High-speed laser microsurgery of alert fruit flies for fluorescence imaging of neural activity

Supriyo Sinha,a,b,1 Liang Liang,a,b, Eric T. W. Ho2, Karel E. Urbanekb, Liqun Luo,a,d, Thomas M. Baer,b,e,1, and Mark J. Schnitzera,b,d,f,1

Intravital microscopy is a key means of monitoring cellular function in live organisms, but surgical preparation of a live animal for microscopy often is time-consuming, requires considerable skill, and limits experimental throughput. Here we introduce a spatially precise (<1-μm edge precision), high-speed (<1 s), largely automated, and economical protocol for microsurgical preparation of live animals for optical imaging. Using a 193-nm pulsed excimer laser and the fruit fly as a model, we created observation windows (12- to 350-μm diameters) in the exoskeleton. Through these windows we used two-photon microscopy to image odor-evoked Ca2+ signaling in projection neuron dendrites of the antennal lobe and Kenyon cells of the mushroom body. The impact of a laser-cut window on fly health appears to be substantially less than that of conventional manual dissection, for our imaging durations of up to 18 h were ∼5–20 times longer than prior in vivo microscopy studies of hand-dissected flies. This improvement will facilitate studies of numerous questions in neuroscience, such as those regarding neuronal plasticity or learning and memory. As a control, we used phototaxis as an exemplary complex behavior in flies and found that laser microsurgery is sufficiently gentle to leave it intact. To demonstrate that our techniques are applicable to other species, we created microsurgical openings in nematodes, ants, and the mouse cranium. In conjunction with emerging robotic methods for handling and mounting flies or other small organisms, our rapid, precisely controllable, and highly repeatable microsurgical techniques should enable automated, high-throughput preparation of live animals for optical experimentation.

Significance

Microscopy and neurophysiology experiments in live animals commonly involve complex surgical preparations, which are often time-consuming, demand considerable manual dexterity, and can sharply limit experimental throughput. Here we present a spatially precise laser microsurgical technique using a pulsed UV laser. Our approach reduces surgical time by up to two orders of magnitude while substantially improving reproducibility. Using the fruit fly as a model, we show that laser microsurgery leaves complex behaviors intact and allows us to visualize brain activity in live flies for up to 18 h, more than four times longer than reported previously using hand dissection. We also demonstrate laser microsurgery on nematodes, ants, and the mouse cranium, illustrating broad potential utility for both optical and electrophysiological studies.

Author contributions: S.S., L. Luo, T.M.B., and M.J.S. designed research; S.S., L. Liang, E.T.W.H., and K.E.U. performed research; T.M.B. and M.J.S. supervised research; and S.S. and M.J.S. wrote the paper.

The authors declare no conflict of interest.

1To whom correspondence may be addressed. E-mail: mschnitz@stanford.edu, tmbaer@stanford.edu, or supriyo@stanford.edu.

This article contains supporting information online at www.pnas.orglookup/suppl/doi:10.1073/pnas.1216287110/-/DCSupplemental.

Edited by Ehud Y. Isacoff, University of California, Berkeley, CA, and accepted by the Editorial Board September 5, 2013 (received for review September 24, 2012)
Either the cuticle or retina illustrate the user (yellow lines highlight the incisions. (Scale bar, 100 μm)). (Figs. S1 and S2) or after laser surgery (spot size 400 μm × 350 μm). The image is a maximum-intensity projection of a 3D image stack (143 slices acquired at 1-μm intervals). (Scale bar, 25 μm.) (K) Signal intensity from fluorescently labeled neurons lying under the cuticle rises with the number of laser pulses used (200 μJ each) to drill a 300-μm-diameter circular spot. Each data point represents the median ± SEM. (Scale bar, 100 μm.) (F) Scanning electron micrograph (SEM) of a fly with a rectangular window cut in the cuticle. Sharp edges are visible. (Scale bar, 100 μm.) (G) Close-up image of one of the cut edges from F, highlighting the precision of the cut and its straightness to ~100 nm. (Scale bar, 10 μm.) (H) and J) SEM images of holes cut in the retina of the fly shown in E, H and J show the holes cut in the left and right retinae, respectively. (Scale bar, 25 μm.) (U) Two-photon image of/+CyO;21DhhGal4, UAS-TNXXLH;3′Z1TM68 fly following a microsurgery in which 150 pulses (350-μJ pulses; 100 Hz) drilled through the retina of a fly mounted on its side (spot size 400 μm × 350 μm). The image is a maximum-intensity projection of a 3D image stack (143 slices acquired at 1-μm intervals). (Scale bar, 25 μm.) (K) Signal intensity from fluorescently labeled neurons lying under the cuticle rises with the number of laser pulses used (200 μJ each) to drill a 300-μm-diameter circular spot. Each data point represents the median ± SEM. (Scale bar, 100 μm.) (F) Scanning electron micrograph (SEM) of a fly with a rectangular window cut in the cuticle. Sharp edges are visible. (Scale bar, 100 μm.) (G) Close-up image of one of the cut edges from F, highlighting the precision of the cut and its straightness to ~100 nm. (Scale bar, 10 μm.) (H) and J) SEM images of holes cut in the retina of the fly shown in E, H and J show the holes cut in the left and right retinae, respectively. (Scale bar, 25 μm.) (U) Two-photon image of/+CyO;21DhhGal4, UAS-TNXXLH;3′Z1TM68 fly following a microsurgery in which 150 pulses (350-μJ pulses; 100 Hz) drilled through the retina of a fly mounted on its side (spot size 400 μm × 350 μm). The image is a maximum-intensity projection of a 3D image stack (143 slices acquired at 1-μm intervals). (Scale bar, 25 μm.) (K) Signal intensity from fluorescently labeled neurons lying under the cuticle rises with the number of laser pulses used (200 μJ each) to drill a 300-μm-diameter circular spot. Each data point represents the median ± SEM. (Scale bar, 100 μm.)
A Flexible Microdissection Protocol Based on Laser Percussive Drilling.

