
Making Nested Parallel Transactions Practical using
Lightweight Hardware Support

Woongki Baek, Nathan Bronson, Christos Kozyrakis, Kunle Olukotun
Computer Systems Laboratory

Stanford University
{wkbaek,nbronson,kozyraki,kunle}@stanford.edu

ABSTRACT
Transactional Memory (TM) simplifies parallel programming by
supporting parallel tasks that execute in an atomic and isolated
way. To achieve the best possible performance, TM must support
the nested parallelism available in real-world applications and sup-
ported by popular programming models. A few recent papers have
proposed support for nested parallelism in software TM (STM) and
hardware TM (HTM). However, the proposed designs are still im-
practical, as they either introduce excessive runtime overheads or
require complex hardware structures.

This paper presents filter-accelerated, nested TM (FaNTM). We
extend a hybrid TM based on hardware signatures to provide prac-
tical support for nested parallel transactions. In the FaNTM de-
sign, hardware filters provide continuous and nesting-aware con-
flict detection, which effectively eliminates the excessive overheads
of software nested transactions. In contrast to a full HTM approach,
FaNTM simplifies hardware by decoupling nested parallel transac-
tions from caches using hardware filters. We also describe subtle
correctness and liveness issues that do not exist in the non-nested
baseline TM.

We quantify the performance of FaNTM using STAMP appli-
cations and microbenchmarks that use concurrent data structures.
First, we demonstrate that the runtime overhead of FaNTM is small
(2.3% on average) when applications use only single-level paral-
lelism. Second, we show that the incremental performance over-
head of FaNTM is reasonable when the available parallelism is
used in deeper nesting levels. We also demonstrate that nested par-
allel transactions on FaNTM run significantly faster (e.g., 12.4×)
than those on a nested STM. Finally, we show how nested paral-
lelism is used to improve the overall performance of a transactional
microbenchmark.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Programming –
parallel programming; C.1.4 [Processor Architectures]: Parallel
Architectures

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICS’10, June 2–4, 2010, Tsukuba, Ibaraki, Japan.
Copyright 2010 ACM 978-1-4503-0018-6/10/06 ...$10.00.

General Terms
Algorithms, Design, Performance

Keywords
Transactional Memory, Nested Parallelism, Parallel Programming

1. INTRODUCTION
Transactional Memory (TM) [11] has been proposed as a promis-

ing solution to simplify parallel programming. With TM, program-
mers can simply declare parallel tasks as transactions that appear
to execute in an atomic and isolated way. TM manages all con-
currency control among concurrent transactions. A large num-
ber of TM implementations have been proposed based on hard-
ware [9, 13], software [8, 10, 17], and hybrid [6, 7, 16] techniques.

To date, most TM systems have assumed sequential execution of
the code within transactions. However, real-world parallel appli-
cations often include nested parallelism in various forms including
nested parallel loops, calls to parallel libraries, and recursive func-
tion calls [19]. To achieve the best possible performance with the
increasing number of cores, it is critical to fully exploit the paral-
lelism available at all levels. Several popular programming models
that do not use transactions have already incorporated nested par-
allelism [1, 18]; TM should be extended to efficiently support the
case of nested parallelism.

A few recent papers investigated the semantics of concurrent
nesting and proposed prototype implementations in STM [2–4, 15,
21]. While compatible with existing multicore chips, most STM
implementations already suffer from excessive runtime overheads
of TM barriers even for single-level parallelism [6]. To make the
problem worse, supporting nested parallelism solely in software
may introduce additional performance overheads due to the use
of complicated data structures [2, 4] or the use of an algorithm
whose time complexity is proportional to the nesting depth [3].
For example, as shown in our performance evaluation, a single-
threaded, transactional version of the red-black tree microbench-
mark runs 6.2× slower with single-level transactions and 17.0×
slower with nested transactions than a non-transactional, sequential
version. Nested parallel transactions in STM will remain impracti-
cal unless these performance issues are successfully addressed.

A recent paper investigated how to support nested parallelism
in HTM [20]. However, supporting nested parallelism solely in
hardware may drastically increase hardware complexity, as it re-
quires intrusive modifications to caches. For instance, apart from
the additional transactional metadata bits in tags, the design pro-
posed in [20] requires that caches are capable of maintaining mul-
tiple blocks with the same tag but different version IDs, and provide
version-combining logic that merges speculative data from multi-

ple ways. Given the current trend in which hardware companies are
reluctant to introduce complicated hardware components to imple-
ment transactional functionality even for single-level parallelism,
this hardware-only approach is unlikely to be adopted.

To address this problem, we propose filter-accelerated, nested
transactional memory (FaNTM) that provides practical support for
nested parallel transactions using hardware filters. FaNTM extends
a baseline hybrid TM (SigTM) [6] to implement nesting-aware con-
flict detection and data versioning. Since hardware filters provide
continuous, nesting-aware conflict detection, FaNTM effectively
reduces the excessive runtime overheads of software nested trans-
actions. In contrast to a full HTM approach, FaNTM simplifies
hardware by decoupling nested transactions from caches. As a re-
sult, FaNTM makes nested parallel transactions practical in terms
of both performance and implementation cost.

