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Abstract—Transactional Memory (TM) is a promising tech-
nique that addresses the difficulty of parallel programming. Since
TM takes responsibility for all concurrency control, TM systems
are highly vulnerable to subtle correctness errors. Due to the
difficulty of fully proving the correctness of TM systems, many
of them are used without any formal correctness guarantees.

This paper presents ChkTM, a flexible model checking envi-
ronment to verify the correctness of various TM systems. ChkTM
aims to model TM systems close to the implementation level to
reveal as many potential bugs as possible. For example, ChkTM
accurately models the version control mechanism in timestamp-
based software TMs (STMs). In addition, ChkTM can flexibly
model TM systems that use additional hardware components or
support nested parallelism.

Using ChkTM, we model several TM systems including a
widely-used industrial STM (TL2), a hybrid TM (SigTM) that
uses hardware signatures, and an STM (NesTM) that supports
nested parallel transactions. We then demonstrate how ChkTM
can be used to find a previously unreported correctness bug in
the current implementation of eager-versioning TL2. We also
verify the serializability of TL2 and SigTM and strong isolation
guarantees of SigTM. Finally, we quantitatively analyze ChkTM
to understand the practical issues and motivate further research
in model checking TM systems.

I. INTRODUCTION

Transactional Memory (TM) [16] has emerged as a promis-
ing technique that simplifies parallel programming. TM ad-
dresses the difficulty of parallel programming by allowing
programmers to simply declare certain code blocks as trans-
actions. TM guarantees that user-defined transactions exe-
cute in an atomic and isolated way with respect to other
code blocks. Many TM systems have been proposed using
hardware [14, 22], software [9, 15, 25], and hybrid tech-
niques [3, 6].

TM takes responsibility for managing all accesses to shared
state, so extreme attention must be paid to its performance.
As a result, subtle but fast implementations are favored over
simpler ones, even though that makes the resulting systems
difficult to prove correct. TM’s central position, however,
means that the severity of any bug is magnified.

To address this problem, a few recent works have attempted
to formally verify the correctness of TM systems using
model checking techniques. In [7], Cohen et al. proposed
a formal method to verify the correctness of TM systems
similar to TCC [14] and LogTM [22] using the TLA+ model
checker [19]. In [13], Guerraoui et al. proved an important

reduction theorem that states the verification problem can be
reduced to the most general problem with two threads and
two shared variables when an evaluated TM system satisfies
a set of certain conditions. They then verified the correctness
of abstract models of several software TMs (STMs) such as
TL2 [9] and DSTM [15]. Finally, O’Leary et al. [24] verified
the correctness of Intel’s McRT STM [25] using the Spin
model checker [17].

However, there still exist research issues that require further
investigations. First, TM systems should be modeled close to
the implementation level, to reveal as many potential bugs
as possible. For example, the TL2 model in [13] does not
model the version control mechanism using timestamps, which
requires a hand proof that their abstract model is equivalent to
the actual implementation. Second, model checking should be
extended to a wide range of TM systems that use additional
hardware components (e.g., hybrid TMs) or support nested
parallelism. Third, both transactional and non-transactional
memory accesses should be modeled to investigate subtle
correctness issues with weak isolation and ordering [27].
Finally, an in-depth, quantitative analysis should be performed
to understand practical issues such as the sensitivity of the state
space to various system parameters and to motivate further
research in model checking TM systems.

This paper presents ChkTM, a flexible model checking
environment for verifying the correctness of multiple TM
systems. ChkTM aims to model TM systems close to the
implementation level. For example, the version control mech-
anism of timestamp-based STMs can be accurately modeled
in ChkTM using our timestamp canonicalization technique.
Furthermore, ChkTM can flexibly model TM systems that use
additional hardware components or support nested parallelism.
In addition, transactional and non-transactional memory oper-
ations are also modeled in ChkTM.

The specific contributions of this work are:

• We propose a flexible model checking environment for
TM (ChkTM) that can be used to verify the correctness
of various TM systems. ChkTM consists of three com-
ponents: (1) an architectural state space explorer, (2) TM
model specifications, and (3) a test program generator.

• In ChkTM, we model several TM systems including a
widely-used high-performance STM (TL2) [9], a hybrid
TM (SigTM) [6] that accelerates an STM using hardware



Assume that initially x==y==0

// T1
atomic {
t1=x;
...
t2=x;

}

// T2
...
...
x=1;
...
...

// T1
atomic {
if(y==0)
x=1;

...
/*abort*/ }

// T2
...
...
...
if(x==1)
y=2;

Can t1!=t2? Can x==0?
(a) Non-repeatable reads (b) Speculative dirty reads

Fig. 1: Violations of strong isolation.

signatures, and an STM (NesTM) that supports nested
parallel transactions [2].

• We introduce a timestamp canonicalization technique that
accurately models the version control mechanism in TL2
and NesTM.

• We describe a case study in which we actually found a
subtle, unreported correctness bug in the current imple-
mentation of eager-versioning TL2. We reported this bug
to the TL2 developers.

• Using ChkTM, we verify that TL2 and SigTM guar-
antee the serializability of every possible execution of
every possible program with two threads, each executing
one transaction that performs at most three transactional
memory operations. We also verify that SigTM provides
strong isolation for the test programs described in [27].

