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ABSTRACT 
Due to their high volume, general-purpose processors, and now 
chip multiprocessors (CMPs), are much more cost effective than 
ASICs, but lag significantly in terms of performance and energy 
efficiency.  This paper explores the sources of these performance 
and energy overheads in general-purpose processing systems by 
quantifying the overheads of a 720p HD H.264 encoder running 
on a general-purpose CMP system. It then explores methods to 
eliminate these overheads by transforming the CPU into a 
specialized system for H.264 encoding.  We evaluate the gains 
from customizations useful to broad classes of algorithms, such as 
SIMD units, as well as those specific to particular computation, 
such as customized storage and functional units.  

The ASIC is 500x more energy efficient than our original four-
processor CMP.  Broadly, applicable optimizations improve 
performance by 10x and energy by 7x. However, the very low 
energy costs of actual core ops (100s fJ in 90nm) mean that over 
90% of the energy used in these solutions is still “overhead”. 
Achieving ASIC-like performance and efficiency requires 
algorithm-specific optimizations. For each sub-algorithm of 
H.264, we create a large, specialized functional unit that is 
capable of executing 100s of operations per instruction. This 
improves performance and energy by an additional 25x and the 
final customized CMP matches an ASIC solution’s performance 
within 3x of its energy and within comparable area.  

Categories and Subject Descriptors 
C.5.4 [Computer Systems Implementation]: VLSI Systems – 
customization, heterogeneous CMP; C.1.3 [Processor 
Architectures]: Other Architecture Styles - Heterogeneous 
(Hybrid) Systems. 

General Terms 
Algorithms, Measurement, Performance, Design, Experimentation. 

Keywords 
ASIC, H.264, chip multiprocessor, high-performance, energy 
efficiency, customization, Tensilica. 
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1. INTRODUCTION 
Most computing systems today are power limited, whether it is 
the 1W limit of a cell phone, or the 100W limit of a server. Since 
technology scaling no longer provides the energy savings, it once 
did [1], designers must turn to other techniques for continued 
performance improvements and tractable energy costs. One 
attractive option is to understand and to incorporate sources of 
ASIC efficiency, since general-purpose processors can be 
outclassed by three orders of magnitude in both performance and 
energy efficiency by ASIC designs [5].  

The desire to achieve ASIC-like compute efficiencies with 
microprocessor-like application development cost is pushing 
designers to explore two new areas.  One area aims to create CPU 
designs with much lower energy per instruction [6], while the 
other aims to create new design methodologies to reduce the cost 
of creating customized hardware.  Examples of the latter include 
using higher levels of abstraction (e.g., C-to-RTL [8], [7]), and 
even full chip generators using extensible processors [2]. A 
critical first step in all of these approaches is to understand, in 
quantitative terms, the types and magnitudes of energy overheads 
in general-purpose processors. Once these are understood, it is 
then possible to explore ways to eliminate these overheads and 
assess the feasibility of creating an efficient, general-purpose 
machine. 

This paper quantifies general-purpose overheads, exploring a 
series of customizations that reduce overheads to achieve ASIC-
like efficiency. In particular, we consider three broad strategies: 
(1) techniques to exploit instruction- and data-level parallelism, 
such as VLIW and SIMD, (2) techniques to customize instructions 
by fusing complex, frequently occurring instruction sub-graphs, 
and (3) techniques to create application-specific data storage with 
fused functional units. These strategies span a range of general 
and domain-specific customization, incurring progressively 
greater design effort.  

We evaluate these strategies by transforming a general-purpose, 
Tensilica-based, extensible CMP system into a highly efficient 
720p HD H.264 encoder. We choose H.264 because it 
demonstrates the large energy advantage of ASIC solutions (500x) 
and because there exist commercial ASICs that can serve as a 
benchmark. Moreover, H.264 contains a variety of computational 
motifs, from highly data parallel algorithms (motion estimation) 
to control intensive ones (CABAC). 

The results are striking.  Starting from a 500x energy penalty, 
adding relatively wide (16x) SIMD execution units improves 



performance by 10x and energy efficiency by 7x.  Since SIMD 
units are often augmented with special fused instructions to 
accelerate important applications, we introduce our own custom 
fused instructions to improve both performance and energy 
efficiency by an additional 1.4x.  Despite these customizations, 
which collectively improve energy efficiency by 10x, the resulting 
solution is still 50x less energy efficient than an ASIC.   

An examination of the energy breakdown clearly demonstrates 
why. Since the SIMD unit customizes datapath widths of 8-12bits, 
functional unit energy comprises less than 10 percent of the total 
even when performing more than 10 operations per cycle.  Thus, 
to create a truly efficient processor, one needs to construct 
instructions that aggregate enough computation to offset the 
energy overheads of flexible instruction and data fetch.  Creating 
such “magic” instructions improves energy efficiency by another 
18x and yields a solution within 3x of a full ASIC design.  

While identifying the right customizations for a given application 
takes significant effort, it is hard to achieve ASIC-like efficiencies 
without them. The inescapable conclusion is that truly efficient 
designs will require application-specialized hardware. If energy 
efficiency is going to drive future computing design, then we need 
frameworks that allow application experts to easily (and at low 
cost) create customized solutions. The fact that, for our 
application, we can achieve good efficiency using processor 
instruction extensions is an encouraging sign. 

Since our experiments use an extensible processor, the next 
section reviews some of the prior work in this area, provides an 
overview of H.264 encoding, and describes the performance of 
hardware and software solutions. Section 3 then presents our 
experimental methodology, describing our baseline, generic 
H.264 implementation on a Tensilica CMP and outlining our 
strategies for customizing this system.  The performance and 
efficiency gains are described in Section 4, which also explores 
the causes of the overheads and different methods for addressing 
them.  Using the insight gained from our results, Section 5 
discusses the broader implications for efficient computing and 
supporting application driven design. 