In mounted flies positioned under a UV-compatible objective lens (Fig. 1B), we examined whether nonscanning, laser percussive drilling (15) allowed dissection of the fly cuticle or if a laser-scanning approach was necessary. Percussive drilling offers superior cutting speed but requires sufficient pulse energy to drill in parallel all subregions within the area demarcated for ablation. We found that the thickness of the fly cuticle is sufficiently uniform that percussive drilling can precisely create a window in the cuticle over the entire ∼0.1-mm² area illuminated by the surgical laser (275 mJ/cm²) (Fig. 1C–F), without ablatting underlying brain tissue. With <1 s of drilling, laser pulses of 200 μJ delivered at 100 Hz removed a 300-μm-diameter window in the cuticle. We thus chose this mode of microsurgery rather than laser-scanning approaches, which would have required additional hardware for scanning and much higher laser repetition rates (e.g., ∼3 orders of magnitude higher for a ∼10-μm-diameter laser spot) to achieve the same rate of tissue removal. Our surgery station allowed us to select the size and shape of the ablation by using different apertures or masks that were placed in the laser beam’s delivery pathway and projected onto the cuticle surface (Fig. 1B–E). The edges of the laser cuts in tissue were locally straight; electron microscopy studies of postsurgical specimens revealed ≤100 nm of orthogonal deviation from the straight edges (Fig. 1G). Tissue structures as near as 2 μm to the surgical cuts appeared unaltered (Figs. 1G–I), and laser microsurgery readily created holes as tiny as ∼12 μm in diameter (Fig. 1H and I).

For tailoring surgeries to different parts of the fly brain, we attached flies to the silica fiber in different orientations and adjusted the laser pulse energy and beam size as needed (Fig. 1B). With the fiber on the side of the fly’s neck, we accessed visual neurons that are challenging to expose manually in live flies (Fig. U and Movie S2). To access olfactory neurons, we attached the fiber at the nape of the fly’s neck. To monitor the depth of surgical ablation, we used a 470-nm-wavelength, fiber-coupled light-emitting diode (LED) to excite green fluorescent protein (GFP) markers. For example, in flies expressing GFP in the mushroom bodies (UAS-GFP;OK107-Gal4), fluorescence signals rose monotonically across the first ∼120 excimer laser pulses (200 μJ), indicative of cuticle removal, but then declined as additional pulses ablated brain tissue (Fig. 1K).

Laser Microsurgery Requires Seconds for Dissections with Submicron Precision. We tested the laser surgery system in several ways. As a test of cutting speed and throughput, we mounted four flies (UAS-GFP;OK107-Gal4) on an individual silicon wafer (Fig. S2B). Using motorized translation stages to rapidly address each of the four flies, we opened a 300-μm-diameter window in each cuticle and acquired a fluorescence image of the mushroom bodies. Cutting and imaging took 22 s for all four flies in total.

A second test of our surgical system concerned the aspect ratio of the holes it can cut in tissue (Fig. S3). We successfully drilled a constant, 35-μm-diameter hole through the entire ∼400-μm-thick fly, without adjusting the fly’s position en route. This aspect ratio is generally unachievable by laser cutting systems that rely on high-numerical-aperture (NA) objective lenses, as typically used with near-infrared ultrashort-pulsed laser sources (8, 9).

A third test assessed whether excimer laser surgery induced photobleaching of the GFP markers in the brain. We used two-photon microscopy to inspect five flies (UAS-GFP;OK107-Gal4) expressing GFP in mushroom body olfactory neurons. These cells are among the most commonly examined in flies for studies of olfactory sensing, learning, and memory (7). We manually dissected the cuticles of two of the flies and used laser microsurgery on the other three (120 pulses). Using identical imaging parameters for all five flies, fluorescence signals from all of the flies were comparable to within ∼15%. The difference in mean signal intensity (averaged in each fly over several dozen Kenyon cells of the mushroom bodies) between the two manually dissected samples (∼15%) was comparable to the variation between the mean intensity from the two manually dissected flies and that from the three laser-cut flies (∼13%), suggesting that the variation in GFP expression between flies was greater than any bleaching potentially induced by laser surgery (Fig. 1L and M).

Last, we tested the applicability of our methods to other species. We attained comparable precision when cutting windows in the cuticle of the harvester ant (Fig. S4) and Caenorhabditis elegans (Fig. S5). Beyond invertebrates, manual dissection can be equally challenging in vertebrates and is often a stumbling block in mammalian neuroscience. Thus, we examined whether excimer laser surgery was effective in the mouse cranium. Strikingly, we found that with ∼3 s of pulsed illumination we could cut precise, square openings (∼100 μm across) through the entire depth of the cranium (Fig. S6).