• We perform an in-depth, quantitative analysis on ChkTM
to understand the practical issues in model checking TM.
We first investigate the sensitivity of the state space
to system parameters such as the number of concur-
rent threads. Second, we study the scalability of multi-
threaded ChkTM to reduce the latency of the verification.
Third, we investigate the tradeoff between the perfor-
mance and correctness of the verification when various
approximation techniques are applied to the TM model.
Our quantitative analysis also motivates further research
on a reduction theorem [13] and dynamic partial order
reduction techniques [12] for verifying TM systems with
nested parallelism.

The rest of the paper is organized as follows. Sections II
and III review the correctness criteria and the TM systems
evaluated in this paper. Section IV describes the design and
implementation of ChkTM. Section V presents the main
correctness results and an in-depth, quantitative analysis on
ChkTM. Section VI reviews related work and Section VII
concludes the paper.

II. CORRECTNESS CRITERIA FOR TM

Serializability: The main correctness criterion we use in this
paper is conflict serializability [28]. We will discuss how
ChkTM verifies the serializability of every possible execution
of TM programs in Section IV-A.
Strong isolation: A TM system provides strong isolation
if transactions are isolated both from other transactions and
non-transactional memory accesses [20]. Implementing strong
isolation in an STM has an unattractive performance impact on

all non-transactional code. Although acceptable performance
has been reported using whole-program static analysis [27]
or dynamic recompilation [4, 26], few STMs provide strong
isolation.

In contrast, hardware TMs (HTMs) and some hybrid
TMs [3, 6] (including SigTM investigated in this paper)
provide strong isolation with low overheads using hardware
support. Some STMs provide partial isolation guarantees that
can be implemented more efficiently that strong isolation [8].
Of the TMs we examine in this paper, only SigTM provides
any isolation for non-transactional accesses. There is no need
to evaluate the partial guarantees for SigTM because it can
implement strong isolation efficiently.

Figure 1 presents two violations of strong isolation, as
discussed in [27]. Figure 1(a) illustrates a non-repeatable read
(NR). The expected program behavior is that T1’s two reads to
x should observe the same value. However, since T2 updates x
without using a write barrier, T1 cannot detect the conflict on
x. Therefore, the two reads to x may return different values.
Both lazy and eager STMs are vulnerable to NR.

Figure 1(b) illustrates a speculative dirty read (SDR) where
a non-transactional read may observe a value speculatively
written by a transaction. The expected program outcome
is x==1. However, since eager STM speculatively updates
shared memory in place on write (i.e., x=1), T2 may observe
the value speculatively written by T1 and set y to 2. When T1
re-executes the transaction after it aborts, it will not update x
because the value of y has been already updated to 2 by T2. In
contrast, lazy STM is invulnerable to SDR because the updates
made by a transaction are invisible (i.e., buffered) outside the
transaction until it commits. We refer readers to [27] for an
in-depth discussion on weak isolation behaviors in lazy and
eager STMs.

III. EVALUATED TM SYSTEMS

A. TL2

Lazy TL2: This STM maintains a software write buffer to
perform lazy versioning [9]. It uses a global version clock to
establish serializability. Using a hashing function, each mem-
ory object is associated with a version-owner lock (voLock)
that either acts as a lock or stores a version number that
indicates the value of global version clock at the time when
the memory object was written by a committing transaction.
When a transaction reads a memory object, it first checks its
write buffer. If not found in the write buffer, it checks the
version number in the associated voLock to check any conflict.
If no conflict is detected, the address of the memory object is
inserted in the read set of the transaction. When a transaction
writes to a memory object, it buffers the update into its write
buffer. On commit, a transaction performs the following two
steps: (1) acquiring all the voLocks for the memory objects in
its write set and (2) validating all the memory objects in its
read set. If any of the two steps fails, the transaction aborts.
Otherwise, the transaction writes back the buffered updates,
increments the version number in the acquired voLocks, and
finally releases the voLocks. Lazy TL2 and all other STMs
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Fig. 2: The overall architecture of ChkTM.

evaluated in this paper (i.e., eager TL2 and NesTM) provide
weak isolation of transactions.
Eager TL2: In contrast to lazy TL2, eager TL2 [5, 10]
maintains a software undo log to perform eager (in place)
versioning. The read barrier is similar to the one in lazy
TL2, but does not need to check the write buffer. When a
transaction writes to a memory object, it attempts to acquire
the associated voLock. If this acquisition fails, the transaction
aborts. Otherwise, the transaction updates the memory object
in place and inserts the previous value into its undo log. On
commit, a transaction validates all the memory objects in its
read set. If it fails, the transaction aborts by rolling back
the speculatively written memory objects and releasing the
acquired voLocks. Otherwise, the transaction increments the
version number in the acquired voLocks and releases them.

B. NesTM

NesTM extends eager TL2 to support closed-nested parallel
transactions [2]. Following the model in [23], NesTM allows
a transaction to execute only when it does not have any active
children (i.e., a transaction cannot concurrently run with its
children). In contrast to eager TL2, voLocks in NesTM are
extended to encode the version and ownership information at
the same time.