The specific contributions of this work are:

• We propose FaNTM, a hybrid TM system that supports nested
parallel transactions with low overheads. FaNTM provides
eager data versioning and conflict detection at cache-line gran-
ularity across nested parallel transactions.

• We describe subtle correctness and liveness issues such as a
dirty-read problem that do not exist in the non-nested base-
line TM. We also propose solutions to address the problems.

• We quantify the performance of FaNTM across multiple use
scenarios. First, we demonstrate that the runtime overhead
of FaNTM is small when applications use only single-level
parallelism. Specifically, FaNTM is slower than the baseline
hybrid TM by 2.3% on average when running STAMP appli-
cations. Second, we show that the incremental overhead of
FaNTM for deeper nesting is reasonable. We also show that
nested transactions on FaNTM run significantly faster (e.g.,
12.4×) than those on a nested STM. Finally, we demonstrate
how FaNTM improves the performance of a transactional
microbenchmark using nested parallelism.

The rest of the paper is organized as follows. Section 2 reviews
the semantics of concurrent nesting and TM systems. Section 3
presents FaNTM. Section 4 discusses subtle correctness and live-
ness issues. Section 5 quantifies the performance of FaNTM. Sec-
tion 6 reviews related work, and Section 7 concludes the paper.

2. BACKGROUND

2.1 Semantics of Concurrent Nesting
We discuss only a few concepts for concurrent nesting [3]. We

refer readers to [2, 14] for additional discussions.
Definitions and concepts: Each transaction is assigned a transac-
tion ID (TID), a positive integer. No concurrent transactions can
have the same TID. The Root transaction (TID 0) represents the
globally-committed state of the system. Top-level transactions are
the ones whose parent is the root transaction. Following the se-
mantics in [14], we assume that a transaction does not perform
transactional operations concurrently with any of its (live) descen-
dants. Finally, family(T) of a transaction T is defined as a union of
ancestors(T) and descendants(T).
Transactional semantics: For a memory object l, readers(l) is
defined as the set of active transactions that have l in their read-sets.
writers(l) is defined similarly. When T accesses l, the following
two cases are conflicts:

• If T reads from l, it is a conflict if there exists T ′ such that
T ′ ∈ writers(l), T ′ 6= T and T ′ /∈ ancestors(T).

Field Description
TID T ’s TID
FV A bit vector that encodes family(T). If a bit is set, the

corresponding transaction belongs to family(T)
CTID The TID of the transaction that conflicted with T
RSig Read signature
WSig Write signature
abt If set, T has a pending abort.
act If set, this TMB is the active TMB.
nackable If set, the nackable bit in outgoing memory requests is set.

Table 1: State information stored in each TMB. T denotes the
transaction that is mapped on the TMB.

• If T writes to l, it is a conflict if there exists T ′ such that T ′ ∈
readers(l) ∪ writers(l), T ′ 6= T and T ′ /∈ ancestors(T).

If a committing transaction T is not a top-level transaction, its
read- and write-sets are merged to its parent. Otherwise (i.e., top-
level), the values written by T become visible to other transactions.
If any transaction T aborts, all the changes made by T are discarded
and previous state is restored [14].

2.2 NesTM
We use NesTM [3] as a proxy for a timestamp-based STM with

support for concurrent nesting. While it is an open research is-
sue to formally check the correctness and liveness guarantees of
timestamp-based nested STMs, we use NesTM to investigate per-
formance differences between software and hybrid nested TMs. We
only provide a brief description and refer to [3] for additional in-
formation on NesTM.

NesTM [3] extends an eager variant of TL2 [8] to support con-
current nesting. NesTM uses a global version clock to establish se-
rializability. Each memory word is associated with a version-owner
lock that simultaneously encodes the version and owner informa-
tion. Transactional metadata and barriers are extended to imple-
ment nesting-aware conflict detection and data versioning.

Since all the nesting-aware transactional functionality is solely
implemented in software, NesTM introduces substantial runtime
overheads to nested transactions. One of the critical performance
bottlenecks of NesTM is repeated read-set validation, where the
same memory object must be repeatedly validated across different
nesting levels [3]. Since this performance overhead increases lin-
early with the nesting depth, it limits the applications for which
NesTM can improve performance [2,3]. Furthermore, NesTM bar-
riers are more complicated, impacting performance even for top-
level transactions. We quantify the runtime overheads of NesTM in
Section 5.3.

2.3 Baseline Hybrid TM
As our starting point, we use an eager-versioning hybrid TM that

follows the SigTM design [5,6]. It uses hardware signatures to con-
servatively track read- and write-sets of each transaction. Hardware
signatures provide fast conflict detection at cache-line granularity
by snooping coherence messages. Data versioning is implemented
in software using undo-logs.

We chose eager versioning to avoid the runtime overheads of
lazy versioning, which are higher for a nested TM. Since each up-
date is buffered in the write buffer in a lazy TM, nested transac-
tions must examine their parent’s write buffer to handle reads that
follow a speculative write. These accesses are expensive, because
they must be synchronized with the changes to the parent’s write
buffer when a sibling transaction commits. An eager-versioning

Message Contents Description
RSigMerge destTid, RSig Merge the read signature in the destination TMB and the RSig in the packet.
WSigMerge destTid, WSig Merge the write signature in the destination TMB and the WSig in the packet.
remoteFvSet destTid, FV Set each bit in FV in the destination TMB if the corresponding bit is set in the FV in the packet.
remoteFvReset destTid, FV Reset each bit in FV in the destination TMB if the corresponding bit is set in the FV in the packet.