2. BACKGROUND 
Since we use an extensible processor for our case study, we first 
describe prior work on efficient computing, focusing on processor 
extensions. With this background, we then provide an overview of 
H.264 encoding and its main compute stages.  The section ends by 
describing hardware and software implementations to demonstrate 
the performance advantages of an ASIC.  

2.1  Related Work in Efficient Computing 
General-purpose processors are often customized to improve their 
efficiency for specific application domains. For example, SIMD 
architectures achieve higher performance for multimedia and 
other data-parallel applications, while DSP processors are tailored 
to perform signal-processing tasks efficiently. More recently, 
ELM [6] and AnySP [10] have been optimized for embedded and 
mobile signal processing applications, respectively, by reducing 
processor overheads. While these strategies are meant to cover a 
broad spectrum of applications, special instructions are sometimes 
added to accelerate frequently used or critical operations for 
specific applications. For example, Intel’s SSE4[11][12] includes 
instructions to accelerate matrix transpose and sum-of-absolute-
differences. 

Customizable processors allow designers to take the next step, and 
create instructions tailored to applications. Extensible processors 
such as Tensilica’s Xtensa provide a base design that the designer 
can extend with custom instructions and datapath units [9]. 
Extending the ISA for a given application can be done either 
manually or with automated tools. Tensilica provides an 
automated ISA extension tool [18], which achieves speedups of 
1.2x to 30x for EEMBC benchmarks [17] and signal processing 
algorithms [16]. Other tools have similarly demonstrated 
significant gains from automated ISA extension [13][14]. While 
automatic ISA extensions can be very effective, manually creating 
ISA extensions gives even larger gains: Tensilica reports speedups 
of 40x to 300x for kernels such as FFT, AES and DES encryption 
[19][20][21].  

Our work takes customizable processors, which are much less 
efficient than ASICs, and determines what is required to close that 
efficiency gap within a flexible framework. While previous 
studies have demonstrated significant improvements in 
performance and efficiency, we explore the reasons for these 
gains, which is essential to determine the nature and degree of 
customization necessary for future systems. Our approach starts 
with a generic CMP system, then customizes its memory system 
and processors to determine the magnitude and sources of 
overhead eliminated in each step toward achieving a high 
efficiency 720p HD H.264 encoder. 

2.2 H.264 Algorithm and Computational Motifs 
To understand how we customize a generic CMP to efficiently 
implement H.264, we must first understand the basic components 
of the H.264 algorithm. Five major functions comprise more than 
99% of the total execution time in our base CMP implementation:   

(i) IME: Integer Motion Estimation  

(ii) FME: Fractional Motion Estimation  

(iii) IP: Intra Prediction  

(iv) DCT/Quant: Transform and Quantization and  

(v) CABAC: Context Adaptive Binary Arithmetic Coding.  

We implement the H.264 baseline profile at level 3.1; however, 
we use CABAC in place of CAVLC because CABAC is more 
complex and more challenging to improve [23][24].  CABAC is 
also more representative of advanced coding steps in other 
applications.  

IME finds the closest match for an image-block from a previous 
reference image, and computes a vector to represent the observed 
motion. While it is one of the most compute intensive parts of the 
encoder, the basic algorithm lends itself well to data parallel 
architectures. When run on our base CMP, IME takes up 56% of 
the total encoder execution time and 52% of total energy.  

The next step, FME, refines the initial match from integer motion 
estimation and finds a match at quarter-pixel resolution. FME is 
also data parallel, but it has some sequential dependencies and a 
more complex computation kernel that makes it more challenging 
to parallelize.  FME takes up 36% of the total execution time and 
40% of total energy on our base CMP design. Since FME and 
IME together dominate the computational load of the encoder, 
optimizing these algorithms is essential for an efficient H.264 
system design. 



IP then uses previously encoded neighboring image-blocks within 
the current image to form a prediction for the current image-
block. While the algorithm is still dominated by arithmetic 
operations, the computations are much less regular than the 
motion estimation algorithms. Additionally, there are sequential 
dependencies not only within the algorithm but also with the 
transform and quantization function. 

Next, in DCT/Quant, the difference between a current and 
predicted image block is transformed and quantized to generate 
quantized coefficients, which then go through the inverse 
quantization and inverse transform to generate the reconstructed 
pixels. The basic function is relatively simple and data parallel.  
However, it is invoked a number of times for each 16x16 image 
block, which calls for an efficient implementation. For the rest of 
this paper, we merge these operations into the IP stage. The 
combined operation accounts for 7% of the total execution time 
and 6% of total energy. 

Finally, CABAC is used to entropy-encode the coefficients and 
other elements of the bit-stream. Unlike the previous algorithms, 
CABAC is sequential and control dominated. While it takes only 
1.6% of the execution time and 1.7% of total energy on our base 
design, CABAC often becomes the bottleneck in parallel systems 
due to its sequential nature. This becomes particularly important 
because we need to speed up the application by around 250x on a 
four-processor system. After speedups in the first four functions, 
CABAC becomes the bottleneck and cannot be ignored.  

2.3 Current H.264 Implementations 
The computationally intensive H.264 encoding algorithm poses a 
challenge for general-purpose processors, and is typically 
implemented as an ASIC. Prior work has demonstrated efficient 
hardware architectures for various sub-algorithms in H.264 
[33][34][35][36]. T.-C. Chen et al. implement a full-system H.264 
encoder [4] and demonstrate that real-time HD H.264 encoding is 
possible in hardware using relatively low power and area cost. 
Later implementations employ clever algorithmic optimizations 
which sacrifice some signal-to-noise ratio (SNR) but significantly 
reduce energy and area [29][30]. While these optimizations are 
useful, our study works with the basic algorithms similar to those 
in [4]. Our aim is to understand the mechanisms behind high 
efficiency of custom hardware, and these insights are not likely to 
change significantly for a particular algorithmic variant. 

