded by imperfect spa-
tial, temporal, or spectral overlap of the two fields. The non-
overlapping components of the fields can be thought of as
having a relative phase ofπ/2, since they do not interfere at
the detector. It follows from (13) and (13′) that the overall
SNR will be reduced, to a greater or lesser degree depending
on the strength of the non-interfering component of the ref-
erence field. The same qualitative conclusion may be reached
by consideration of phase shiftsϕ > 0 in (12) and (12′).

2 Experimental conditions

Figure 1 illustrates the experimental setup schematically. The
source for the SH probe is aTi:sapphire laser producing
pulses of70 fsduration at a wavelength of770 nmand a repe-
tition rate of 80 MHz. In the SH measurements, the laser
beam, with an average power of200 mW, impinges on the sil-
icon sample at a3◦ incidence angle and is focused to a spot
size of20µm. The reflected fundamental and SH beams are
then recollimated. After going through a filter that transmits
the SH while blocking the fundamental, the SH radiation
passes through an analyzer and is detected by a cooled pho-
tomultiplier tube. The photomultiplier output is processed
with gated photon counting electronics. The polarization con-
figuration of this experiment wass-polarized fundamental
radiation ands-polarization for the detected SH radiation.
This configuration eliminates the field-independent surface
and bulk background terms, as discussed in Sect. 1.1.

Our sample was a silicon-on-sapphire wafer on which
aluminum strip lines were deposited. The electrode geom-
etry is shown in the inset of Fig. 1. It consists of lines with
a 30µm spacing, but with a narrowed gap of5µm width in
the probing region. The sample was treated by a sequence
of ion-implantation steps, which rendered the0.6µm-thick
silicon epilayer nearly isotropic and served to reduce the car-
rier lifetime to less than1 ps[25]. The reduced carrier life-
time significantly decreases the importance of screening of
the bias field associated with carriers produced by the laser
pulse [11]; it also eliminates the cumulative effects that arise
from charge trapping at theSiO2 layer [26]. In addition, the
ion-implantation of the sample leads to ohmic contact be-

Fig. 1. Main panel: Experimental setup. ATi:sapphire laser (Ti:S) pro-
vides pulses of770 nm wavelength at80 MHz repetition rate and70 fs
pulsewidth. The beam passes through a half-wave plate (HWP), a polar-
izer (P), a filter (F1) that blocks spurious SH radiation but transmits the
fundamental light, and is focused by the lens (L1), through a quartz plate
(Q), to the sample (S) at a3◦ incidence angle. For a direct measurement,
Q is removed. The reflected total SH radiation from both Q and S are redi-
rected by mirror (M) through a collimating lens (L2) and a filter (F2) that
blocks the fundamental, but transmits the SH beam. The transmitted SH
radiation goes through an analyzer (A) and is then detected by a photo-
multiplier with gated photon counting electronics (PMT/PC). Inset: Details
of probing geometry. A pair of aluminum electrodes on an ion-implanted
silicon-on sapphire substrate, provides the electric field being probed. This
field is modulated at100 kHzfrequency and detected differentially
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tween the metal and silicon. The sample was oriented so that
the electric fieldE0 induced by the applied bias voltageV on
the electrodes was perpendicular to the plane of incidence of
the probe laser, i.e., parallel to the polarization of the probe
beam. The bias voltage, which was modulated at100 kHz,
could be varied between±15 V. The count rates for the SH
signal in the on and off states were collected separately and
subtracted in a differential measurement, as described above.
For each bias voltage, the data collection time was8 s, with
half the measurement with the voltage on and half without the
bias.

For the homodyne measurements, we employed az-cut
quartz plate of250µm thickness to produce the reference SH
radiation. The quartz plate was inserted normal to the laser
beam between the focusing lens and the sample. This loca-
tion for the quartz reference provided an appropriate signal
strength for the homodyne measurement. While the place-
ment of the quartz plate after the focusing lens yields some
change in the amplitude of the reference beam as the refer-
ence beam is displaced to optimize the relative phase of the
SH beams, it is desirable to have as little dispersive material
as possible between the quartz reference and the sample. This
situation is necessary to avoid degraded interference between
the signal and the reference beams associated with temporal
shifts induced by the group velocity dispersion between the
fundamental frequency (giving rise to the SH radiation from
the sample) and the SH frequency (associated with the SH
radiation from the quartz plate). A related consideration dic-
tated our choice of athin quartz plate. For a thicker plate,
dissimilar degrees of phase matching for the different fre-
quency components of the fundamental beam will lead to
distortion of the SH pulse and to a degraded quality of inter-
ference between the sample and reference SH beams.