Table 2: Filter-request messages used in FaNTM.

Instruction Description
R/WSigReset Reset all the state in the read/write signature of the active TMB.
R/WSigInsert r1 Insert the address in register r1 in the read/write signature of the active TMB.
R/WSigEn/Disable Enable/Disable the read/write signature of the active TMB to look up coherence messages.
R/WSigEnableNack r1 Configure the read/write signature of the active TMB to nack conflicting requests (their types in register r1).
fetchExclusive r1 Send an exclusive load request for the address in register r1 over the network.
mergeR/WSig r1 Send a R/WSigMerge request with a destination TID in register r1 over the network.
get/setTid r1 Get/Set the TID value of the active TMB in register r1.
getConfTid r1 Get the CTID value of the active TMB in register r1.
set/resetNackable Set/Reset the nackable bit of the active TMB.
localFvSet/Reset r1 Set/Reset the FV entry associated to a TID in register r1.
remoteFvSet/Reset r1 Send a remoteFvSet/Reset request with a destination TID in register r1 over the network.
increaseNL Increase nesting level (NL) by allocating the TMB at one NL above and setting it as the active TMB.
decreaseNL Decrease NL by releasing the current active TMB and setting the TMB at one NL below as the active TMB.

Table 3: User-level instructions in FaNTM.

P0

Private

Cache(s)

Filter

Shared Cache(s)/Memory

Interconnection Network

TMB0

TMBM-1

PN-1

Private

Cache(s)

Filter

TID FV CTID

RSig WSig abt

act nack

Figure 1: The overall architecture of FaNTM.

TM requires no such look-up. This is because memory holds the
speculative value.

3. DESIGN OF FANTM

3.1 Overview
The baseline hybrid TM only supports single-level parallelism.

Therefore, to support concurrent nesting, FaNTM hardware must
be extended to provide nesting-aware conflict detection and retain
multiple transactional contexts per processor core. FaNTM soft-
ware must be extended to implement nesting-aware data version-
ing and handle liveness issues of nested transactions. This sec-
tion presents our FaNTM design that implements high-performance
nested parallel transactions in a manner that keeps hardware and
software complexity low. We also provide a qualitative perfor-
mance analysis on FaNTM.

3.2 FaNTM Hardware
Figure 1 shows the overall architecture of FaNTM. Each pro-

cessor has a hardware filter. Filters are connected to the intercon-
nection network to snoop coherence messages such as requests for
shared/exclusive accesses and negative acknowledgements (nacks)
to these requests. We assume that the underlying coherence pro-
tocol provides the nack mechanism. Filters may handle or prop-
agate incoming messages to their associated cache depending on

the characteristics of the messages. We also assume that each co-
herence message includes additional fields such as TID to encode
the transactional information on the transaction that generated the
message.

Each filter consists of a fixed number of transactional metadata
blocks (TMBs) that summarize the state information of transactions
mapped on the corresponding processor. The number of TMBs in
the filter limits the number of transactions that can be mapped on
each processor without the need for virtualization. When nesting
depth overflows, we currently rely on software solutions such as
switching back to a nested STM [3, 4, 15] or subsuming (i.e., seri-
alizing and flattening) nested transactions to avoid increasing hard-
ware complexity. We leave hardware techniques for depth virtual-
ization as future work.

Table 1 summarizes the state information stored in each TMB.
We discuss how each field is used as we describe FaNTM opera-
tions later.

Table 2 summarizes filter-request messages. R/WSigMerge mes-
sages are used when committing transactions remotely merge their
read/write signatures to their parent. remoteFvSet/Reset mes-
sages are used when nested transactions remotely update their an-
cestor’s FV. Note that every filter-request message is intercepted
by filters, thus no need to modify the caches for filter-request mes-
sages.

Table 3 summarizes user-level instructions used to manipulate
filters. The TID-related instructions are used to manipulate the TID
of the active TMB. Outgoing memory requests are associated with
this TID. The FV-related instructions are used to update the transac-
tional hierarchy information. The in/decreaseNL instructions
are used to switch TMBs when a nested transaction executes on
the same core where its parent was running. We provide details
on the other instructions as we describe the FaNTM algorithm in
Section 3.3.

Figure 2 illustrates common-case TMB operations when receiv-
ing coherence messages. On receiving a filter-request message
with a matching destination TID (Figure 2(a)), the TMB performs
the requested operation. On receiving a shared-load request (Fig-
ure 2(b)), the TMB nacks the request if the requested address is
contained in its write signature and the requesting transaction does

TID==Dst?
NY

Done

Filter Req.

from TR

Ack &

Perform Op.
No Op.

(a) Filter request

WSig Hit?
N

Family or

Unnackable?

Y

Nack Req.

Propagate
N

Propagate

Y

Done

Ld Req.

from TR

(b) Shared-load request

WSig Hit?
N

Family or

Unnackable?