When a transaction reads a memory object, it checks the
owner of the memory object. If the owner is not itself or
its ancestor, the transaction aborts. Otherwise it checks the
version number to check any conflict. When a transaction
writes to a memory object, it attempts to acquire the associated
voLock only when the owner of the memory object is itself
or its ancestor. If the voLock acquisition fails, the transaction
aborts. Once the transaction acquires the voLock, it validates
its ancestors. If this validation fails, the transaction aborts.
Otherwise, the transaction updates the memory object in place.
On commit, a transaction validates all the memory objects in
its read set. If this validation fails, the transaction aborts by
restoring the values of memory objects and associated voLocks
in its write set to the previously observed values. Otherwise,
the transaction successfully commits by incrementing version
number in the acquired voLocks and transferring ownership
of the memory objects to its parent.

C. SigTM

Lazy SigTM: This hybrid TM accelerates a lazy-versioning
STM using hardware signatures [6]. Hardware signatures
conservatively represent the read and write sets of transac-
tions. In addition, hardware signatures continuously snoop the
coherence messages to provide conflict detection and strong
isolation. Lazy SigTM uses a software write buffer to perform
lazy versioning. Read and write barriers in lazy SigTM operate
similarly to the ones in lazy TL2, except that software read
and write sets are replaced with hardware signatures. On com-
mit, a transaction performs write-set validation by acquiring
exclusive ownership of the cache lines holding the memory
objects in its write buffer. If the write-set validation fails,
the transaction aborts. Otherwise, the transaction successfully
commits by writing back all the buffered updates.
Eager SigTM: In contrast to lazy SigTM, eager SigTM [5]
uses a software undo log to perform eager versioning. The
read barrier simply inserts the address into the read signature
and reads the memory value. The write barrier immediately
attempts to acquire exclusive ownership of the cache line
holding the memory object. If this acquisition fails, the trans-
action aborts. Otherwise, it updates the memory object in place
and inserts the previous value into its undo log. On commit,
the transaction simply resets hardware signatures. Like lazy
SigTM, eager SigTM provides strong isolation.

IV. DESIGN AND IMPLEMENTATION OF CHKTM

Figure 2 presents the overall architecture of ChkTM that
consists of the following three components: (1) an architectural
state space explorer, (2) TM model specifications, and (3) a
test program generator. All the components are implemented in
the Scala programming language [1]. We decided to use Scala
because its domain-specific language features allowed us to
implement ChkTM in a very concise way. We will discuss the
three components of ChkTM in a bottom-up approach.

A. Architectural State Space Explorer

As illustrated in Figure 2, the architectural state space
explorer (ASE) consists of two main components: (1) an
architectural simulator and (2) a state space explorer. The
architectural simulator models the internal architectural state



1: procedure EXPLORE
2: frontiers ← InitialState
3: while frontiers.isEmpty = false do
4: nextFrontiers ← ∅
5: for all currState in frontiers do
6: hasSucc ← false
7: for all trans in AllPossibleTransitions do
8: hasSucc ← true
9: nextState ← trans(currState)

10: transitionPair ← (currState,nextState)
11: if hist.contains(transitionPair)=false then
12: hist.put(transitionPair)
13: nextFrontiers.put(nextState)
14: if hasSucc = false then
15: terminals.put(currState)
16: frontiers ← nextFrontiers

Fig. 3: Pseudocode for the state space explorer.

of a simple shared memory multiprocessor system consisting
of processors, store buffers, and shared global memory. Each
processor in the simulator models a RISC processor with an
ALU, a program counter, a register file, a register checkpoint,
and a return stack. Every update to shared memory is made
via a bounded store buffer (SB) that may retire stores in any
order, which provides a memory consistency model similar to
SPARC’s Total Store Order (TSO) [29]. An explicit memory
fence instruction and a compare-and-swap instruction cause
SB flushes. When the SB size is set to 0, the simulator models
sequential consistency. We use only sequential consistency in
this work and leave the verification of TM systems under
relaxed consistency models as future work. Finally, all the
system parameters such as the number of processors and
shared memory size are fully configurable.

The second component of ASE is the state space explorer.
In the state space explorer, states are represented as persistent
trees, and state transitions are pure functions that produce a
new state without altering the old. Figure 3 illustrates how the
state space explorer performs a breadth-first search (BFS)1 to
determine all the possible final outcomes when executing a
small program using a TM model.

To reduce the state space, we implemented a simple opti-
mization in which instructions are merged with their successor
if the instruction’s dynamic execution reads and writes to
only processor-private values. Since these intermediate values
cannot affect the outcome, this optimization does not affect
the correctness of model checking.

To verify the serializability of a TM system, ChkTM first
performs coarse-grain state space exploration (CSE) where
only a single processor is active at any time and where the
active processor cannot be changed while a transaction is ac-
tive. CSE directly enumerates all serial schedules. The terminal
states produced by CSE are used as valid terminal states. We
augment the architectural state to record the values observed
by transactional reads (VOR) and the values overwritten by
transactional writes (VOW). VOR and VOW are retained only

1Since the state space explorer is based on BFS, it is highly parallelizable.
To implement the multi-threaded state space explorer, we parallelized the main
loop (i.e., line 5 in Figure 3) by dynamically assigning a chunk of iterations
to each thread at a time. We quantify its scalability in Section V.