3 Results and discussion

In Fig. 2, we present data for measurement of the electric field
E0 by direct detection of the EFISH radiation. We observe
the predicted quadratic dependence of the SH intensity onE0,
which is proportional to the applied bias voltageV across
the electrodes on the silicon sample. This measurement was
performed withs-polarized input radiation and detection of
thes-polarized SH field. For this configuration, as discussed
above, no field-independent SH radiation is expected and the
minimum of the parabolic variation of SH with electrical bias
should be centered atV = 0. This is essentially the behavior
observed in the data of Fig. 2. The slight shift of the minimum
of the parabola toward positive voltages maybe be explained
by the existence of a residual SH reference field. Such a field
may arise from imperfect alignment of the input and output
polarizations, since the surface and bulk quadrupole terms of
the sample may then produce SH radiation. Alternately, this
slight shift could be attributed to some degree of non-ohmic
behavior at the semiconductor electrode interfaces and the
concomitant presence of weak, built-in electric fields in the
sample. In contrast to these effects, an incoherent SH source
merely adds an offset to the measured SH while keeping the
measured minimum SH signal at zero bias voltage.

We now turn to measurements in which we have intro-
duced a well-defined reference SH field that is independent
of the sample bias. As indicated in the previous section, we

Fig. 2. Direct detection of SH dependence on the bias voltage with the bias-
independent background subtracted in a differential measurement. Thesolid
curve is a quadratic fit to the experimental points. The SH signal is ex-
pressed in terms of the count rate during the on-state of the modulation
cycle

make use of a thin quartz plate for this purpose. Figure 3
shows the resulting interference between this reference sig-
nal and the field-induced signal from the sample as a function
of the displacement of the quartz plate along the path of the
probe laser beam. For this measurement, the amplitude of
the quartz reference was adjusted so that the interference be-
tween the two signals was optimal. The interference signal
is normalized with respect to the reference signal alone, i.e.,
without a field-induced signal from the sample. This normal-
ization was performed to account for the varying SH field
strength from the quartz plate as it is translated along the
focused beam path. The data are fit using (4) and yield an os-
cillation period of∆L = 47±1 mm, in excellent agreement
with the predicted period of46 mmbased on the dispersion of
air at the relevant wavelengths. The deviation in the fit can be
attributed to the changing amplitude of the SH radiation from
the quartz reference as it is translated along the path of the
focused probe laser beam. With careful optimization, a mod-
ulation depth of 80–90% was attainable in these interference
measurements.

To illustrate the importance of the proper choice of rela-
tive phase between the sample and reference fields, we first
examine the behavior when these fields are in quadrature, cor-
responding toϕ= π/2. From the data in Fig. 3, this condition
is achieved when the quartz plate is positioned atl ≈ 21 mm.
In this measurement, the quartz plate was rotated, in accor-
dance with (6), to yield a field much larger than that of the
sample. Here, the number of field-independent SH counts was
NFI ≈ 105, for a1 shalf cycle of data collection time. For this
quadrature phase relation, no interference between the two
signals occurs. Thus, a parabolic variation of the measured
SH signal with the electric field is expected, according to (4).
The experimental data of Fig. 4 illustrates this behavior. The
slight shift in the minimum of the parabola is attributed to
a minor deviation fromϕ = π/2 that yields a residual offset
in (4). (We note that the SH signal obtained in Fig. 4 is only
75% as large as that shown in Fig. 2. This decrease arises pri-
marily from the transmission loss of the fundamental beam as
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Fig. 3. Interference between the quartz SH field and the sample EFISH field
as a function of the quartz displacement along the SH probe beam. The
solid curve is the fit to the experimental points, according to (4). The fit
yields a modulation period of47 mm