Y

Nack Req.

N

Propagate

Y

Ldx Req.

from TR

RSig Hit?

Family?

Propagate

Y

Abort

Propagate
N

Y N

Done

(c) Exclusive-load request

Figure 2: Flowcharts of common-case TMB operations.

not belong to its family. Note that the TMB does not nack the re-
quest if the nackable bit in the message is reset, which will be
further discussed in Section 4.3. Otherwise, the TMB transfers
the request to the associated cache. On receiving an exclusive-
load request (Figure 2(c)), the TMB nacks it if the request satisfies
the aforementioned nacking conditions. If the requested address is
contained in the read signature (but not in the write signature), the
following two cases are considered. First, if the request is from
its family, the TMB propagates the request to the associated cache
without aborting the transaction. Otherwise, the TMB sets its abt
bit to eventually abort the transaction, disables its read signature to
prevent repeated aborts, and resets its nackable bit to avoid dead-
lock (Section 4.3).

Figure 3 illustrates an example execution of a simple FaNTM
program. T1 and T2 are top-level transactions running on P0 and
P1. T3 is T1’s child transaction running on P2. From step 0 to
2, T1 and T2 have performed transactional memory accesses to
x and y. At step 3, P2 sends an exclusive load request prior to
updating y. Since the request is from T1’s family, Filter 0 simply
propagates the request to the associated cache without aborting T1.
On the other hand, since the request is not from T2’s family (R/W
conflict), Filter 1 interrupts P1 to abort T2. The exclusive load
request by P2 is successful (not nacked). Therefore, P2 acquires
exclusive ownership for the cache line holding y and proceeds with
the execution of T3.

3.3 FaNTM Software
Figure 4 presents the transaction descriptor, a software data struc-

ture that summarizes the transactional metadata. Each transaction

P0

TID: 1

FV={3}

RSig={y}

WSig={x}

Interconnection Network

Filter0

P1

TID: 2

FV=Æ

RSig={y}

WSig=Æ

Filter1

0:[T1] ld y

1:[T2] ld y

2:[T1] st x

3:[T3] st y

u [T3] ldx y

P2

TID: 3

FV={1}

RSig=Æ

WSig={y}

Filter2

v Ack

w Interrupt

TM Program

Figure 3: An example execution of a simple FaNTM program.

struct transaction {
int Tid;
Log UndoLog;
struct transaction* Parent;
lock commitLock;
bool Doomed;
bool Active;
int Aborts;
...

}

Figure 4: Transaction descriptor.

maintains an undo-log implemented using a doubly-linked list to
provide eager versioning in software. It has a pointer to its parent
transaction to access its parent’s metadata as necessary. Each trans-
action maintains a commit-lock to synchronize concurrent accesses
to its undo-log by its children. There are additional fields such as
Doomed, Active, and Aborts that will be discussed later.

Algorithms 1 and 2 present the pseudocode for the FaNTM al-
gorithm. We summarize its key functions below.
TxStart: After making a checkpoint, this barrier checks whether
there is any doomed ancestor. If so, it returns “failure" to initiate
recursive aborts to provide forward progress. Otherwise, it starts
the transaction by initializing its metadata. Note that the nackable
bit in the TMB is set to ensure that any conflicting memory access
by the transaction is correctly handled.
TxLoad1: This barrier inserts the address in the read signature
and attempts to read the corresponding memory object. If this
load request is successful (not nacked), the read barrier returns
the memory value. Otherwise, the processor is interrupted and the
program control is transferred to the software abort handler (Tx-
AbortHandler) to initiate an abort.
TxStore: This barrier inserts the address in the write signature. It
then sends an exclusive load request for the address over the inter-
connection network using the fetchExclusive instruction (Table 3).
If this request fails, the filter interrupts the processor to abort the
transaction. Otherwise, the transaction inserts the current memory
value into its undo-log and updates the memory object in-place.
TxCommit: This barrier first resets the nackable bit in the ac-
tive TMB to handle the deadlock issues discussed in Section 4.3.
If there is any doomed transaction in the hierarchy, a transaction
1Similar to TxStart, TxLoad (and TxStore) could also check
doomed ancestors. There are three possible schemes to check
doomed ancestors such as always, periodic, and never. The al-
ways and periodic schemes introduce a runtime overhead that in-
creases linearly with the nesting depth. The never and periodic
schemes admit an execution scenario in which a nested transac-
tion keeps running (temporarily), even when its ancestor has been
already doomed. In our performance evaluation (Section 5), we
performed experiments with a FaNTM design that implements the
never scheme.