There has also been H.264 software optimizations, particularly for 
motion estimation, which takes most of the encoding time. For 
example, sparse search techniques along with other algorithmic 
modifications speed up software performance of IME and FME 
by up to 10x with negligible loss in SNR [31] [32]. Combining 
aggressive algorithmic modifications with multiple cores and SSE 
extensions lead to highly optimized H.264 encoders on Intel 
processors [3][37]. 

Despite these optimizations, software implementations of H.264 
lag far behind dedicated ASICs. Table 1 compares a software 
implementation of a 480p SD encoder [3] to a 720p HD ASIC 
implementation [4]. The software implementation employs a 2.8 
GHz Intel Pentium 4 executing highly optimized SSE code. This 
results in very high-energy consumption and low area efficiency. 
It is also worth noting that the software implementation relies on 
various algorithmic simplifications, which drastically reduce the 
computational complexity to achieve real-time performance, but 
result in a 20% decrease in compression efficiency for a given 

SNR [3]. The custom ASIC hardware, on the other hand, 
consumes over 500x less energy and is far more efficient in its use 
of silicon area as shown by the area numbers in Table 1. The ASIC 
makes few algorithmic simplifications and consequently has a 
negligible drop in compression efficiency [4]. 

Table 1. Intel’s highly optimized, 2.8GHz Pentium 4 implementation 
of a 480p H.264 encoder versus a 720p HD ASIC.  The second row 
presents Intel’s SD data scaled to HD H.264. ASIC numbers have 
been scaled from 180nm to 90nm. 

 Perf. 
(fps) 

Area 
(mm2

Enrgy/frame 
(mJ) ) 

Intel (720x480 SD)  30 122 742 
Intel (1280x720 HD) 11 122 2023 

ASIC 30 8 4 

3. EXPERIMENTAL METHODOLOGY 
Our experiments use a CMP platform based on Tensilica’s 
extensible RISC cores [2][39][40]. This baseline implementation 
defines the gap we seek to bridge between general-purpose 
computing and ASIC efficiencies. We use the extensible platform 
to implement three different classes of customizations, each more 
application specific than the previous one.   We independently 
customize each processor’s datapath using Tensilica’s TIE 
language and optimize memory system parameters. To quickly 
simulate and evaluate different design options, we created a 
multiprocessor simulation framework that employs Tensilica’s 
Xtensa Modeling Platform (XTMP) as its base. We use 
Tensilica’s ISA extension framework to specify the number of 
VLIW slots, the width for the SIMD data paths, the number and 
size of register files, custom hardware instructions, and custom 
data storage elements. Tensilica’s TIE compiler generates 
simulation models for different processor configurations and their 
energy explorer tool [22] estimates the energy and area of the 
resulting system. Its results are within 30% of the actual energy 
numbers [25], which is adequate since we are looking for more 
than two orders of magnitude improvements in energy efficiency. 

3.1  Baseline H.264 Implementation 
We use H.264 encoder reference code JM 8.6 for our experiments 
[38]. In the reference implementation, H.264’s video encoding 
path is very long and suffers from sequential dependencies that 
restrict parallelism. We carefully analyze existing H.264 
partitioning techniques and implement algorithmic changes in 
IME that remove some dependencies and allow mapping of the 
five major algorithmic blocks to the four-stage macro-block (MB) 
pipeline shown in Figure 1. This mapping exploits task level 
parallelism at the macro block level and significantly reduces the 
inter-processor communication bandwidth requirements by 
sharing data between pipeline stages. 

To build a base system, we map the four-stage macro-block 
partition of H.264 to a four-processor CMP system where each 
processor has 16KB 2-way set associative instruction and data 
caches. Table 2 presents our base system’s performance and 
energy efficiency for the individual 720p HD H.264 sub-
algorithms to highlight the large area and energy efficiency gap 
between our base CMP and the reference ASIC. At approximately 
8.6B instructions to process one frame (IME), our base system 
consumes about 140 pJ/instruction—a reasonable value for a 
general-purpose system.  



 
Figure 1. Four stage macroblock partition of H.264. (a) Data flow 
between different pipeline stages. (b) How the four stage pipeline 
works on different macro blocks. The IP stage includes DCT+Quant. 
EC is the CABAC stage. 
 
Table 2. Performance and energy for a generic Tensilica CMP 
implementation of H.264. Intra combines IP, DCT, and Quant. The 
gap numbers compare these values to an equivalent ASIC. 

 

Performance 

Area 
(mm2

 

) 

Energy/ 
Frame 
(mJ) 

Perf. 
Gap 

Energy 
Gap 

MC/
MB 

Frame
/sec 

IME 2.10  0.06 1.04 1179 525.0x 707x 

FME 1.36 0.08 1.04 921 342.0x 468x 

Intra 0.25  0.48 1.04 137 63.0x 157x 

CABAC 0.06 1.82 1.04 39 16.7x 261x 

 
Table 3. Datapath energy breakdown for our base implementation in 
mJ/frame.  IF is instruction fetch/decode (including the I-cache). D-$ 
is the D-cache. Pip is the pipeline registers, buses, and clocking. Ctl is 
random control.  RF is the register file. FU is the functional elements. 
Data estimates from processor simulations. 