Optical Parameters for Minimal Impact on Fly Behavior. To gauge the impact of laser surgery on fly behavior, we subjected hundreds of wild-type flies to various numbers of laser pulses, ranging from 0 to 100. We delivered all pulses at the same repetition rate and with identical spot sizes (275-μm diameter) and energies (170 μJ) to a portion of cuticle centered over the antennal lobes. Following microsurgery we used a T-maze to monitor the flies’ phototactic responses to a light source that is normally attractive (Fig. 2). This tested for deficits in the sensory integration motor pathway (16). We included in this test some flies in which we additionally used laser surgery to cut muscle 16, which reduces brain motion during in vivo imaging.

Flies that received up to 90 laser pulses maintained statistically significant phototactic responses, whether or not muscle 16 was cut [for <80 pulses, P < 3 × 10^-5, n = 141 flies; for 80 pulses,
$P = 1.2 \times 10^{-4}$, $n = 24$ flies (muscle uncut), and $P = 1.5 \times 10^{-4}$, $n = 25$ flies (muscle cut); for 90 pulses, $P = 1.8 \times 10^{-4}$, $n = 24$ flies (muscle uncut), and $P = 8.2 \times 10^{-4}$, $n = 25$ flies (muscle cut); and for 100 pulses, $P = 0.067$, $n = 24$ flies (muscle uncut); two-tailed adjusted Wald binomial test. Further, flies that underwent the mounting aspects of our protocol and received 0–80 laser pulses had phototactic responses with no significant differences from those of control flies that only received phototactic testing (Fig. 2) ($P = 0.76$ at 0 pulses, $n = 60$ (unmounted flies) and $n = 36$ (mounted flies)); $P = 0.16$ at 80 pulses, $n = 36$ (mounted, no surgery) and $n = 24$ (mounted, laser surgery, muscle uncut); and $P = 0.002$, $n = 36$ (mounted, no surgery) and $n = 25$ (mounted, laser surgery, muscle cut). With 100 laser pulses, phototactic responses declined further (Fig. 2). Thus, for <80–90 pulses, flies’ postoperative phototactic responses were statistically indistinguishable from those of control flies.

Two-Photon Ca2+ Imaging of Neural Dynamics over Extended Time Periods. We also used two-photon microscopy to record odor-evoked Ca2+ transients in the antennal lobe, to assess if laser microsurgery impacted flies’ odor-evoked neural responses. We imaged flies (GH146-Gal4, UAS-GCaMP3) expressing the Ca2+ indicator GCaMP3 in olfactory projection neurons (17), after using 85 UV laser pulses (spot size of 325 μm × 225 μm) to remove cuticle tissue (Fig. 3A). GCaMP3 expression was readily visible before odor delivery, and the antennal lobe tissue appeared as normal and healthy as in our prior two-photon imaging studies of manually dissected flies (18) (Movie S3).

The ~25-μm repeatability of our mounting protocol allowed us to quickly locate an optical plane showing several different glomeruli. We then delivered multiple odors to the flies. Analysis of the resulting two-photon images revealed patterns of odor-evoked neural excitation and inhibition that were consistent with prior studies on manually dissected flies (4, 19, 20) (Fig. 3B). Olfactory responses were prominent, with changes in GCaMP3 fluorescence ($\Delta F/F_0$) generally >60% (Fig. 3C).

To demonstrate the extension of imaging duration that is attainable via laser microsurgery, we developed a version of the surgical protocol that was particularly minimally invasive and prohibitive by hand dissection. This involved the creation of a smaller opening in the cuticle (120 μm × 90 μm elliptical opening) plus a surrounding annular region in which we thinned but did not remove the exoskeleton (Fig. 4A). In this way, we attained optical access to the Kenyon cells of the fly’s mushroom bodies (UAS-GCaMP3/+;OK107-Gal4/+) via a hole that minimized the impact on fly health while providing adequate transparency across the broader thinned area. This thinned-cuticle strategy allowed us to observe odor-evoked Ca2+ dynamics in these neurons even 18 h after laser microsurgery (Fig. 4B and C) and to track the same individual cells across 6- to 18-h intervals (Fig. S7). By comparison, we were unable to reproduce these results using manual dissection.

Discussion

We developed an excimer laser microsurgery protocol that can rapidly and precisely remove fly cuticle with minimal impact on fly behavior or underlying fluorescent markers. Our approach obviates the highly variable outcomes of manual dissection by providing repeatable, user-friendly, and rapid laser-cutting capabilities with ~100-nm-level precision.

Traditional scanned UV laser ablation setups that operate at a wavelength of 355 nm (21) suffer from longer absorption depths, causing fluorophore bleaching in the brain. In comparison with surgical systems based on ultrafast laser sources, the cost of our instrumentation was \sim2–5% of the price of a commercial two-photon microscope equipped with a Ti:sapphire laser amplifier. These amplifiers typically require considerable effort to maintain intracuticle alignment, but excimer lasers are widely used in medicine and exist in user-friendly versions.