1: procedure DOOMCONFLICTINGANCES(Self , T)
2: p← Self.Parent
3: while p 6= NIL and IsAnces(p,T) = false do
4: p.Doomed← true
5: p← p.Parent

6: return

7: procedure TXSTART(Self)
8: checkpoint()
9: if isDoomedAnces(Self) then

10: return failure
11: Self.Doomed← false
12: Self.Active← true
13: enableRSigLookup()
14: enableWSigLookupAndNack()
15: setNackable()
16: return success

17: procedure TXLOAD(Self , addr)
18: RSigInsert(addr)
19: val←Memory[addr]
20: return val

21: procedure TXSTORE(Self , addr, data)
22: WSigInsert(addr)
23: fetchExclusive(addr)
24: Self.UndoLog.insert(addr, Memory[addr])
25: Memory[addr]← data
26: return

27: procedure TXABORTHANDLER(Self)
28: if Self.Aborts%period = period− 1 then
29: confTx← getConfTx()
30: DoomConflictingAnces(Self , confTx)
31: if Self.Active = false then
32: Self.Doomed← true
33: else
34: initiateAbort(Self)

Algorithm 1: Pseudocode for the FaNTM algorithm.

aborts. Otherwise, a top-level transaction finishes its commit by
simply resetting its metadata. A nested transaction merges its read
signature into its parent by sending a RSigMerge message. The
nested transaction should detect any potential conflict until it re-
ceives the ack from its parent for the RSigMerge message. After
receiving the ack from its parent, the transaction can disable its read
signature because its parent will detect any subsequent conflict on
behalf of the transaction. The transaction then merges its write sig-
nature by sending a WSigMerge message and its undo-log to its
parent. When merging its undo-log, the transaction must acquire
its parent’s commit-lock to avoid data races. To reduce the exe-
cution time in the critical section, undo-log entries are merged by
linking the pointers (instead of copying the entries). Finally, the
transaction finishes its commit by resetting the transactional meta-
data.
TxAbort: This barrier restores the speculatively written memory
values. It then resets the transactional metadata including the write
signature. After performing contention management (exponential
backoff), the transaction restarts by restoring the checkpoint.
TxAbortHandler: This software interrupt handler is pre-registered.
It is called when a processor is interrupted due to a conflict. To han-
dle the liveness issue discussed in Section 4.2, an aborting trans-
action periodically dooms its ancestors by setting their Doomed
variable. If the transaction is currently inactive (i.e., has live chil-
dren), it sets its Doomed variable and defers the actual abort until it
becomes active again. Otherwise, the transaction initiates an abort.

1: procedure TXCOMMIT(Self)
2: resetNackable()
3: if isDoomedOrDoomedAnces(Self) then
4: TxAbort(Self)
5: if isTopLevel(Self) = false then
6: mergeRSigToParent(Self)
7: disableRSigLookup()
8: mergeWSigToParent(Self)
9: acquireCommitLock(Self.Parent)

10: mergeUndoLogToParent(Self)
11: releaseCommitLock(Self.Parent)
12: else
13: disableRSigLookup()
14: RSigReset()
15: WSigReset()
16: disableWSigLookup()
17: Self.UndoLog.reset()
18: Self.Aborts← 0
19: return

20: procedure TXABORT(Self)
21: resetNackable()
22: disableRSigLookup()
23: RSigReset()
24: for all addr in Self.UndoLog do
25: Memory[addr]← Self.UndoLog.lookup(addr)
26: WSigReset()
27: disableWSigLookup()
28: Self.UndoLog.reset()
29: Self.Aborts← Self.Aborts + 1
30: Self.Doomed← false
31: doContentionManagement()
32: restoreCheckpoint()

Algorithm 2: Pseudocode for the FaNTM algorithm.

Barrier TL2 SigTM NesTM FaNTM
Read O(1) O(1) O(1) O(1)
Write O(1) O(1) O(d ·R) O(1)
Commit O(R + W) O(1) O(d + R + W) O(d)

Table 4: A symbolic comparison of the time complexity
of performance-critical TM barriers in (eager) TL2, (eager)
SigTM, NesTM, and FaNTM. R, W , and d denote read-set size,
write-set size, and nesting depth, respectively.

3.4 Qualitative Performance Analysis
Table 4 presents a symbolic comparison of the time complexity

of TM barriers in TL2, SigTM, nested STM (NesTM), and FaNTM.
Note that all the TMs discussed here perform eager versioning. We
assume that NesTM maintains a data structure used for fast ancestor
relationship check. Time complexity of the read barrier in all TMs
is O(1)2. Time complexity of the write barrier in NesTM is high
(O(d·R)) because a transaction should validate its ancestors before
it updates a memory object. In contrast, all the other TMs still have
O(1) complexity. As for the commit barrier, SigTM has the fastest
one because committing transactions simply reset their metadata.
FaNTM has O(d) complexity because it checks doomed ancestors.
TL2 has O(R + W) complexity because a committing transaction
validates its read-set and releases the locks in its write-set. NesTM
has slightly higher complexity (O(d+R+W)) as it checks doomed
ancestors.

Apart from the differences in time complexity, there are three
FaNTM performance issues. First, nested transactions cannot ex-

2We assume that transactions do not check doomed ancestors in
read and write barriers in NesTM and FaNTM.

Assume that initially x==0

// Running on P0
0: Begin(T1)
1: st x,1
2: ...
3: ...
4: ...
5: ...
6: ...
7: ...
8: ...
9: // T1 aborts

// Running on P1
...
...
Begin(T1.1)
ld x // cache miss
End(T1.1)
// Th1.1 fin./Th2 starts
Begin(T2)
ld x // cache hit!
End(T2)
...

Can T2 observe x==1?