 IF D-$ Pip Ctl RF FU Total 
IME 410 218 257 113 113 68 1179 

FME 286 196 205 90 90 54 921 

Intra 54 20 29 13 13 8 137 

CABAC 12 2 8 4 4  2 32 

Total 762 436 499 220 220 132  2269 

We analyze the performance and energy efficiency of this base 
CMP implementation and compare it to that of the ASIC. We 
allocate the processor’s energy into different functional units as 
shown in Table 3, which reports the energy consumed by our base 
four-processor CMP system. As expected, the energy required for 
each task is related to the time required for that task, since the 
energy of each instruction is similar. The RISC implementations 
of IME and FME, which are the major contributors to 
performance and energy consumption, have a performance gap of 
525x and an energy gap of over 700x with respect to the ASIC.  

We also note that while IP, DCT, Quant and CABAC are much 
smaller parts of the total energy/delay, even they need about 100x 
energy improvements to reach ASIC-level values. 
This data makes it clear how far we need to go to approach ASIC 
efficiency. Clearly, the energy spent in instruction fetch (IF) is an 
overhead due to the programmable nature of the processors and is 
absent in a custom hardware state machine, but eliminating all this 
overhead only increases the energy efficiency by less than 2x. 
Even if we assume everything but the functional unit energy is 
overhead, we still end up with energy savings of only 20x—not 
nearly enough to reach ASIC levels. As the rest of this paper 
demonstrates, we need to both customize functional units (for 
correct bit widths, for efficient multi-input or output operations, 
etc.) and remove almost all other processor overheads (instruction 
fetches, register file accesses, etc.) to approach ASIC efficiency. 
Table 4. Different stages of specialization, and the types of 
optimizations implemented.  Step 1 is very general; step 2 is often 
done in general-purpose SIMD units for important applications; step 
3 builds application specific functional units. 

 Step 1 Step 2 Step 3 

Inst. 
decode 
logic 

App. class 
optimizations 
e.g. SIMD 

App. class 
optimizations 
with custom 
fused instruction 
sub-graphs 

Complex instrs 
performing 
multiple 
independent 
operations 

Register 
file 

App. specific 
register file 
size and width. 
SIMD register 
file 

Consume short-
lived 
intermediate 
results without 
sending to 
register file 

App. specific 
data storage 
structures and 
data supply 
networks 

Arithmetic 
datapath 

App. specific 
precision 

Custom fused 
arithmetic 
operations 

App. specific 
arithmetic 
blocks 

3.2 Customization Strategies 
Table 4 defines three classes of processor customization. At the 
first stage we restrict ourselves to relatively general purpose 
datapath extensions such as SIMD and VLIW units; such 
extensions are frequently found in processor designs today and 
will be part of future efficient processors.   

At the second stage, we add a limited degree of algorithm-specific 
customization.  Operation fusion – the creation of new 
instructions that combine sequences of existing instructions – 
produces new functional units. We limit new instructions to 
operand requirements (i.e., two input operands, one output) that 
match those for existing instructions; new instructions must fit in 
existing instruction formats and datapath.  This constraint is the 
same as that of Intel’s SSE instructions.  These customizations, at 
least for key functions, are also likely to exist in future processors.  

Finally, at the third stage we allow unrestricted tailoring of the 
datapath according to algorithm needs by introducing arbitrary 
new compute operations as well as by complementing or even 
replacing the register files with custom storage structures.  The 
results of these customizations shown in Figures 2, 3 and 4 are 
described in more detail in the next section. 
 

4. RESULTS 
We implement and evaluate the three-customization strategies of 
Table 4, detailing their effectiveness.  For algorithm-specific 



instructions, we outline strategies for each major phase of 
computation.  Collectively, these results describe how efficiencies 
improve by 170x over the baseline in Section 3.1. 

4.1 SIMD and VLIW Enhancements 
Using Tensilica’s FLIX (Flexible Length Instruction eXtension) 
feature, we create processors with 2- and 3-slot VLIW 
instructions. Using TIE, we add SIMD execution units to the base 
processor with vector register files of custom depths and widths. 
As expected, DLP algorithms using SIMD units show a large 
decrease in processor energy; speedup increases as the number of 
instructions executed decreases.  IME and FME use 16 and 18-
way SIMD datapaths and achieve speedups of 10x and 14x.  
Intra/DCT/Quant using an 8-way SIMD datapath achieves a 
speedup of 6x. The SIMD units use custom-width functional units 
instead of standard 32-bit versions to enable more efficient 
computation, and generally run between 8 and 16 bits. As Figure 
4 shows, even performing 16 concurrent operations barely 
increases the percentage energy used by the functional units, 
which still comprise around 10% of the total. Even the register file 
energy decreases by 4-6x using SIMD since we use 8-bit vector 
elements, and scale down register file depths, so its percentage 
contribution to the total energy does not increase considerably.  
While SIMD only works for data-parallel algorithms, all H.264 
sub-algorithms achieve speedups from VLIW instructions, with 2-
slot VLIW offering higher energy efficiency than 3 slots. 2-slot 
VLIW gains up to 1.5x more performance. For CABAC, VLIW 
instructions increase the code size, and the resulting increase in 
cache size and cache access energy offsets any energy gains. 
SIMD and VLIW speed up the application by 10x, decreasing IF 
energy by 10x, but the percentage of energy going to IF does not 
change much. IF still consumes more energy than functional units. 
Furthermore, while CABAC is not initially an issue, its power 
dissipation is unchanged by these optimizations, and is now a 
major contributor to overall power dissipation.  
4.2 Operation Fusion 
The second customization strategy builds on the first and 
evaluates additional gains offered by the fusion of frequently 

occurring complex instruction subgraphs. Operation fusion is 
particularly interesting because it can be targeted by a number of 
automatic tools [22]. Fusion of complex subgraphs is useful 
because it reduces both instruction count and register file 
accesses—intermediate results are consumed within the fused 
operation and do not need to be stored in the register file. An 
additional benefit is the ability to create more energy efficient 
hardware implementations of the fused operations. For data 
parallel algorithms, we fuse together both RISC as well as SIMD 
operations. We pipeline our functional units to ensure fused 
operations do not increase clock cycle time. 