Assume that initially x==y==0

// T1 // T2
atomic { atomic {
ld x st x,200
st y,101 } ld y }

VOR(T1)={(x,0)}
VOR(T2)={(y,101)}
x=200, y=101

VOR(T1)={(x,200)}
VOR(T2)={(y,0)}
x=200, y=101

T1: ld x
T2: st x,200
T2: ld y
T1: st y,101

VOR(T1)={(x,0)}
VOR(T2)={(y,0)}
x=200, y=101

(a) Test code and valid results (b) An invalid execution

Fig. 4: Detecting a serializability violation using the values observed
by transactional reads (VOR).

Assume that initially x==0

// T1 // T2
atomic { atomic {
st x,100 st x,200 }
st x,101 }

VOW(T1)={(x,0),(x,100)}
VOW(T2)={(x,101)}
x=200

VOW(T1)={(x,200),(x,100)}
VOW(T2)={(x,0)}
x=101

T1: st x,100
T2: st x,200
T1: st x,101

VOW(T1)={(x,0),(x,200)}
VOW(T2)={(x,100)}
x=101

(a) Test code and valid results (b) An invalid execution

Fig. 5: Detecting a conflict-serializability violation using the values
overwritten by transactional writes (VOW).

for committed transactions. In addition, ChkTM ensures that
every store in a test program writes a unique value. This
establishes one-to-one mapping between values recorded in
VOR and VOW, and the conflicting read or write operations.
After CSE is performed, ChkTM records the VOR, VOW, and
final memory state corresponding to every serial execution.
These are the valid terminal states.

Next, ChkTM performs fine-grain state space exploration
(FSE) which explores every possible memory access interleav-
ing. When a terminal state is reached during FSE, ChkTM
checks that the VOR, VOW, and final memory state of the
terminal state are identical to one of the valid terminal states
produced by CSE. Figure 4 illustrates how ChkTM detects
a serializability violation using VOR and final memory state.
Figure 4(a) shows a simple test program and a set of valid
terminal states produced by CSE. Figure 4(b) illustrates an
invalid execution trace and an invalid terminal state produced
during FSE. ChkTM reports a serializability violation by
detecting the terminal state reached during FSE does not match
to any valid terminal state in Figure 4(a).

A serializability test using only the VOR and final memory
state guarantees view serializability. To enforce conflict se-
rializability, we add VOW. The key observation behind using
VOW is that any view serializable, but not conflict serializable
schedule contains a blind write [28]. VOW allows us to check
that the ordering of all the write operations of a terminal state



long TxLoad(Self, addr)
{
if (Self.WS.contains(addr)){

val = Self.WS.lookup(addr);

Self.RS.insert(addr);

return val; }
cv = getVo(addr);
val = *addr;
if (isLocked(cv) || extractTS(cv)>Self.rv ||

cv!=getVo(addr)){
TxAbort(Self);

}
Self.RS.insert(addr);

return val;
}

// TxLoad, BX: addr, AX: return value
instrs = instrs ++ (List(
(0 -> new Instr {
nextPC=TxLoad+(if (ws.contains(bx)) 10 else 40) }),

(10 -> new Instr {
assign(AXKey(cpu), ws.apply(bx).wsVal) }),

(20 -> new Instr {
rs = rs + bx
reads = (bx, ax) :: reads }),

(30 -> new Ret),
(40 -> new Instr { vx = read(VoLockKeys(bx)) }),
(50 -> new Instr { ax = read(AppMemKeys(bx)) }),
(60 -> new Instr {
nextPC = (if ((extractOwner(vx) != -1) ||
(extractTS(vx)>rv) || (vx!=read(VoLockKeys(bx))))
TxAbort else (TxLoad + 70)) }),

(70 -> new Instr {
rs = rs + bx
reads = (bx, ax) :: reads }),

(80 -> new Ret),
).map(e => (e._1 + TxLoad, e._2)))

(a) Pseudocode (b) Modeled code

Fig. 6: A comparison between the C-language styled pseudocode and the Scala-language styled model in ChkTM for TxLoad in lazy TL2.

reached during FSE is identical to the one produced by a
serial execution in CSE. Figure 5 demonstrates an example
of how ChkTM detects a conflict serializability violation (but
still view serializable) of an execution using VOW.

Finally, similar to the serializability verification, ChkTM
checks strong isolation as follows. Given a test program,
ChkTM produces all the possible expected outcomes discussed
in Section II by performing CSE. ChkTM then performs FSE
to explore every possible execution of the test program. If any
unexpected outcome is detected during FSE, ChkTM reports
a strong isolation violation.

B. TM Model Specifications

1) Modeling TL2: To model TL2, the baseline ASE is
augmented with additional state variables including a global
version clock, voLocks, read and write sets of transactions.
Global version clock and voLocks are modeled as globally
visible variables because they are accessed by multiple pro-
cessors in the system. In contrast, read and write sets of each
transaction are modeled as processor-private variables.

Then, the algorithms of lazy and eager TL2 are specified
using a domain-specific language embedded in Scala. Figure 6
compares the C language-styled pseudocode and the model
specified in Scala for TxLoad in lazy TL2. Figure 6 clearly
demonstrates that ChkTM aims to model an evaluated TM
system at the implementation level to reveal as many potential
bugs as possible. Other TM barriers are also modeled similarly.