Our surgical success with flies, ants, and nematodes indicates that research involving a range of small model organisms should benefit from our methods. Moreover, our capability to cut through the mouse cranium in ~3 s suggests that excimer laser surgery has substantial utility for research on mammals. Excimer lasers with higher energies are commercially available, so cranial openings larger than those illustrated here could also be created percussively. The cranial openings we cut had sharp corners that would be nearly impossible to create manually, certainly not within seconds.

Indeed, a striking advantage of our laser microsurgery system over manual dissection is our ability to cut holes of arbitrary shape, size, and depth. Our low-NA system can readily create high-aspect ratio holes of small diameter. In flies, mice, or other species, this capability may ease minimally invasive injections or electrical recordings. In imaging experiments, the traditional manual approach of removing the cuticle generally requires making an opening larger than the imaging field of view, to avoid damaging the brain area of study. The larger window in the cuticle constitutes a greater insult to the fly, and the resulting declines in the fly’s health reduce the total time available for imaging neural responses, typically 1 to several hours (1, 2, 7, 18).

Fig. 3. Two-photon imaging reveals normal odor-evoked neural Ca2+ responses in live flies following laser microsurgery. The first column shows baseline two-photon images of three different GH146-Gal4, UAS-GCaMP3 flies expressing the Ca2+ indicator GCaMP3. Several glomeruli are visible, three of which are demarcated with dotted lines. Across flies, glomeruli are labeled consistently by color: VM2, red; VM7, yellow; VMsv, brown; DM2, green; DL1, blue; DL2, orange; and DA1, pink. (Scale bars, 20 μm.) In the second and third columns, maps of odor-evoked fluorescence changes ($\Delta F/F$) reveal glomerular activation following a 2-s pulse of odor delivery, for different pairs of odors. Both excitatory and inhibitory glomerular responses occurred. Odor-evoked fluorescence changes are indicated in color for regions where the response absolute value was at least three times greater than the standard deviation of baseline fluctuations. The fourth column shows traces of odor-evoked changes (ΔF/F) for the three encircled glomeruli and two odors indicated in each row. Colors match those of the glomeruli in the first column. Solid and dashed lines are for the odors indicated in the second and third columns, respectively. Odor delivery occurred at times marked by gray bars. Dashed black line indicates the time point shown in the second and third columns. Vertical and horizontal scale bars are 100% $\Delta F/F$ and 5 s, respectively.
Materials and Methods

Fly Stocks. We crossed GH146-Ga4 and UAS-GCaMP3 flies (2) to label olfactory projection neurons in the antennal lobe. We crossed OK107-Ga4 with UAS-GBP and UAS-GCaMP3 lines to label mushroom body neural structures. We raised all flies on standard cornmeal agar media under a 12-h light/dark cycle at 25 °C and 50% humidity. All experiments used adult mated females.

Fabrication and Use of Silicon Mounting Fixtures. We made silicon (Si) fixtures in Stanford’s Ginzton microfabrication facility. We used <100>-crystalllographic orientation, 4-inch-diameter, 500-μm-thick, single-side polished Si wafers with 100 nm of low-stress nitrile on both sides (University Wafer). **SI Materials and Methods** contains detailed microfabrication methods and descriptions of how we mounted the fly to the silica fiber and the fiber to the Si wafer. It took ∼60 s to fix the fly’s position with ∼25-μm accuracy relative to the etched holes in the silicon. The fly was free to move its legs and wings when attached to the fiber (Movie S1).

Laser Surgery System. We used Optex and GamLaser EX5 ArF 193-nm excimer lasers, each capable of generating ∼12-mJ pulses of ∼10-ns duration. The total exposure time of the cuticle to the laser was <1 s, so the fly’s hemolymph would not have time to flow into the machined hole and shield the fly’s air sacs from the laser pulses. A 250-μL/min flow of air from a 6-mm-diameter tube aimed just above the laser prevented deposition of ejected debris on the objective lens. To control the beam shape and spot size on the fly, we used various pupil masks consisting of gold-coated thin copper substrates that were laser machined to have the desired aperture (National Aperture). We projected the aperture with 3x demagnification onto the fly using a CaF2 lens with a 40-mm focal length at 193 nm.

Fly Surgical Protocol. After transferring a mounted fly to the surgery station, we measured fluorescence signals using a photoreceiver (Newport 2151) and a 515/20 band pass optical filter (Semrock). For imaging certain brain regions, we reduced brain movement by laser drilling a 50-μm-diameter hole (6 μL, 1 s), 1 mm above the antennae to cut muscle 16. We then opened the optical window in the cuticle. Immediately after surgery, we applied 90 μL of adult haemolymph-like (AHL) saline (103 mM NaCl, 3 mM KCl, 5 mM TES, 1 mM NaH2PO4, 1.5 mM CaCl2·6H2O, 4 mM MgCl2·6H2O, 26 mM NaHCO3, 10 mM sucrose, 10 mM trehalose, and 10 mM glucose; all from Sigma in the highest purity). This prevented the brain from desiccating, and the surface tension of the AHL on the hydrophobic fly cuticle prevented AHL from spilling on the fly’s body. The entire surgery took ∼10 s.

Behavioral Testing. SI Materials and Methods provides details of the phototaxis studies.