To illustrate operation fusion, we present a pixel up-sampling 
example taken from FME: 

xn = x-2 – 5x-1 + 20x0 + 20x1 – 5x2 + x

H.264 uses this equation to perform upsampling of pixels in the 
reference image frame. In the equation x

3 

n is the newly calculated 
up-sampled pixel, formed by applying an interpolation filter on 
pixels x-2 … x3

Before creating fused instructions, we split the equation into three 
parts based on computation similarities: 20x

 of the reference frame. Upsampling uses a 
major portion of FME compute time, so we want to enhance its 
performance and energy efficiency.  

0 +20x1, – 5x-1 – 5x2, 
and x2 + x3

Note that the two-input operand restriction is not broken because 
the accumulator register (acc), internal to the functional unit, is 
used implicitly. Similarly, the instruction supplies the constant 
multiplication factor directly, avoiding a register file access. 
These new instructions improve energy efficiency by reducing 
register file accesses by forwarding the result of the multiplication 
directly to an adder and by using an accumulator. 

. This allows us to keep the number of input operands 
per fused instruction equal to two and thus we do not increase the 
number of register file ports. Each instruction fuses 
addition/subtraction with multiplication, which is implemented 
using shift and adds. Figure 5 presents the newly created 
instructions. 

Figure 3. Each set of bar graphs represents speedup at each stage 
of optimization. Each optimization builds on those of the 
previous stage with the first bar in each set representing RISC 
speedup, followed by generic optimizations such as SIMD and 
VLIW, then operation fusion and finally “magic” instructions 

Figure 2. Each set of bar graphs represents energy consumption 
(µJ) at each stage of optimization for IME, FME, IP and CABAC 
respectively. Each optimization builds on the ones in the previous 
stage with the first bar in each set representing RISC energy 
dissipation followed by generic optimizations such as SIMD and 
VLIW, operation fusion and ending with “magic” instructions 



 
 

acc = 0; 
acc = AddShft(acc, x0, x1

acc = AddShft(acc, x
, 20); 

-1, x2

acc = AddShft(acc, x
, -5); 

-2, x3

xn = Sat(acc); 
, 1); 

 

Figure 5. FME upsampling after fusion of two multiplications and two 
additions. AddShft takes two inputs, multiplies both with the 
multiplicand and adds the result. Multiplication is performed using 
shifts and adds. Operation fusion results in 3 instructions instead of 
the RISC’s 5 add/sub and 4 multiplication instructions. 

 
Table 5. Fused operations added to each unit and the resulting 
performance and energy gains. FME required fusion of large 
subgraphs to get significant performance improvement. 

 
# of 

fused 
ops 

Op 
Depth 

Energy 
Gain 

Perf 
Gain 

IME 4 3-5 1.5 1.6 
FME 2 18-34 1.9 2.4 
Intra 8 3-7 1.9 2.1 

CABAC 5 3-7 1.1 1.1 

Table 5 presents the number of fused operations created for each 
H.264 algorithm, the average size of the fused instruction 
subgraphs, and the total energy and performance gain achieved 
through fusion.  Interestingly, IME and FME do not share any 
instructions, though Intra and FME share instructions for the 
Hadamard transform. DCT transform also implements the same 

transform instructions. CABAC’s fused operations provide 
negligible performance and energy gains of 1.1x.  Fused 
instructions give the largest advantage for FME, on average 
doubling the energy/performance advantage of SIMD/VLIW. 
Employing fused operations in combination with SIMD/VLIW 
results in an overall performance improvement of 15x for the 
H.264 encoder, and an energy efficiency gain of almost 10x, but 
still uses greater than 50x more energy than an ASIC.   
The basic problem is clear.  For H.264, the basic operations are 
very simple and low energy.  In our base machine we over-
estimate the energy consumed by the functional units, since we 
count the entire 32–wide functional unit energy.  When we move 
to the SIMD machine, we tailor the functional unit to the desired 
width, which reduces the required energy. However, executing 
10s of narrow width operations per instruction still leaves a 
machine that is spending 90% of its energy on overhead functions, 
with only 10% going to the functional units. 

4.3 Algorithm Specific Instructions 
To bridge the remaining gap, we must create instructions that can 
execute 100s of operations in a single instruction.  To achieve this 
parallelism requires creating instructions that are tightly 
connected to custom data storage elements with algorithm-
specific communication links to supply the large amounts of data 
required, and thus tend to be very closely tied to the specific 
algorithmic methods being optimized. These storage elements can 
then be directly wired to custom designed multiple input and 
possibly multiple output functional units, directly implementing 
the required communication for the function in hardware.  

Once this hardware is in place, the machine can issue “magic” 
instructions that can accomplish large amounts of computation at 
very low costs. This type of structure eliminates almost all the 

Figure 4. Datapath energy breakdown for H.264. IF is instruction fetch/decode (including the I-cache). D-$ is the D-cache. Pip is the 
pipeline registers, busses, and clocking. Ctl is random control.  RF is the register file. FU is the functional elements. Only the top bar 
(FU), or perhaps the top two (FU + RF) contribute useful work in the processor.  For this application it is hard to achieve much more 
than 10% of the power in the FU without adding custom hardware units.  This data was estimated from processor simulations. 



processor overheads for these functions by eliminating most of the 
communication overhead (register file, bus, and instruction fetch) 
associated with processors. We call these “magic” instructions, 
since these operations can have a large effect on both the energy 
and performance of an application and yet would be difficult to 
derive directly from the code. They typically require an 
understanding of the underlying algorithms and the capabilities 
and limitations of existing hardware resources, thus requiring 
greater effort on part of the designer. Since the IP stage uses some 
techniques similar to FME the rest of the section will focus on 
FME, IME and CABAC. 