Fig. 4. SH dependence on the bias voltage in the presence of a large quartz
SH field that has a quadrature phase relationship (ϕ= π/2) with the sample
EFISH signal. Thesolid curveis a quadratic fit to the experimental points.
Note that the bias-independent background has been subtracted and the SH
intensity is expressed in terms of the count rate during the on-state of the
modulation cycle

it passes through the quartz plate.) While the form of the bias
dependence for the case of the background-free measurement
(Fig. 2) and the case of a reference field in quadrature to the
EFISH field (Fig. 4) are essentially identical, the SNR of the
latter is degraded. This situation arises because the addition
of a large reference field in quadrature phase is equivalent
to adding incoherent noise in the direct measurement scheme
[(13) and (13′)]. Indeed, analysis of the data of Figs. 2 and 4
indicates that the presence of the quadrature reference field
reduces the SNR by a factor of∼ 4.

Figure 5 demonstrates homodyne detection of the original
signal shown in Fig. 2. This provides the desired linear de-
pendence of the measured SH intensity on the electric field
strengthE0 being probed. To achieve the appropriate charac-

teristics in the homodyne measurement, we adjusted both the
amplitude and phase of the SH reference field as prescribed
by (4). First, to optimize the interference, the quartz plate was
translated until the relative phase between the sample and ref-
erence fields corresponded toϕ = 0 (l ≈ 33 mm in Fig. 3).
The quartz plate was then rotated about its axis to adjust the
amplitude of the SH reference field to yieldNFI ≈ 105. The
data in Fig. 5 show the approximately linear variation of the
SH signal with electric fieldE0, as controlled by the bias volt-
age applied to the sample electrodes. This behavior stands
in obvious contrast to that exhibited in Figs. 2 and 4 for the
background-free and quadrature reference cases, respectively.

To evaluate the linearity of the data, we fit these results
using the full parabolic expression for the electric-field de-
pendence of the SH intensity, as given by (4). For bias volt-
ages less than1 V, as shown in the inset, this dependence is
linear to high accuracy. For larger bias voltages, as shown
in the main panel, some deviation from linearity is evident.
To illustrate this behavior more explicitly, consider a bias of
10 V. At this bias,NS≈ 2.5×104, which 25% of the field-
independent value ofNFI ≈ 105. From (4a) and (8), we then
infer thatE2ω

FD/E2ω
FI = 1/8. We also see that the magnitude of

the last term in (4), which depends linearly onE2ω
FD ∝ E0, is

16 times larger than the first term, which depends quadrat-
ically on E2ω

FD. Hence, some departure from linearity is ex-
pected. Another point of interest concerns the degree of in-
terference between the field-induced and reference radiation.
By examining (4a), we find that the slope of the SH inten-
sity dependence on the fieldE2ω

FD ∝ E0 is directly related to
the degree of interference. To evaluate the expected slope of
the signal for the case of perfect interference withϕ = 0, the
relative strengths of the two fieldsE2ω

FI , andE2ω
FD, or their cor-

responding number of counts,NFI andNFD, should be known.

Fig. 5. Main panel: Linearization of the SH intensity dependence on the bias
voltage using the homodyne detection scheme. The EFISH signal from the
sample is mixed with a large, in-phase (ϕ = 0) SH reference field from the
quartz plate. Thesolid curveis a quadratic fit to the experimental points to
account for the curvature at larger voltages. Note that the bias-independent
background has been subtracted and the SH intensity is expressed in terms
of the count rate during the on-state of the modulation. Inset: Dependence
of SH on bias for small voltages. Theerror bars show the standard devia-
tion for a data collection time of8 s. Thesolid line is the same fitting curve
used in the main panel
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The number of countsNFD is obtained from Fig. 4, which
does not depend on the degree of interference. Using (8),
we can then predict the slope. We find that the experimen-
tal slope from Fig. 5 is only65% of the expected slope. This
reflects imperfect interference between the EFISH and field-
independent SH radiation.