Figure 5: A dirty-read problem due to an unexpected cache hit.

ploit temporal locality when accessing undo-log entries. When a
nested transaction commits, it merges its undo-log entries into its
parent. Hence, temporal locality is lost for these entries when a new
nested transaction starts on the same core. Second, when a large
number of child transactions commit at the same time, contention
on the commit-lock of their parent may degrade performance. Fi-
nally, the extra code in TM barriers (e.g., sending R/WSigMerge
messages over the network when nested transactions commit, check-
ing doomed ancestors) may introduce additional runtime overheads.
We quantify their performance impact in Section 5.

4. COMPLICATIONS OF NESTING
In this section, we discuss subtle correctness and liveness issues

encountered while developing FaNTM.

4.1 Dirty Read
Problem: The key assumption for guaranteeing the correctness
of FaNTM is that any transactional memory access that conflicts
with other transactions causes a cache miss. Filters then snoop
the conflicting request and correctly resolve it. In the presence of
nested parallel transactions, however, this assumption may not hold
if threads are carelessly scheduled. Figure 5 illustrates a dirty read
problem that may occur when this assumption does not hold. At
step 1, T1 on P0 attempts to write to x. P0’s cache acquires exclu-
sive ownership for the line holding x and the corresponding lines
in the other caches are invalidated. At step 3, T1.1 on P1 attempts
to read x. This access causes a cache miss due to the prior inval-
idation. Since T1.1 belongs to T1’s family, T1 acks the request.
Therefore, the cache lines holding x in P0’s and P1’s caches are
now in shared state. After T1.1 commits, another top-level thread
is scheduled on P1 and executes T2. At step 7, T2 attempts to read
x. While this access conflicts with T1, it cannot be nacked by T1
due to an unexpected cache hit. At step 8, T2 successfully com-
mits even after it read a value speculatively written by T1, which is
incorrect.
Solution: The root cause of this problem is that unexpected cache
hits can occur when a potentially-conflicting transaction (T2 in Fig-
ure 5) runs on a processor where a nested transaction (T1.1) ran
and its top-level ancestor (T1) has not been quiesced yet. To ad-
dress this problem without requiring complex hardware, we rely
on a software thread-scheduler approach. When the number of
available processors in the system is no less than the number of
threads in the application, the thread scheduler pins each thread on

st x

T1

T1.1

st y

T1.2

T1.1.1 T1.2.1

ld xld y

Figure 6: A livelock scenario avoided by eventual rollback of
the outer transaction.

// T1 on P0
atomic {
...
fork(...);

}

// T1.2 on P1
work(arg) {
// Any mem. access can be
// potentially nacked until
// TID is set.
setTid(tid);

}

Figure 7: A self-deadlock scenario caused by carelessly enforc-
ing strong isolation.

its dedicated processor3. If the number of processors is not large
enough, the thread scheduler attempts to schedule a thread on a
processor where a transaction whose family has been quiesced ran.
If there is no such processor, the thread scheduler maps the thread
to any processor. When the thread is about to start a transaction, it
may defer its execution until the family of the previously-executed
transaction is quiesced or invalidate the private cache to prevent
unexpected cache hits. We leave an exhaustive exploration of the
thread-scheduler approach as future work.

4.2 Livelock
Problem: When a nested transaction detects a conflict, it only
aborts and restarts (instead of aborting its ancestors) to avoid any
unnecessary performance penalty. However, this can potentially
cause livelock. Figure 6 illustrates an example. If only nested
transactions (T1.1.1 and T1.2.1) abort and restart, none of them
can make forward progress because the memory objects are still
(crosswise) locked by their ancestors (T1.1 and T1.2).
Solution: To address this problem, a nested transaction periodi-
cally dooms its ancestors when executing TxAbortHandler (line 30
in Algorithm 1). Specifically, when a TMB detects a conflict, it
records the TID of a conflicting transaction in its CTID. Using
the CTID, the transaction periodically dooms every ancestor that is
not the ancestor of the conflicting transaction. For instance, when
T1.1.1 in Figure 6 is aborted by T1.2, it dooms its parent (T1.1)
because T1.1 is not T1.2’s ancestor. However, T1 is not doomed
because it is T1.2’s ancestor. If T1 is (carelessly) doomed, it causes
a self livelock where a transaction cannot make forward progress as
it is aborted by its descendants, even without any conflicting trans-
action.

4.3 Deadlock
Problem: In line with its baseline TM, FaNTM provides strong iso-
lation where a transaction is isolated both from other transactions
and non-transactional memory accesses [12]. However, carelessly
enforcing strong isolation can cause various deadlock issues due to
the inexact nature of signatures. Figures 7 and 8 illustrate potential
deadlock scenarios. In Figure 7, any memory access by T1.2 on

3In our performance evaluation (Section 5), we assumed that the
number of available processors is no less than the number of
threads.

// Running on P0
0: Begin(T1)
1: TxStore(x,1)
2: TxLoad(y)
3: // TxAbort
4: access UndoLog(T1,x)
5: // No progress

// Running on P1
Begin(T2)
TxStore(y,2)
TxLoad(x)
// TxAbort
access UndoLog(T2,y)
// No progress

Figure 8: A deadlock scenario caused by carelessly enforcing
strong isolation.