As noted in [24], it is challenging to accurately model
timestamp-based STMs including TL2. This is because an
infinite number of states correspond to serializable executions
with different timestamp values. To address the state space
explosion problem, we introduce timestamp canonicalization.
The key observation behind this technique is that the rela-
tive ordering among timestamp values is important to order
transactional events, but the exact timestamp values are unim-
portant. In this spirit, after each step, ChkTM canonicalizes all

2

GC vo[0] vo[1] m[0] m[1] vx[0] vx[1]

11 10 42 77 10 11

Globally Visible Variables P0 private P1 private

1 01 00 42 77 00 01

Fig. 7: An example of timestamp canonicalization.

timestamps that are present anywhere in the architectural state.
There are three steps: (1) compute the set of timestamp values
present anywhere in the architectural state, (2) sort them, and
(3) replace each value with its ordinal position in the sorted
set. The canonicalized variables are global version clock (GC),
voLocks, and any registers that are holding a timestamp value.
Figure 7 gives an example. Note that the least significant
digit (in decimal) of voLock and VX register values is not
canonicalized because it encodes the ownership information.

2) Modeling NesTM: In addition to the state variables
introduced to model TL2, the NesTM model uses additional
state variables including a doomed bit, a rollback counter, and
a commit lock per each processor. Furthermore, additional
instructions such as fork and join are provided to initiate
and terminate the execution of nested threads. Unlike (non-
nested) TL2, the read and write sets of each processor are
also modeled as globally visible variables because they can
be accessed by child transactions running on different proces-
sors [2]. Finally, since the rollback counter may also cause
a state space explosion, ChkTM performs rollback-counter
canonicalization, in addition to timestamp canonicalization.

3) Modeling SigTM: To model SigTM, the baseline ASE
is augmented with additional state variables to represent per-
processor hardware signatures (and their state information
such as lookUp and WSigNack), and transactional state
information such as a doomed bit. All of them are modeled as



atomic {
if (exec) {
if (read) { TxLoad(genAddr); }
else { TxStore(genAddr,genUniqVal); }}

// repeat the process as necessary
... }

Fig. 8: Skeleton transaction code used for tests.

Assume that initially x==y==0

// T1
atomic {
st x,1
ld y }

// T2
atomic {
st y,2
ld x }

Can VOR(T1)=={(y,2)} and VOR(T2)=={(x,1)}?

Fig. 9: A simple test program used to test (buggy) eager TL2.

globally visible state variables because they can be accessed by
other processors. Unlike TL2 and NesTM, timestamp variables
are unnecessary to model SigTM. Additional memory oper-
ations are also modeled including fetchExclusive and
non-transactional load and store instructions.

Currently, ChkTM models SigTM using a zero-latency
interconnection network. We expect that prior work on model
checking cache coherence protocols [18] can be used to extend
the current hardware model in ChkTM. We leave this as future
work.

C. Test Program Generator

To verify the serializability of TM systems, the test program
generator of ChkTM uses the skeleton code shown in Figure 8.
A transaction executes a specified number of transactional
memory operations. For each memory operation, there are
three parameters to consider: (1) whether it is performed or
not, (2) the type of memory operation (i.e., read or write), and
(3) the accessed memory location. All these parameters can be
generated either randomly (for random tests) or systematically
(for exhaustive, complete tests). Also note that the value
written by each write operation is unique with respect to all
other written values. Finally, to verify the strong isolation
guarantees of TM, we manually coded each problematic
scenario described in [27].

D. Case Study: Invalid-read Problem

To showcase ChkTM’s effectiveness, we present a case
study in which we found an unreported invalid-read bug in
the available implementation of eager TL2. To verify the
correctness of eager TL2, we modeled it and performed ex-
haustive tests using ChkTM. During the tests, ChkTM reported
a serializability violation with the test program in Figure 9 and
generated problematic executions including the one shown in
Figure 10.

To investigate the cause of the problem, we analyze the in-
valid execution in Figure 10. T1 executes the code in TxLoad,
while T2 executes the code in TxStore and TxAbort. At
step 0, T1 samples the current value of the voLock for addr
which is the address of y. At steps 1 and 2, T2 acquires

//T1:TxLoad
0: cv=getVo(addr)
1: ...
2: ...
3: val=*addr // 2!
4: ...
5: ...
6: if(...cv!=getVo(addr)){
7: ... }

//T2:TxStore,TxAbort
...
lock(addr)

*addr=2
...

*addr=0
unlock(addr)
...
...

Fig. 10: An unserializable execution detected by ChkTM in (buggy)
eager TL2.

1: procedure TXABORT
2: rs.reset()
3: for all addr in ws do
4: Memory[addr] ← ws.lookup(addr)
5: for all addr in ws do
6: unlock(addr) . Timestamp value should have been incremented.
7: ws.reset()
8: doContentionManagement()
9: restoreCheckpoint()

Fig. 11: A bug (in line 6) found in TxAbort in eager TL2.

the voLock and writes a value of 2 to addr during the
execution of TxStore. At step 3, T1 reads the speculatively
written (i.e., 2) value from addr. At steps 4 and 5, during the
execution of TxAbort, T2 restores the memory and voLock
values for addr to the previously observed values. At step
6, the if statement tests whether the value of the voLock
read at step 0 matches the current value of the voLock (i.e.,
cv!=getVo(addr)?). Since T2 has already restored the
value of voLock to the previous value (i.e., the same value
as cv), the test at step 6 fails (i.e., cv==getVo(addr)).
Therefore, T1 assumes the memory value read at step 3 is
still valid and successfully commits in the end. This is an
execution scenario in which the invalid outcome in Figure 9
is produced.