Two-Photon Microscopy. To image the antennal lobe, we used a custom-built two-photon microscope and a 20x water-immersion objective (0.95 NA; Olympus). The excitation powers (920-nm wavelength) at the specimen were 3 mW and 15 mW for Figs. 1 L and M and 3, respectively. The pixel dwell time was 2 μs. For imaging mushroom bodies, we used a 40x water-immersion objective (1.0 NA; Zeiss) and a commercial two-photon microscope (Prairie Technologies). The excitation power (927 nm) at the specimen was 10–18 mW for Fig. 4. The pixel dwell time was 1.2 μs for all images.

Time-lapse imaging. Our protocol requires that to maximize reproducibility for a given laser microsurgery recipe (pulse energy, number of pulses, repetition rate, size of the window), the size of the window, pulse energy, and timing of each pulse should vary as little as possible from fly to fly. Thus, we used flies of identical age (2-d-old mated females) and reared them under uniform growth conditions, with the same number of parent flies in each vial (10 female Oregon-R and 3 male flies reported to date. For these studies we thinned the cuticle over a 6- to 18-h imaging duration so attained represent a 4- to 18-h extension of neural imaging studies. Our protocol also allows the longest time-lapse imaging studies of neural activity to study many unanswered questions in neurobiology of learning and memory. The minimally invasive capabilities of our surgical approach have allowed the longest time-lapse imaging studies of neural activity in live flies reported to date. For these studies we thinned the cuticle over a 6- to 18-h imaging duration so attained represent a 4- to 18-h extension of neural imaging studies. Our protocol also allows the longest time-lapse imaging studies of neural activity to study many unanswered questions in neurobiology of learning and memory.

After mounting a fly, our entire surgical protocol takes only ∼10 s, of which ∼1 s is devoted to laser pulse delivery. With four flies mounted on the same silicon wafer, we completed all four surgeries in 22 s, indicating the amenability of our methods to high-throughput experimentation. By capitalizing on silicon wafers of larger diameter than those used here, our four-fly mount should be extendable to greater numbers of flies, such as for parallelization of neural imaging studies. Our protocol also allows flies to be mounted with high precision, which reduces the alignment time at subsequent surgery and imaging steps.

Given this speed and efficiency of throughput, our methodology should be able to facilitate future high-throughput screens for flies with mutant cellular, functional, or anatomical phenotypes. We are developing robotic techniques that use automated machine vision algorithms to further reduce the time it takes to pick and mount flies for surgery and imaging. Further, by integrating interferometric measurements of the cutting depth into the surgical process, it might be possible to remove the fly’s perineural sheath without damaging underlying brain structure, such as for electrophysiological studies. Similarly, it should be possible to create a preparation in which the fly cuticle is left entirely unopened and merely thinned for imaging, to further extend the duration of time-lapse experiments. We chiefly focused here on fruit flies, but our precise and repeatable capabilities to create optical windows in nearly any part of an animal’s body should be widely applicable in multiple biological disciplines and to invertebrates and vertebrates alike.
imaged for 20 s of each of the four 40-s trials for each odorant. We averaged a single, 2-s pulse of odor within a 40-s interval. To minimize bleaching, we imaged for reimaging at 18 h, and/or angular misalignments (Sinha et al. PNAS).

During laser surgery (60 laser pulses; ~275 μm²/pulse), we translated the fly out of focus to blur the edges of the cut; this approach fully removed the cuticle at the center of the cut but merely thinned it in the periphery. We did this to minimize the exposed brain area, maximize the collected fluorescence, and remove a sufficient area of cuticle for adequate tissue contact with the subsequently applied AHL. Following surgery, we perfused flies with oxygenated AHL in a humidified enclosure.

All flies underwent two-photon imaging immediately after surgery. Flies with clearly resolved brain structures (~60% of all flies in the first session) were imaged at one additional later time point (6 ± 1 h, 12 ± 1 h, or 18 ± 1 h) and were included in the analyses of the time-lapse experiments. The poor resolution of brain structures in the other ~40% of flies that we discarded was caused by either excessive brain movement (~20% of flies in the initial session), partial obscuring of the mushroom body structures due to lateral and/or angular misalignments (~15% of all flies in the initial session), or incomplete cuticle removal (~5% of flies). During imaging, flies received a single, 2-s pulse of odor within a 40-s interval. To minimize bleaching, we imaged for 20 s of each of the four 40-s trials for each odorant. We averaged the data from the four trials for subsequent analyses. Of the flies designated for reimaging at 18 h, ~20% survived the 18-h wait from the first imaging session.

Analysis of Ca²⁺-imaging data. We converted the raw 16-bit images to 32 bits using ImageJ (National Institutes of Health (NIH)) and registered images in the two lateral dimensions using an ImageJ plugin (22). For both antennal lobe and mushroom body images, we averaged all movie frames before odor stimulus delivery to assess baseline fluorescence. For all raw images, we applied a spatial, low-pass Gaussian filter with a radius of either 2 pixels (for 256 × 256 pixel images) or 4 pixels (512 × 512 images). We additionally applied a temporal smoothing filter (sliding window of one frame) to the mushroom body images.