4.3.1 FME Strategy 
To illustrate a “magic” instruction, we begin by returning to the 
pixel upsampling example. In H.264, upsampling uses an FIR 
filter that requires one new pixel per iteration. Thus after one 
upsampling step, we can reuse pixels x-1 … x3, and only need to 
load x4. Normal register files require us to do five register 
transfers for each upsampling step, significantly increasing the 
energy dissipated in the instruction fetch and decode logic and 
also in the register file. While some machines have indexing 
register files that help with this issue [6], we still need to read all 
the operations from the register file to perform the computation.  

To reduce instruction fetches and register file transfers, we 
augment the processor register file with a custom 8-bit wide, six 
entry shift register structure which works like a FIFO: every time 
a new 8-bit value is loaded, all elements are shifted. This 
eliminates the use of expensive register file accesses for either 
data shifting or operand fetch, which are now both handled by 
short local wires. Additionally, since all six entries can now be 
accessed in parallel we create a six input multiplier/adder which 
can be implemented much more efficiently (using carry-save 
addition) than the composition of normal 2 input adders. Finally 
since we need to perform the upsampling in 2-D, we build a shift 
register structure that stores the horizontally upsampled data, and 
feeds its outputs to a number of vertical upsampling units (see 
Figure  6).  

Figure 6. FME upsampling unit, showing merged storage and 
computation. Customized shift registers directly wired to function 
logic result in efficient upsampling. Ten integer pixels from local 
memory are used for row upsampling in RFIR blocks. Half 
upsampled pixels along with appropriate integer pixels are loaded 
into shift registers. CFIR accesses six shift registers in each column 
simultaneously to perform column upsampling. 
This transformation yields large savings even beyond the savings 
in instruction fetch energy.  From a pure datapath perspective 

(register file, pipeline registers, and functional units), this 
approach dissipates less than 1/30th the energy of a traditional 
approach. 
The FME SIMD code highlights the advantages of this approach 
over using larger SIMD arrays. The SIMD implementation suffers 
from code replication and excessive local memory and register 
file accesses, in addition to not having the most efficient 
functional units. FME contains seven different sub-block sizes 
ranging from 16x16 pixel blocks to 4x4 blocks, and not all of 
them can fully exploit the 18-way SIMD datapath. Additionally, 
to use the 18-way SIMD datapath, each sub-block requires a 
slightly different code sequence, which results in code replication 
and more I-fetch power because of the larger I-cache. Next, FME 
fits a streaming data flow model where most of the intermediate 
data has a short life and is consumed by instructions that are only 
a few cycles behind; by storing such intermediate data in the 
register file, energy is wasted on unnecessary register file 
accesses. This intermediate data also leaves less space in the 
register file for non-intermediate data, resulting in additional loads 
and stores. Finally, not all computations are able to benefit from 
fusion because our register files can only supply two operands at a 
time.   
To avoid these issues, our custom hardware upsampler processes 
4x4 pixels. This allows us to reuse the same computation loop 
repeatedly without any code replication, which, in turn, lets us 
reduce the I-cache from a 16KB 4-way cache to a 2KB direct-
mapped cache. Due to the abundance of short-lived data, we 
remove the vector register files and replace them with custom 
storage buffers. The magic instruction reduces the instruction 
cache energy by 54x and processor fetch and decode energy by 
14x. Finally, as Figure 4 shows, 35% of the energy is now going 
into the functional units. 

4.3.2 IME Strategy 
4x4 sum of absolute differences (SAD) calculations are important 
for IME. Figure  7 shows the custom datapath elements added to 
the IME processor to accelerate this function. The 16-way SIMD 
SAD unit of the fusion-optimized processor has been replaced by 
a 16x16 SAD unit, which can perform 256 SAD operations in one 
cycle. Since our standard vector register files cannot feed enough 
data to this unit per cycle, these registers have been replaced by 
state registers, which allow parallel access to all 16-pixel rows 
and enable this datapath to perform one 256-pixel computation 
per cycle. The fetch overhead of SAD operations is thus reduced 
by roughly 16x. Additionally, this custom storage structure has 
support for parallel shifts in all four directions, thus allowing 
much greater data reuse, and drastically reducing the cycles spent 
on loads, shifts and pointer arithmetic operations as well as data 
cache accesses. “Magic” instructions and storage elements are 
also created for other major algorithmic functions in IME to 
achieve similar gains. More than 65% of total IME cycles are 
spent in overhead instructions. Thus, by reducing instruction 
overheads and by amortizing the remaining overheads over larger 
datapath widths, this strategy improves performance and energy 
efficiency by 20-30x.  

The large number of parallel operations means that this functional 
unit finally consumes around 40% of the total instruction energy.  
This would be even higher, but we further reduced energy 
(approximately 30%) by employing reduced precision arithmetic 
where only 5 pixel-bits are used in distortion calculations instead 
of 8. This technique is also employed by our reference ASIC and 



causes negligible drop in SNR [4]. These optimizations along with 
a small set of other custom operations enable the IME processor 
to match ASIC performance and come within 3x of ASIC energy 
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Figure 7. Custom storage and compute blocks for IME’s 4x4 SAD 
calculation. Current and reference-pixel register files allow parallel 
access to all pixel values to feed the 16x16 SAD array. In addition, the 
RefPixel Regfile supports operations to shift all pixel rows down by 
one row or shift all pixel columns right by one pixel location. 