By analyzing the invalid execution, we identified that there
is a subtle correctness bug in line 6 in TxAbort’s code
shown in Figure 11. To avoid the invalid-read problem, an
aborting transaction must increment the timestamp values of
the acquired voLocks instead of merely restoring them to the
previous values. We reported this bug to the TL2 developers.

In addition, readers should note that it may be very difficult
to find this kind of subtle bugs by performing random tests
using the implemented TM code on real machines. One can
increase the possibility of revealing such bugs from random
tests by inserting randomized delays at various locations in
the TM code (e.g., between the operations at steps 0 and 3 in
Figure 10). However, it requires programmer’s non-trivial in-
tuitions on where potential bugs would be. In contrast, ChkTM
can reveal any potential bug without requiring programmer’s
intuitions because it explores every possible execution of a
TM program, even unlikely ones.

E. Discussion

State space reduction: While we implemented a simple
optimization that merges locally visible steps to reduce the
state space in ChkTM, it is an interesting, open question
to implement more aggressive optimizations, such as partial



TM Tot. time (s) Avg. time (s) Avg. # of states
TL2-L 7971 0.51 2115
TL2-E 13453 0.86 10362
SigTM-L 10494 0.67 4931
SigTM-E 8227 0.53 2279

TABLE I: Total, average execution time, and average number of
explored states required to verify the serializability of TM systems.

order reduction (POR) techniques [12]. As noted in [24],
traditional POR techniques cannot be directly applied due
to their conservativeness when iterations or global variables
are used in the TM model. In particular, we note that it will
be interesting to extend dynamic POR techniques [11] in the
context of model checking TM systems.
Modeling other TM systems: Because ChkTM addresses the
state space explosion problem due to the use of timestamps
(or any kind of counters) by timestamp canonicalization, it is
straightforward to model other STMs in ChkTM. To model
other hybrid or hardware TM systems, ChkTM should be
augmented with additional state variables to model hardware
components used in the evaluated TM systems. An open
question is how to model asynchronous communications with
hardware components without causing a state space explosion.
Verifying liveness: ChkTM could be extended to verify the
liveness of TM systems by detecting cycles in the state
transition graph. The existence of a cycle indicates that there
is an execution scenario in which a TM program can never
terminate (e.g., transactions infinitely abort and restart). Note
that all the evaluated TM systems in this paper are known to
admit livelock, but attempt to probabilistically provide liveness
using randomized backoff schemes.

V. EVALUATION

In this section, we first discuss our main correctness results
for TL2 and SigTM, and describe our progress in verifying
NesTM. We then present an in-depth, quantitative analysis on
ChkTM to understand the practical issues in model checking
TM systems. More specifically, we investigate (1) the sensi-
tivity of the execution time and the number of the explored
states to the parameters such as test program size and number
of threads, (2) the scalability of the multi-threaded ChkTM,
and (3) the tradeoff between the performance and correctness
of the verification when approximation techniques are applied
to the TM model.

We performed experiments on computers with two quad-
core 2.33GHz Intel R©Xeon R©CPUs and 32GB of shared mem-
ory. We used Linux x86_64 kernel 2.6.18 and the 64-bit
Server VM in Sun’s JavaTMSE Runtime Environment, build
1.6.0-14-b08. We used an 8GB heap for model checking TL2
and SigTM and a 30GB heap for model checking NesTM.
Finally, we used the Scala compiler version 2.7.5 to compile
the ChkTM code.

A. Correctness Results

Serializability: To verify the serializability of TL2 and
SigTM, we first generated all the possible test programs

Anomaly TL2-L TL2-E SigTM-L SigTM-E
NR Y Y N N
ILU Y Y N N
IDR N Y N N
SLU N Y N N
SDR N Y N N
OW Y N N N
BW Y N N N

TABLE II: Summary of weak isolation anomalies in TL2 and SigTM.

that satisfy the following conditions2: (1) two threads in
each program, (2) one transaction per thread, (3) at most
three transactional memory operations (i.e., read or write) per
transaction, (4) no non-transactional memory operations in the
program (i.e., purely transactional). In addition, we assumed
that the underlying system has two shared memory words and
provides sequential consistency.

We then ran all the generated test programs on the TL2 and
SigTM models in ChkTM and verified that no errors were
reported. Therefore, we make the following statement:

TL2 and SigTM (both lazy and eager) guarantee the se-
rializability of every possible execution of every possible
program that runs two threads, each of which executes one
transaction that performs no more than three transactional
memory operations.