To analyze the time-lapse Ca²⁺-imaging data in the mushroom bodies, for each session we computed the ΔF/F traces. We median filtered (3 × 3 array) the ΔF/F data and applied a uniform threshold to discard pixels at or below background fluorescence levels. In Fig. 4, pixels with >30% ΔF/F odor responses are superimposed on the basal fluorescence images. We manually selected the three cells with the largest odor-evoked fluorescence signals (ΔF/F) for each image sequence. We used a 6 × 6 pixel window and a custom MATLAB script to average the signals in this window at each frame across an odor delivery trial. This window size helped average out pixel noise within a frame but remained within the area of one cell (~20 × 20 pixels). All calcium-imaging experiments used four odor puff cycles, and we considered responses as valid only if they were present in at least two cycles. For z stacks, we averaged eight frames per slice. We performed all statistical tests in MATLAB (MathWorks).

Mice. The Stanford Administrative Panel on Laboratory Animal Care approved all procedures. See *SI Materials and Methods* for surgical details.

ACKNOWLEDGMENTS. We thank D. Clark, J. Savall, L. Burztyn, M. Horowitz, M. Scott, T. Clandinin, K. Shen, T. Garver, and G. Dietzl for helpful conversations; and J. Li, J. Simon, G. Dietzl, S. Sturgis, and X. Wei for technical assistance. We also thank L. Looger, K. Shen, and D. Gordon for kindly providing the UAS-GCaMP3 flies, nematodes, and ants, respectively. The W. M. Keck Foundation, the Stanford Bio-X program, and an NIH Director’s Pioneer Award supported our research.
Supporting Information

Sinha et al. 10.1073/pnas.1216287110

SI Materials and Methods

Silicon Fixtures. We used a laser-printed mylar mask with 3-μm resolution (Artnet Pro) to define the features of the fly holder on the Si wafer. In addition to the V groove for the fiber and the hole for the fly, the mask had four additional holes serving as positional fiducials during fly mounting. After we had spun and patterned the photoresist with the mask, we etched the exposed nitride in a plasma etcher. We then used acetone (Sigma) to remove the residual photoresist, placed the wafer into a beaker, submerged it in a 25% wt potassium hydroxide solution (with ~5% vol isopropanol) heated to 90 °C and with continual stirring until the wafer had been etched through. We cleaned the wafer and diced it using a wafer saw. One 4-inch-diameter wafer yielded 13 Si mounts, each of which could be reused.

Of the four fiducial holes in each fixture, we used the two rear holes as tight-fit holes to index the Si mount to an underlying brass mount (Fig. S1C). We also used this brass mount, which is mechanically sturdier than the Si mount, as a carrier for the Si fixture so that we could move the fly from the mounting stage to the laser microsurgery stage and then later to the two-photon microscope. We used the two front fiducial holes in the silicon fixture to index the brass piece and as the fixture for a metal holder that we placed between the fly’s head and the objective lens of the two-photon microscope. We machined this metal holder from 127-μm-thick stainless steel shim stock and included an 800-μm-diameter center hole that provided optical access to the fly brain. We used two 380-μm-thick stainless steel washers, one glued to the underside of each end of this metal holder, as spacers between the top of the silicon fixture and the underside of the stainless steel shim.

Mounting Flies on Fixtures. We transferred flies from stock supplies to a plastic vial held in a container of crushed ice. Once the flies were immobile, we tapped the flies out from the vial onto a shallow petri dish also resting on crushed ice. We turned on the thermoelectric cooler on the mounting apparatus (Fig. S2) to cool the underlying aluminum (Al) block to ~4 °C.

Before mounting each fly, we wiped the Al block to remove condensation. We transferred the fly from the petri dish to the cooled Al surface using a dull pair of forceps to grab onto the base of the wing. The Al block was seated on a translation and rotation multiaxis stage that had six degrees of freedom to allow the user to position the fly relative to the silicon fixture. We placed the fly such that its dorsal side contacted the Al block, with its body centered to the small hole (~350-μm diameter) on the surface of the Al block (Fig. S2). We turned on a weak vacuum (~15 inches of Hg) to prevent the fly from rolling over during subsequent handling steps. We secured the Si mount above the fly, with the 125-μm fused silica fiber taped into the groove using Kapton tape or with removable UV-cured epoxy (Norland Block Adhesive 107).

Using the multiaxis stage, we adjusted the position and angle of the fly in the three translational axes and in the roll and yaw rotational axes, respectively, underneath a dissecting microscope at 40× magnification. We brought the fiber into contact underneath the fly proboscis so that all of the fly’s legs were on the same side of the fiber. We applied a small drop of Norland 89 UV epoxy to the fly to secure the fiber to the head and to the proboscis. Securing the proboscis to the rigid structure of the fiber eliminated most discernible brain movement. We cured the epoxy with UV light for 10 s. After curing, we switched off the vacuum and lowered the multiaxis stage.

If we needed to access the fly brain from a different angle, we could then rotate the fly in the pitch axis by removing the tape, turning the fiber within the groove, and replacing the tape when the fly reached the desired angle. We could also rotate the fly about its body axis before it was attached to the fiber. After attachment, the fly was free to move its legs and wings (Movie S2).

We then placed the silicon fixture onto the brass mount. Finally, we placed the stainless steel shim holder, which had an opening for optical access to the fly brain, on top of the fly through the front dowels of the brass mount. We usually needed ~60 s total to fix the fly’s position with ~25-μm accuracy relative to the etched holes in the silicon. We transferred the fly to the surgical station by placing the brass mount with the indexed silicon piece with the fly onto the brass plate, which obviated any manual adjustments to the fly’s position at the surgical stage.