Feature Description
Processors In-order, single-issue, x86 cores
L1 Cache 64-KB, 64-byte line, private

4-way associative, 1 cycle latency
Network 256-bit bus, split transactions

Pipelined, MESI protocol
Arbitration latency: 6 pipelined cycles

L2 Cache 8-MB, 64-byte line, shared
8-way associative, 10 cycle latency

Main Memory 100 cycle latency
up to 8 outstanding transfers

Filters 4 TMBs per filter
2048 bits per R/W signature register
The hash functions reported in [6]

Table 5: Parameters for the simulated CMP system.

P1 (before TID is set) can be potentially nacked by T1 on P0, if it
generates a false positive in T1’s write signature. T1.2 is nacked by
T1 which re-activates only after T1.2 finishes, creating a cycle in
the dependency graph. Thus, a self deadlock occurs.

Note that deadlock can occur even in the baseline hybrid TM.
Figure 8 illustrates another deadlock scenario. T1 on P0 and T2 on
P1 abort each other, after accessing memory locations (x and y) in
a crosswise manner. When T1 and T2 attempt to restore memory
objects, they can potentially deadlock, if their memory accesses are
nacked by each other due to the false positives in write signatures.
Solution: To address this problem, we enforce the following two
rules. First, by default, every non-transactional memory request
is associated with TID 0 (the root transaction). Since, by defini-
tion, the root transaction belongs to the family of every transac-
tion, filters do not respond to the request with TID 0. If strong
isolation is desired, it should be explicitly enabled by associating
non-transactional memory accesses with a non-zero TID using the
setTid instruction in Table 3. Second, every memory request by
a committing or aborting transaction resets its nackable bit. Fil-
ters do not nack this memory request even if it hits in their write
signatures.

5. EVALUATION

5.1 Methodology
We used an execution-driven simulator for x86 multi-core sys-

tems. Table 5 summarizes the main architectural parameters. The
processor model assumes that all instructions have a CPI of 1.0 ex-
cept for the instructions that access memory or generate messages
over the interconnection network. However, all the timing details
in the memory hierarchy are modeled, including contention and
queueing events.

Through our performance evaluation, we aim to answer the fol-
lowing three questions: Q1: What is the performance overhead
of FaNTM when applications only use top-level parallelism? Q2:
What is the performance overhead when the available parallelism is

T G I K L S V Y Avg.
1 2.1 2.5 0.9 0.1 6.2 0.5 0.4 1.8
2 4.3 2.8 0.5 0.2 6.2 0.8 4.3 2.7
4 5.0 5.9 1.0 1.9 2.7 1.0 0.3 2.5
8 4.1 1.8 1.5 2.5 4.7 1.6 0.4 2.4

16 4.5 0.0 2.4 2.0 2.3 0.3 1.1 1.8
Avg. 4.0 2.6 1.3 1.3 4.4 0.8 1.3 2.3

Table 6: Normalized performance difference (%) of FaNTM
relative to SigTM for STAMP applications. G, I, K, L, S, V,
and Y indicate genome, intruder, kmeans, labyrinth, ssca2,
vacation, and yada, respectively. The rightmost column and
bottommost row present average values.

exploited in deeper nesting levels? Q3: How can we exploit nested
parallelism to improve transactional application performance?

For Q1, we used seven of the eight STAMP benchmarks [5] ex-
cept for bayes as its non-deterministic behavior may make it diffi-
cult to compare the results across different TMs. For Q2, we used
two microbenchmarks based on concurrent hash table (hashtable)
and red-black tree (rbtree). For Q3, we used a microbenchmark
(np-rbtree) that uses multiple red-black trees. We provide addi-
tional details on the benchmarks later in this section.

5.2 Q1: Overhead for Top-Level Parallelism
Table 6 shows the performance differences between SigTM and

FaNTM using STAMP benchmarks that only use top-level transac-
tions. It summarizes the normalized performance difference (NPD)
defined as NPD(%) =

TF aNT M−TSigT M

TSigT M
×100 (the larger NPD,

the slower FaNTM).
As shown in Table 6, the average NPD is 2.3% across all the

benchmarks and thread counts, which is small. While FaNTM bar-
riers such as TxStart and TxCommit include extra code, their per-
formance impact is insignificant because they are infrequently exe-
cuted (compared to TxLoad and TxStore). To understand the exact
runtime overheads, we show execution time breakdowns in Figures
9(a) and 9(b). The execution time of each application is normal-
ized to the one on SigTM with 1 (Figure 9(a)) and 16 threads (Fig-
ure 9(b)). Execution time is broken into “busy" (useful instructions
and cache misses), “start" (TxStart overhead), “RB" (read barri-
ers), “WB" (write barriers), “abort" (time spent on aborted transac-
tions), “commit" (TxCommit overhead), and “other" (work imbal-
ance, etc.).

With 1 thread (Figure 9(a)), NPD is relatively high (FaNTM is
slower) when small transactions are used and account for a signif-
icant portion of the execution time (e.g., intruder and ssca2) [5].
This is because the runtime overhead due to the extra code in TxS-
tart and TxCommit is not fully amortized with small transactions.
In contrast, when larger transactions are used (e.g., labyrinth, va-
cation, and yada), the performance difference becomes small. We
observe a similar performance trend with 16 threads (Figure 9(b))
except that several applications spend a significant portion of the
time on aborted transactions.