Table I summarizes the execution time and number of
explored states required to verify each TM system. It takes less
than a second to run each test and 2–4 hours to exhaustively
verify each TM system with all the possible test programs.
Table I shows that the explored state space in verifying lazy
TL2 is smaller than the ones with SigTM. Since read sets
and write buffers of lazy TL2 can be modeled as processor-
private variables, our optimization that merges locally visible
steps is effective in reducing the state space. In contrast, it
is less effective for SigTM because read and write signatures
in SigTM are modeled as globally visible variables. Table I
also demonstrates that the explored state space in model
checking eager TL2 is significantly larger than other TM
systems. Since the timestamp values are incremented even
when a transaction aborts to avoid the invalid-read problem,
more unique states associated with the incremented timestamp
values are generated and explored in verifying eager TL2.
Strong isolation: To investigate the strong isolation guarantees
of TL2 and SigTM, we manually coded the test programs
presented in [27]. We tested seven of the nine anomalies,
including non-repeatable reads (NR), intermediate lost updates
(ILU), intermediate dirty reads (IDR), speculative lost updates
(SLU), speculative dirty reads (SDR), overlapped writes (OW),
and buffered writes (BW). We omitted granularity-related
anomalies as they can only be solved at a level higher than a
word-based STM. Table II summarizes the results. For every
possible execution of all the test programs, SigTM (both lazy
and eager) did not produce any unexpected final outcome. In
contrast, ChkTM successfully detected weak isolation anoma-
lies for TL2. In summary, we were able to mechanically verify

2The use of this configuration was inspired by the approach discussed
in [24].
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Fig. 12: Sensitivity of the execution time and number of explored
states to the test program and shared memory sizes.

the arguments in [27] using the memory operations (both
transactional and non-transactional) modeled in ChkTM.

B. Quantitative Analysis

Sensitivity to the system parameters: We investigate the
sensitivity of the execution time and number of explored states
in verifying TM to various system parameters. The parameters
on which we focus are program and shared memory sizes,
and number of threads. Figure 12 illustrates the results for the
program and shared memory sizes. Program size represents the
number of memory operations performed by each transaction.
Shared memory size denotes the number of shared memory
words in the system. The first result data set is collected by
just scaling the program size while the shared memory size is
fixed at two (i.e., two shared memory words in the system). In
contrast, the second result data set is collected by incrementing
the shared memory size by 1 when the program size is
incremented by 2. In the baseline configuration, program and
shared memory sizes are set to 2. All the results are normalized
to the baseline result. Finally, the result at each configuration
is collected by running 100 randomly generated test programs
on the lazy TL2 model.

Figure 12 shows that the execution time and number of
states increase rather slowly when only the program size
increases. With a small shared memory size, each operation
conflicts with other operations with a high probability. This
limits the number of possible interleavings as each operation
has dependencies with other operations due to the conflicts.
Therefore, the state space grows relatively marginally even
when each transaction performs more operations. In contrast,
with a larger shared memory size, each operation can execute
more independently with respect to other operations due
to lower contention. Therefore, more interleavings can be
produced and the state space grows much faster when both
program and shared memory sizes increase.

We also investigate the sensitivity of the execution time
and number of states to the number and configuration of
threads when checking NesTM. Figure 13 presents the sensi-
tivity results to different number and configuration of threads.
Specifically, C1 is the configuration in which two top-level
transactions (T1 and T2) run. C2 is generated by adding T1.1
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Fig. 13: Sensitivity of the execution time and number of explored
states to the number of threads.

(a child of T1) to C1. C3 is generated by adding T1.2 (a child
of T1 and sibling of T1.1) to C2. C4 and C5 are repeatedly
generated in a similar manner. Each transaction executes only
two reads, to reduce the state space.

Figure 13 shows that the execution time and number of
states required to verify NesTM increases explosively when
the number of threads rises (note that y-axis in Figure 13 has
a log scale). One interesting observation is that the increase
is largest when a new sibling thread is added (e.g., from C2
to C3, from C4 to C5). This is due to the fact that there is no
ordering dependency between sibling transactions, thus more
interleavings can be produced. In contrast, when a new (single)
child thread is added (e.g., from C1 to C2, from C3 to C4),
the increase is relatively smaller. This is because the newly
added child has an ordering dependency with its parent, thus
the number of possible interleavings is limited. For instance,
T1.1 can run only after T1 forks it, and T1 is suspended while
T1.1 is active.

The result in Figure 13 clearly motivates the need for a
reduction theorem applicable to nested parallel TM. While
two threads and two variables are proved sufficient for non-
nested TM in [13], no such guarantee of completeness is
available for our checks of NesTM. Since the state space
explosively grows with the increasing number of threads and
nesting levels, model checking may be feasible only for small
configurations. For example, when larger test programs are
used with the thread configuration C5, it is currently not
possible to verify NesTM using ChkTM even on computers
with 32GB physical memory due to a state space explosion.
Finally, dynamic state space reduction techniques should be
also investigated to make it feasible to model check the nested
TM systems on commodity machines.
Scalability of the multi-threaded ChkTM: To investigate
the scalability of the multi-threaded ChkTM, we use a test
program with the thread configuration C5 on the NesTM
model. To avoid a state space explosion, each transaction in the
test program performs only two reads. We varied the number
of concurrent threads from 1 to 8, and measured the speedup
by dividing the execution time with multiple threads by the
one with 1 thread. As shown in Figure 14, the multi-threaded
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Aprx. Loc. Description
#1 L Atomically read voLock and mem. value
#2 C Atomically release voLocks
#3 A Atomically release voLocks
#4 S Atomically insert a WS entry and write mem. value
#5 A Atomically rollback mem. values
#6 C,A,S All except for Approx. 1

TABLE III: Approximations applied to NesTM models. L, S, C, and
A denote TxLoad, TxStore, TxCommit, and TxAbort.