4.3.3 CABAC Strategy  
CABAC originally consumed less than 2% of the total energy. 
However, after adding “magic” instructions for data parallel 
components, CABAC dominates the total energy. However, it 
requires a different set of optimizations because it is highly 
control oriented and not data parallel. Thus, for CABAC, we are 
more interested in control fusion than operation fusion.  
A critical part of CABAC is the arithmetic encoding stage, which 
is a highly serialized process with small amounts of computation, 
but significant control flow. We break arithmetic coding down 
into a simple pipeline and drastically change it from the reference 
code implementation, reducing the binary encoding of each 
symbol to five instructions. While there are several if-then-else 
conditionals reduced to single instructions (or with several 
compressed into one), the most significant reduction came in the 
encoding loop, which is written as a while loop over every bit of 
the RANGE in the reference code as shown in Figure 8. This loop 
(including the implicit doubly nested loops in put_one_bit_ 
plus_outstanding) was reduced to a single constant time 
instruction and a rarely executed small while loop by 
fundamentally changing the algorithm as shown in Figure 9. Since 
we now do buffering on a 64-bit basis, word1full is rarely true, 
and wordsOustanding is almost never greater than 0. 
The other critical part of CABAC is the conversion of non-binary 
valued DCT coefficients to binary codes in the binarization stage. 
To improve the efficiency of this step, we create a 16-entry LIFO 
structure to store DCT coefficients. To each LIFO entry, we add a 
single-bit flag to identify zero-valued DCT coefficients. These 
structures, along with their corresponding logic, reduce register 
file energy by bringing the most frequently used values out of the 
register file and into custom storage buffers. Using “magic” 
instructions we produce Unary and Exponential-Golomb codes 
using simple operations, which help reduce datapath energy. 
These modifications are inspired by the ASIC implementation 
described in [15]. CABAC is optimized to achieve the bit rate 
required for H.264 level 3.1 at 720p video resolution. 

 

while (range < QUARTER) { 
  if (low >= HALF) { 
    put_one_bit_plus_outstanding(1); 
    low -= HALF; 
  } else if (low < QUARTER) { 
    put_one_bit_plus_outstanding(0); 
  } else { 
    global_eep.Ebits_to_follow++; 
    low -= QUARTER; 
  } 
  low <<= 1; 
  range <<= 1; 
} 
 

 Figure 8. CABAC arithmetic encoding loop in H.264 reference code 
looping over every bit of the “RANGE.” 

 

word1full = BIARI_ENCODE_PIPE_5(); 
if (word1full){ 
  wordsOutstanding = WRITE_OUT_WORD1(); 
  while(wordsOutstanding){ 
    wordsOutstanding = 
      WRITE_OUT_UNRESOLVED(); 
  } 
} 
 

Figure 9. CABAC arithmetic encoding loop after insertion of “magic” 
instructions. The loop corresponding to RANGE has been reduced to 
one single constant time instruction BIARI_ENCODE_PIPE_5. 

ASIC-like efficiency required 2-3 special hardware units for each 
sub-algorithm, which is significant customization work. After this 
effort, the processors optimized for data-parallel algorithms have 
a total speedup of up to 600x and an energy reduction of 60-350x 
compared to our base CMP. For CABAC total performance gain 
is 17x and energy gain is 8x. Figure 4 provides the final energy 
breakdowns.  
Table 6 - Area and area efficiency at various stages of customization 

Area (mm2

Speedup 

) Area 
Efficiency 
(Speedup/ 

Area) 

 IME FME IP CABAC Total 

RISC 1.39 1.39 1.39 1.39 5.56 1 0.18 
RISC with 
Memory 

Cust. 
0.80 1.39 1.06 1.44 4.69 1 0.21 

GP Opt. 1.79 4.12 1.76 1.55 9.22 9.2 1.00 
OP 

Fusion 
1.83 3.32 1.63 1.64 8.42 15.7 1.87 

Magic 2.10 2.28 1.58 1.1 7.06 256 36.25 
ASIC @ 
100MHz 

2.82 3.33 1.47 0.27 7.89 243 30.81 

ASIC @ 
435MHz 

2.82 3.33 1.47 0.27 7.89 1057 133.97 

4.4 Area Efficiency 
Table 6 shows area in mm2 for the evaluated optimization 
strategies.  The last column shows the area efficiency for each 
step, which is defined as speedup/area. Customizing cache sizes to 



the requirements of each algorithm results in substantial area 
savings as depicted by “RISC with Mem Cust”. General-purpose 
optimizations increase the area substantially compared to vanilla 
RISC versions, but they also help improve the area efficiency for 
data-parallel algorithms. However, control-intensive CABAC 
does not benefit from such optimizations. Further customization 
of datapaths not only improves area efficiency tremendously but 
also results in a smaller area compared to general-purpose 
optimizations.  Customizations not only reduce the number of 
instructions, but also substantially improve data reuse inside the 
processor, which in turn reduces cache sizes. This reduction in 
memory area helps offset area increases due to addition of custom 
units. 
It might seem that the efficiency of our solution is higher than that 
of an ASIC, but the ASIC is designed to run at 100MHz in 
0.18um while our magic version is designed to run at 435MHz. If 
we assume that the ASIC in 90nm can run at 435MHz without any 
modifications, it can achieve 4.35x better performance and thus 
4.35x better area efficiency, making it substantially more area 
efficient than our solution. 

4.5 Other Applications 
While H.264 is representative of applications with very simple 
compute operations, other applications, for example floating point 
(FP) applications, have higher-energy operations. FP arithmetic 
consumes 10x the energy of integer arithmetic; FP functional 
units comprise a larger fraction of total instruction energy. Thus, 
one might think less parallelization is required to amortize 
instruction overheads for FP applications.  