We now compare the SNR in the homodyne (Fig. 5)
and direct detection (Fig. 2) schemes. From an analysis of
the χ2-parameter for the fits to Figs. 5 and 2, we can es-
timate the typical standard deviation of the experimental
data. We obtain the ratio of∆NS(homodyne)/∆NS(direct)=
4.4. To compute the relative SNR, we use the value of
the signal strength for bias of10 V. We find a ratio of
SNR(homodyne)/SNR(direct) ≈ 1.1. This result is roughly
in line with the expected improvement in the SNR by a fac-
tor of at least

√
2≈ 1.4, from (11′) and (12′). The reduced

relative SNR seen experimentally for the homodyne meas-
urement is attributed primarily to the imperfect interference
between the reference and signal fields, as discussed above.
Another factor that may contribute to the degradation of the
SNR for the homodyne measurement is the effect of fluctua-
tions of the probe laser, as discussed at the end of Sect. 1.2.

We now evaluate the electric-field sensitivity of the ho-
modyne measurement. The data in the inset of Fig. 5 show
experimental error bars for a data collection time of8 s. From
the slope of the variation of the SH intensity with the ap-
plied bias field, we may infer an electric-field sensitivity of
∼ 270 V/cm, corresponding to one standard deviation in the
SH data. Equivalently, we obtainE0

min ∼ 760 V/cm/Hz1/2,
which is close to the calculated minimum detectable field
of E0

min ∼ 280 V/cm/Hz1/2. To deduce this minimum de-
tectable electric field, we set SNRDiff = 1 in (12′). This yields
NFD = 1/2, provided that the incoherent background is neg-
ligible. In the experiment, we measuredNFD ≈ 2.5×103

counts for a total data collection time of1 s (0.5 s in the on-
state and0.5 s in the off-state) at an electric field strength
of 20 kV/cm. Since NFD ∝ (E0)2, the minimum detectable
field (corresponding toNFD= 1/2) is then found to beE0

min∼
280 V/cm/Hz1/2. This quantity can be further lowered by op-
timizing the geometry (such as focusing and incidence angle),
laser properties (such as pulse energy, pulsewidth, and wave-
length) and material parameters (such asχ(3)). As an ex-
ample, consider the experimental parameters used in the ex-
periment of Nahata et al. [14]. By employing a tighter focus-
ing and shorter laser pulses, the authors observed a count rate
for NFD that exceeded the corresponding value in our experi-
ments by a factor of 8. Hence, the minimum detectable field
will be reduced by a factor of

√
8 to E0

min∼ 100 V/cm/Hz1/2.

4 Summary

In this paper we have examined the application of the
homodyne detection scheme to measurements of electric
fields through the process of electric-field induced second-
harmonic generation. In this approach, an optical reference
field at the second-harmonic frequency is generated that is
large compared to and in-phase with the field-induced SH
radiation. By mixing these two SH fields, we obtain a SH
intensity that varies linearly with the strength of the electric
field being probed. The approach makes calibration of the
electric field strengths easy and yields information on the sign

the electric field directly. Experiments demonstrating these
properties were performed for silicon structures with in-plane
static fields imposed by metal electrodes. The reference sig-
nal was provided by a quartz plate, which could be adjusted
to generate a local-oscillator signal of arbitrary phase and am-
plitude. The results of the homodyne measurement scheme
were compared with the corresponding measurement for di-
rect (background-free mode) detection and for the case where
the reference field was in quadrature with the signal, both of
which exhibited the expected quadratic variation of the SH
intensity with the electric field strength.

An analysis of the signal-to-noise characteristics for the
direct and homodyne measurements was presented. It is
found that an improvement in the shot-noise limited perform-
ance is expected for the homodyne measurement scheme,
as well as a suppression of noise associated with incoher-
ent background signals. The actual degree of improvement
under experimental conditions will depend on quality of
the interference between the signal and reference beams,
and may be degraded if excessive laser noise is present.
While the full predicted improvement in the signal-to-noise
was not achieved experimentally, the homodyne detection
scheme provided a sensitivity to electric fields on the order
of 100 V/cmfor integration times of seconds. Significant im-
provements in field sensitivity through optimization of the
experimental geometry, laser properties, and material pa-
rameters can be anticipated. We are presently applying the
homodyne detection scheme to map the vector character of
the electric fields in semiconductor structures and to probe
ultrafast electrical transients.
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