ChkTM shows reasonable scalability when model checking
NesTM (e.g., speedup of 3.5× with 8 threads).
Tradeoff between performance and correctness: One
commonly-used technique to reduce the state space is to
apply approximations by merging several steps of the modeled
algorithm into one. Obviously, a careless use of such approx-
imations may affect the correctness of the verification. To in-
vestigate the tradeoff between the performance and correctness
of the verification, we apply a set of approximations when
verifying NesTM. Table III summarizes such approximations.
For example, Approximation 1 merges the steps of reading
the voLock and the value of a memory object (i.e., the
operations at step 0 and 3 in Figure 10 are assumed to happen
atomically). For another example, Approximation 2 releases
all the acquired voLocks on commit in a single step (i.e., the
loop is atomically executed).

Table IV summarizes the average execution time and the
number of explored states for verifying the baseline and
approximated NesTM models. The results were collected using
10 randomly generated test programs in which the thread con-
figuration C3 is used and each transaction executes at most two
memory operations. Table IV shows that Approximation 2 is
effective in reducing the state space. On commit, a transaction
tends to have more entries in its write set because it has
executed all of its memory operations. Therefore, Approxima-
tion 2 can effectively reduce the state space by merging more
steps in the algorithm. In contrast, approximations applied to
the abort barrier are not as effective. On abort, a transaction
tends to have less entries in its write set because it often
fails to execute all of its memory operations. Therefore the
approximations applied to the abort barrier are less effective
as they merge fewer steps. In summary, Approximation 6 (all
the approximations except for Approximation 1) reduces the

Ver Time (s) # of states Fidelity
Base 11.70 619,864 Y
Aprx. 1 10.51 533,996 N
Aprx. 2 8.82 415,530 Y
Aprx. 3 11.79 617,851 Y
Aprx. 4 11.46 602,791 Y
Aprx. 5 11.52 618,011 Y
Aprx. 6 8.29 399,058 Y

TABLE IV: Average execution time, number of explored states, and
the fidelity of the baseline and approximated NesTM models.

execution time and number of states by 29.1% and 35.6%,
respectively.

Table IV also summarizes the fidelity of the baseline
and approximated NesTM models when the invalid-read bug
discussed in Section IV-D is intentionally injected. With the
injected bug, the model with Approximation 1 does not report
an error (i.e., false negative). This is because merging the
aforementioned steps makes it impossible to produce any
invalid execution similar to the one shown in Figure 10.
To our surprise, other approximated models do not show
any false negative (at least for the invalid-read bug with a
set of test programs we used). If it can be proven that a
particular approximation does not affect the correctness of
model checking, it can be used as an effective tool to reduce
the state space.

VI. RELATED WORK

While there is a large amount of previous work on TM,
relatively little work has been done on formally verifying TM
systems. Cohen et al. [7] proposed a formal method to verify
the correctness of a few TM systems similar to TCC [14] and
LogTM [22] using the TLA+ model checker [19]. Guerraoui et
al. [13] proved an important reduction theorem that states the
TM verification problem can be reduced to the most general
problem with two threads and two shared variables, when an
evaluated TM satisfies a set of certain conditions. In addition,
they verified the correctness of abstract models of several
STMs including DSTM and TL2. While insightful, these prior
theoretical works modeled the evaluated TM systems rather
abstractly. For example, the TL2 model in [13] does not
model the version control mechanism using timestamps, which
requires a hand proof that their abstract model is equivalent to
the actual implementation. In contrast, ChkTM aims to model
the evaluated TM systems close to the implementation level,
to aggressively find potential bugs.

In [24], O’Leary et al. verified the correctness of Intel’s
McRT STM using the Spin model checker [17]. Our work is
similar to theirs in the sense that both works attempt to model
TM systems at the implementation level. Our work, however,
significantly differs in the following three aspects. First, we
extend the use cases of model checking TM by investigating
a wider range of TM systems, including an industrial, high-
performance STM (TL2), a hybrid TM (SigTM) that uses
hardware signatures, and an STM (NesTM) that supports
nested parallel transactions. Second, ChkTM models both
transactional and non-transactional memory operations to en-



able our study on subtle correctness issues with weak isolation
and ordering. Finally, we provide an in-depth, quantitative
analysis on ChkTM to understand the practical issues and
motivate further research in model checking TM systems.

Finally, Manovit et al. proposed an axiomatic formulation to
model the formal specification of a TM system and used it with
random testing to find bugs in the evaluated TM system [21].
Our work differs in the sense that ChkTM aims to formally
verify the correctness of TM systems by model checking all
possible executions.

VII. CONCLUSION

This paper presents ChkTM, a flexible model checking envi-
ronment for verifying the correctness of various TM systems.
ChkTM aims to model TM systems at the implementation
level to reveal as many potential bugs as possible. Using
ChkTM, we found a subtle, unreported correctness bug in
the current implementation of eager TL2. We also verified
the serializability of TL2 and SigTM and strong isolation
guarantees of SigTM. We quantitatively analyzed ChkTM to
understand the practical issues in model checking TM systems.
Finally, our quantitative study motivates further research such
as investigating a reduction theorem and dynamic partial order
reduction techniques for verifying TM systems with nested
parallelism without causing a state space explosion.
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