Behavioral Testing. We used 6- or 7-day-old mated female Oregon-R flies for the behavioral tests. We collected all eclosed male and female flies every morning from our bottles and placed them in new vials (no more than 40 flies per vial) with fresh food. We flipped the flies onto fresh food every day and kept them at 25 °C and 50% relative humidity in an incubator with a 12-h light and 12-h dark cycle. We assumed that 2 d after eclosion, all female flies had been mated. We sorted the flies on a CO2 pad, discarding the male flies and placing the female flies in vials (35 flies per vial). We flipped the female flies daily and subjected them to behavioral tests 3 d after sorting.

For behavioral tests, we mounted the flies on steel washers that had fused silica fiber taped to them instead of to the silicon mount. We mounted the flies as before but we did not use the stainless steel metal pieces, and we did not index the washers to the brass piece. After the laser microsurgery, we immediately placed the flies in a polystyrene petri dish with a tight lid (BD-Falcon) that was under a humidification chamber to minimize brain desiccation. We pushed a cotton ball to the bottom of the tube and dropped 1.5 mL of water into the tube. Under a dissecting microscope, we placed the washer on a steel frame that we put on top of the tube. We blew warm humidified air over the washer to prevent evaporation and brain desiccation. We used a razor blade to cut the fiber as close to the fly as possible, and the fly was dropped into the tube. We then quickly removed the steel frame and washer and placed a rubber stopper on top of the tube to form an airtight seal. Flies were able to move quite freely with a short piece of fiber attached to them.

We tested the flies on the T-maze one at a time to prevent the ends of the fiber protruding from one fly from scratching any neighboring flies. We took the tube to a darkened cubic for the phototaxis test. We maintained the cubic’s temperature and humidity to be 25 °C and 65% relative humidity, respectively. Using a dim red lamp to provide us with sufficient illumination to see, we removed the rubber stopper on the tube and inserted the tube onto the loading port of the T-maze. We encouraged the fly to enter the T-maze elevator, either by the fly’s geotaxis response or by gently knocking it. We quickly lowered the elevator to a position between the loading point and the choice point, and we waited 1 min to allow the fly to acclimatize itself to its surroundings.

After 1 min, we switched on a white light-emitting diode on one side of the T-maze and lowered the elevator to the choice point. The white light was scattered through a fine mesh to provide a dim, diffuse source. The fly had 1 min to freely walk between the ports, after which we raised the elevator sufficiently to trap the fly
in the light port, the dark port, or the choice point. We inter-
changed the tubes used for the light and dark vials every six trials,
and we alternated the side of the T-maze that was illuminated by
the light source every 12 trials. The total numbers of flies that we
assayed for the control condition (i.e., anesthetized but not
mounted) and for the simply mounted condition (i.e., anes-
thetized and mounted but not subjected to UV laser pulses) were
60 and 36, respectively. The number of flies that we assayed for all
of the other data points varied between 20 and 25. When using the
two-tailed adjusted Wald test for binomial distributions to de-
termine if the flies had a statistically signi
fi
cant phototactic re-
sponse, we used the null hypothesis that
flies would uniformly
distribute themselves in the total volume of the dark port, light
port, and choice point (the dark port and choice point were
combined into one outcome for the statistical test).

Odor Delivery. We delivered odors to the flies via a 3.18-mm-inner-
diameter stainless steel tube placed ∼3 mm from the
fly anten-
ae. We maintained a constant flow of odorant to the fly and
alternatively sourced the airflow from an active odor bottle and
a control odor (paraffin oil) bottle using pairs of solenoid valves.
We diluted the active odorant in paraffin oil to be 0.1% by
volume and delivered the odorant in ∼2 s pulses with a duty cycle
ranging from 5% to 10% at a flow rate of 100 mL/min. We
constructed all odorant tubes either from Teflon or stainless
steel; solenoid valves were Teflon. We kept the tube lengths as
short as possible to minimize the total surface area to which
odors could stick. We tested different odors sequentially by
swapping out the active odorant bottles and tubing and letting
the system run for about 40 s to flush out the previous odor
before acquiring images for the next odor.

Scanning Electron Microscopy. Following laser microsurgery, we
immediately soaked the flies in ethanol for ∼1 d and then dried
the flies. We coated the samples with 50–100 Å of gold/palla-
dium alloy and acquired images using a Hitachi S-3400N scan-
ing electron microscope with a 10-kV beam.