However FP operations comprise only 20% of the dynamic 
instruction stream for representative applications [26][27]. For 
this reason, FP energy will likely be a small fraction of total 
application energy. To match the most efficient H.264 design 
points, 35% or more of the total application energy should be in 
the ALU. Thus, with an instruction overhead of approximately 
130pJ, functional unit energy will need to be at least 70 pJ, which 
is equivalent to 7 FP operations, or approximately 35 instructions 
(given a 20% FP instruction mix).  While this level of parallelism 
might be possible for some applications with SIMD and operation 
fusion, it seems likely that customizations will be needed to 
achieve this number of ops/instruction for most applications.   
This is especially true if some part of the application is control 
and not data limited.  

Finally, some applications are dominated by memory costs. In 
truly memory-bound applications, computation is not the 
bottleneck, so data path customizations will have little effect. For 
these applications, it is the energy efficiency of bringing 
application data to the core that fundamentally needs to be 
improved.  Co-optimization of the memory system and the 
application can yield large savings in these situations [28], but the 
advantages of application customization over a conventional 
memory design with a few adjustable parameters still needs to be 
explored. 
5. ENERGY EFFICIENT COMPUTERS 
It is now easy to see how an ASIC can be 2-3 orders of magnitude 
lower energy than a processor. For many applications, and most of 
the ones performed by ASICs, the basic operations being 
performed are very low energy, using 8-16 bit integers like in 
H.264.  These applications are computation—and not data fetch—

limited, so the fundamental energy/operation bound is a couple 
hundred femtojoules in a 90nm process, which is equivalent to 
moving one bit less than a mm.  All other costs in a processor—
instruction fetch, register fetch, data fetch, control, and pipeline 
registers—are much larger (140pJ) and dominate overall power.  

Standard SIMD and simple operation fusion instructions can only 
go so far to improve the performance and energy efficiency. It is 
hard to aggregate more than 10-20 operations into an instruction 
without incurring growing inefficiencies, and with tens of 
operations per cycle we still have a machine where around 90% of 
the energy is going into overhead functions. In addition, some of 
these overhead instructions are just to control or sequence the data 
(e.g., CABAC). 

Thus, the solution is “instructions” that perform hundreds of 
operations each time they are executed, so the overhead of the 
instruction is better balanced by the work performed.  
Unfortunately this is hard to do in a general way, since bandwidth 
requirements and utilization of a larger SIMD array would be 
problematic.  We solved this problem by building custom storage 
units tailored to the application, and then directly connecting the 
necessary functional units to these storage units.  These custom 
storage units greatly amplified the register fetch bandwidth, since 
data in the storage units are used for many different computations. 
In addition, since the intra-storage and functional unit 
communications were fixed and local, they could be managed at 
ASIC-like energy costs.  The efficiencies found in these custom 
datapaths are impressive, since, in H.264, at least, they take 
advantage of data sharing patterns and create very efficient 
multiple input operations.  This means that even if researchers are 
able to a create a processor which decreases the instruction and 
data fetch parts of a processor by more than 10x, these solutions 
will not be as efficient as solutions with “magic” instructions. 

Of course including these “magic” instructions requires custom 
hardware, and some might say we are just building an ASIC in 
our processor. While we agree that creating “magic” instructions 
requires a thorough understanding of the application as well as 
hardware, we feel that adding this hardware in an extensible 
processor framework has many advantages over just designing an 
ASIC. These advantages come from the constrained processor 
design environment and the software, compiler, and debugging 
tools available in this environment.  

For example, once the initial effort in understanding the 
application and its characteristics was done, the extensible 
processor allowed us to implement and verify the fully 
customized “magic” configuration for each algorithm in two to 
three man-months, which would not have been possible with an 
ASIC flow. Many of the low-level issues, like interface design 
and pipelining, are automatically handled. In addition, since all 
hardware is wrapped in a general-purpose processor, the 
application developer retains enough flexibility in the processor to 
make future algorithmic modifications.  In fact, in this type of 
design environment, one might be tempted to make the new 
hardware that supports the “magic” instructions a little more 
flexible than required, providing some runtime flexibility just to 
increase the probability of it still being useful if the algorithm 
changes.  

Yet an extensible processor alone is not a sufficient solution, since 
one still needs to take one or more of these processors and create a 
working chip system.  Designing and validating a chip is an 



extremely hard and expensive task.  If application customization 
will be needed for efficiency—and our data indicates it will be—
we need to start creating systems that will efficiently allow savvy 
application experts to create these optimized chip level solutions.  
This will require extending the ideas for extensible processors to 
extensible full chip systems. We are currently working on this 
creating this type of system.  

6. CONCLUSION 
Ideally, we would like ASIC-like energy efficiencies—100x to 
1000x more energy efficient than general-purpose CPUs—on our 
next generation processors.  Our data, while not conclusive, 
indicates that this goal will be hard to achieve.  The basic problem 
is that many applications include extremely simple, low energy 
operations.  Since the energy of these operations is very low, any 
overhead, from the register fetch to the pipeline registers in a 
processor, is likely to dominate. The good news is that this large 
overhead per instruction makes estimating the energy savings 
easy—you simply look at the performance gains—but the bad 
news is that adding data parallel hardware like wide SIMD units 
will still leave you far from an ASIC. 

It is encouraging that we were able to achieve ASIC energy levels 
in a customized processor by creating customized hardware that 
easily fit inside a processor framework and executed 100s of 
simple operations per instruction.  Extending a processor instead 
of building an ASIC seems like the correct approach; since it 
provides a number of software development advantages and the 
energy cost of this option seems small. The key challenge now is 
to build a design system that lets application designers create 
these types of customizations with much greater ease. 
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