Instructors:

James Holland Jones
Department of Anthropological Sciences
Office: Building 360, Room 361I
Phone: 3-4824
email: jhj1@stanford.edu
Office Hours: Friday 1:15-3:15, or by appointment

Ian G. Robertson
Department of Anthropological Sciences
Office: Building 360, Room 361E
Phone: 4-4994
email: igr@stanford.edu
Office Hours: Thursday 1:00-3:00, or by appointment

Course Description:

In this course, we will develop a statistical toolkit appropriate for anthropologists. The emphasis will be on practical data analysis and the development of a problem-solving approach to inference. Students taking the course will gain skills that significantly improve their ability to:

- read quantitative arguments in an informed, critical way
- use computers to manage and analyze anthropological data
- convey quantitative arguments in scholarly publications
- design research projects to generate data that can be quantitatively analyzed

No extensive prior knowledge of statistics or computers is assumed, but a reasonable background in anthropology and/or archaeology is. The course will require a substantial commitment of time, including extensive use of computers for analysis and presentation work.

Readings

There is one text for this class. The text (Dalgaard 2002, below) will be supplemented with occasional readings from the primary scientific literature.

Software

We will use a freely-available software package called R. R has a number of
advantages: (1) it is free, (2) it is essentially platform independent, (3) R represents the cutting-edge in statistical computation, (4) there is extensive (free) documentation and a large online community of users to provide support, (5) it is used overwhelmingly by professional statisticians and therefore learning R facilitates conversations with statisticians for consulting and collaborative purposes. Did we mention it's free?

R may be downloaded from one of the CRAN mirror website. The closest mirror lives across the Bay.

http://cran.cnr.berkeley.edu/

If you find going to a Berkeley website for the software too distasteful, perhaps you would prefer the UCLA mirror:

http://cran.stat.ucla.edu/

Grading

50% Weekly Problem Sets
25% Midterm (Take Home)
25% Final (Take Home?)

Problem Sets

Much of the practical benefit from this course will come from working through problem sets; these will be assigned almost every week and will be due in class on the assigned date. Since we will be discussing the problems in class, late assignments will only be accepted under unusual circumstances.

Marks for individual problem sets will reflect the quality of the analysis and the quality of the arguments made concerning relevant anthropological questions. Be thorough (but to the point) in answering all questions posed in the problem set handout. Results of analyses should be presented in a brief, typed essay that references supporting tables and figures and does not exceed three double-spaced pages of 11-point or larger font, and 1-inch margins (tables, figures, citations are not included in page limit). Especially in the case of non-computer based calculations, show clearly the steps that were followed in arriving at the answer. Figures and tables do not have to be of publication quality, but they should also be clear, neat and appropriately labeled.

In your problem set write-ups, briefly state the problem at hand. You may assume a reader’s knowledge of methods that have been discussed or presented in class, but beyond that, you need to summarize the results and general argument as you would in an article for publication. Be exact about procedures that have been used—don’t say “correlation” if you mean “product-moment correlation coefficient;” don’t say “factor analysis” if you have just done a principal components analysis. Be clear about the set of data you have analyzed, any transformations you have used, what has been shown quantitatively, and any substantive conclusions you arrive at. With respect to conclusions, be careful not to overstate things or to claim too much—learning when to rein yourself in is part of what we want to teach here. Finally, you should adopt a style of presentation that is relatively serious and formal—again, the model you should have in mind is an article for a professional journal.

You may find it is helpful to coordinate your computing time with other students so
that you can assist each other in solving technical problems associated with the use of R. Discussing the methods and issues with each other is fine, but you need to execute procedures and write up problem sets independently—much of the pay-off in this course lies in eventually struggling though difficult concepts on your own.

Course Website

The course website will be a repository for R code, data sets, problem set answers, links to useful online resources, etc. The url for the course website is:

http://anthsci192.stanford.edu

Syllabus

Lectures are on Monday and Wednesday from 1:15-3:05 in Building 360, room 361J.

Week 1. Introduction to R

01.11

Readings:

Dalgaard, chapter 1.

Week 2. Working with Data: Descriptive Statistics. Frequency Distributions, Histograms, Correlation

01.16

Readings:

Dalgaard, chapter 2, 5.

01.18

Readings:

01.23

Readings:

Dalgaard, chapter 3.

01.25

Readings:

Week 4. Probability and Probability Distributions

01.30 Probability theorems, Bayes’s Theorem, Continuous distributions (Normal, Gamma, Chi-Square, F)

Readings:

02.01 Likelihood, Discrete distributions (Binomial, Poisson, Negative Binomial)

Readings:

Week 5. One and Two Sample Tests, ANOVA, Kruskall-Wallis

02.06

02.08

TAKE-HOME MIDTERM EXAM

Readings:

Dalgaard, chapter 4-6.

Week 6. Regression

02.14 Multiple linear regression

02.16 More linear regression, Logistic regression

Readings:

Dalgaard, chapter 9-11.

Week 7. Tabular Data, Loglinear Models

02.20

Readings:

Dalgaard, chapter 7.

02.22

Readings:

Week 8. Multivariate Analysis

02.27

03.01

Readings:

Week 9. Survival Analysis

03.06

Readings:

Dalgaard, chapter 12.

03.08

Readings:

Week 10. Distance Measures, Cluster Analysis, Trees, etc.

03.13
Readings:

Or maybe

Finals Week