Mouse Surgery. Before surgery, we anesthetized mice (12- to 16-
wk-old males) using a ketamine/xylazine mixture (90 mg/kg and
15 mg/kg, respectively, delivered by i.p. injection). Body tem-
perature was maintained using a heating blanket. We exposed the
skull and cleaned it with saline solution (0.9% NaCl; Baxter).
After stabilizing the mouse using ear bars, we positioned the cra-
nium under the objective lens of the laser surgery system. We then
opened a grid of cranial openings (centered at 1.13 mm posterior to
bregma, 1.85 mm lateral) using 600 laser pulses (300 µJ energy per
pulse, delivered at 200 Hz) to create each hole (3 s per hole).
Fig. S1. Photographs of mounted flies. (A) Dorsal view of a fly attached to an optical fiber, which in turn is attached to a silicon fixture. A prominent reflection from the illumination is visible on the thorax as a bright loop. (Scale bar, 500 μm.) (B) Ventral view of attached fly. (Scale bar, 500 μm.) (C) Silicon fixture with fly mounted on brass mount. (Scale bar, 5 mm.)
Fig. S2. Fly mounting rig and a mount for multiple flies. (A) We placed the fly on a cooled aluminum block and attached it to the fiber (SI Materials and Methods). The block sits on a thermoelectric cooler, which in turns sits on a copper heat sink. We affixed the latter to a translation stage with six degrees of motion. (B) Silicon holder that has four fruit fly mounts precisely etched with 30-mm spacing in both lateral dimensions. Large rectangular holes were etched around the flies to facilitate stimulus delivery. Without these holes, flies could be packed at greater density. (Scale bars, 10 mm.)
Fig. S3. High-aspect ratio holes cut into *Drosophila melanogaster*. (A) A 35-μm-diameter hole (outlined in yellow in the main panel and indicated with a yellow triangle in the inset) cut in the fly eye using 3,000 laser pulses of 4 μJ energy and delivered at 200 Hz. The hole extends through the entire fly eye. (Scale bars, 100 μm and 50 μm in the main panel and inset, respectively.) (B) A 20-μm-diameter hole (outlined in yellow in the main panel and indicated with a yellow triangle in the inset) cut in the fly eye using 3,000 laser pulses of 1 μJ energy and delivered at 200 Hz. The hole is ~250 μm deep and was created without scanning the fly's position. (Scale bars, 100 μm and 20 μm in the main panel and inset, respectively.)
Fig. S4. High-precision laser microsurgery in ants. (A) Bright-field image of red harvester ant (Pogonomyrmex barbatus) after laser microsurgery. We mounted the ant on a 250-μm-diameter fiber (instead of the 125-μm-diameter fibers used for fruit flies). Inset shows the precisely cut edges of the window in the cuticle created using 300 laser pulses (350 μJ each) delivered at 100 Hz. (Scale bars, 500 μm for the main panel and 250 μm for the inset.) (B) Scanning electron micrograph of an ant after laser microsurgery illustrates the clean edges of the cut. Inset shows the rectangular shape of the hole. (Scale bars, 50 μm for the main panel and 100 μm for the inset.)
Fig. S5. High-precision laser microsurgery in the Caenorhabditis elegans. (A and B) We cut a 12-μm-diameter hole in C. elegans using 15 laser pulses delivered at 100 Hz and each of 0.2 μJ energy. We anesthetized the worm using levamisole on an agarose pad. Images show both the plane of incision (A) and a plane above the incision (B). (Scale bar, 100 μm.) (C–H) Differential interference contrast microscopy images of C. elegans after surgery. Images are focused at z planes that are increasingly distant from the body of the worm from C to H. (Scale bar, 50 μm.)
Fig. 56. Grid of holes cut into mouse cranium by laser microsurgery. We laser machined a grid of 10 holes \((3 \times 3) + 1\) in the cranium of an anesthetized mouse. Each rectangular hole was \(95 \mu m \times 110 \mu m\), and the hole spacing was \(200 \mu m\) in both dimensions. Each hole was created in \(-3\) s (600 laser pulses at 200 Hz with 300 \(\mu J\) energy). (A) Dotted circle highlights the area of the cranium that underwent surgery. (Scale bar, 5 mm.) (B) A tungsten electrode that was 100 \(\mu m\) at its base could be inserted several millimeters into the hole, illustrating complete removal of the bone. (Scale bar, 500 \(\mu m\).)

Fig. 57. Time-lapse imaging of mushroom bodies in UAS-GCaMP3+/+;OK107-Gal4+/+ flies. After using laser microdissection to thin the cuticle and cut a small central opening (Fig. 4A), it was possible to image the same plane of the mushroom body at multiple time intervals in the same fly. We imaged the fly at 6-h intervals. (Scale bar, 25 \(\mu m\).)
Movie S1. A behaving fly after attachment to the silica fiber. The fly's legs and wings are free to move, but the head remains still.
Movie S2. Maximum intensity projections from a 3D stack of images of lamina in a +/-CyO;21DhhGal4, UAS-TNXXLH.3*Z3/TM6B fly. Each of the 143 slices in the image stack is an average of ten 512 × 512 pixel frames acquired with a 2.4-μs pixel dwell time. The field of view is 275 μm in both dimensions. The axial increment between slices was 1 μm. Laser illumination was 927 nm in wavelength and 15 mW of power at the specimen plane.

Movie S3. Z stack of right antennal lobe of anesthetized GH146-Gal4, UAS-GCaMP3 fly. Each of the 127 slices in the image stack is an average of eight 512 × 512 pixel frames acquired with a 2.8-μs pixel dwell time. The field of view is 92 μm in both dimensions. The axial increment between slices was 1 μm. Laser illumination was 920 nm in wavelength and 10 mW of power at the specimen plane. The anesthesia removed almost all of the residual brain movement and thereby allowed us to acquire crisp images of baseline fluorescence. Based on our prior experience imaging manually dissected flies (1), we did not observe any laser-induced damage to the glomeruli or to the axons projecting to the mushroom body or lateral horn.