5.3 Q2: Overhead of Deeper Nesting
We quantify the incremental overhead when the available par-

allelism is used in deeper nesting levels (NLs). We used two mi-
crobenchmarks: hashtable and rbtree. They perform concurrent
operations to a hash table (hashtable) with 4K buckets and a red-
black tree (rbtree). hashtable performs 4K operations where 12.5%
are inserts (reads/writes) and 87.5% are look-ups (reads). rbtree
performs 4K operations where 6.25% are inserts (reads/writes) and
93.75% are look-ups (reads). Each transaction in hashtable and

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1
N

or
m

. E
xe

c.
 T

im
e

(to
 F

la
t)

Other
Commit
Abort
WB
RB
Start
Busy

0.0

0.1

0.2

S F S F S F S F S F S F S F

genome intruder kmeans labyrinth ssca2 vacation yada

y

(a) 1 thread

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

N
or

m
. E

xe
c.

 T
im

e
(to

 F
la

t)

Other
Commit
Abort
WB
RB
Start
Busy

0.0

0.1

0.2

S F S F S F S F S F S F S F

genome intruder kmeans labyrinth ssca2 vacation yada

y

(b) 16 threads

Figure 9: Execution time breakdowns of STAMP applications. S and F indicate SigTM and FaNTM.

1.0

2.0

3.0

4.0

5.0

6.0

N
or

m
. E

xe
c.

 T
im

e
(to

 S
eq

.)

Other
NLC
CL
Commit
Abort
WB
RB
Start

0.0

1.0

F N1N2N3 F N1N2N3 F N1N2N3 F N1N2N3 F N1N2N3

1 2 4 8 16
(Versions, # Concurrent Threads)

Start
Busy

(a) NesTM (software)

0.3

0.6

0.9

1.2

1.5

N
or

m
. E

xe
c.

 T
im

e
(to

 S
eq

.)

Other
NLC
CL
Commit
Abort
WB
RB
Start

0.0
F N1N2N3 F N1N2N3 F N1N2N3 F N1N2N3 F N1N2N3

1 2 4 8 16
(Versions, # Concurrent Threads)

Start
Busy

(b) FaNTM (hybrid)

Figure 10: Execution time breakdowns of hashtable at various nesting levels.

rbtree performs 8 and 4 operations. Each microbenchmark has 4
versions. flat uses only top-level transactions. N1 pushes down the
available parallelism to NL=1, by enclosing the same code with a
big outer transaction. We implemented N2 and N3 by repeatedly
adding more outer transactions. Note that flat and nested versions
have different transactional semantics (i.e., perform all the opera-
tions atomically or not). We compare them to investigate the run-
time overheads of nested transactions.

Figures 10 and 11 provide the execution time breakdowns of
hashtable and rbtree normalized to that with the non-transactional,
sequential version. Figures 10(a) and 11(a) present the results with
NesTM, while Figures 10(b) and 11(b) show the results with FaNTM.
Apart from the aforementioned segments, each bar contains addi-
tional segments: “CL" (time spent acquiring the commit-locks of
parents), and “NLC" (time spent committing non-leaf transactions).

We aim to answer the following three sub-questions: Q2-1: What
is the incremental performance overhead of nested parallel trans-
actions over top-level transactions? Q2-2: How much faster is
FaNTM than a nested STM (NesTM) when running nested par-

allel transactions? Q2-3: How much computational workload is
required to amortize the overhead of deeper nesting?
Q2-1: Figures 10(b) and 11(b) show that FaNTM continues to scale
up to 16 threads. With 16 threads, N1 versions are faster than the
sequential version by 3.6× (hashtable) and 2.2× (rbtree). Scala-
bility of rbtree with 16 threads is limited by conflicts among nested
transactions. Figures 10(b) and 11(b) also reveal the three FaNTM
performance issues. First, the runtime overhead of the write barrier
becomes more expensive when running nested transactions. This is
due to more cache misses caused when accessing undo-log entries.
Since previously-used undo-log entries of a nested transaction are
merged to its parent, temporal locality is lost when accessing these
entries. However, since writes are relatively infrequent (compared
to reads) in both microbenchmarks, the performance impact is not
significant.

Second, performance can be degraded due to the contention on
the commit-lock of the parent when a large number of nested trans-
actions simultaneously attempt to commit. In hashtable, nested
transactions rarely conflict with each other even with 16 threads

5.0

10.0

15.0

20.0

25.0
N

or
m

. E
xe

c.
 T

im
e

(to
 S

eq
.)

Other
NLC
CL
Commit
Abort
WB
RB
Start

0.0
F N1N2N3 F N1N2N3 F N1N2N3 F N1N2N3 F N1N2N3

1 2 4 8 16
(Versions, # Concurrent Threads)

Start
Busy

(a) NesTM (software)

0.5

1.0

1.5

2.0

2.5

3.0

N
or

m
. E

xe
c.

 T
im

e
(to

 S
eq

.)

Other
NLC
CL
Commit
Abort
WB
RB
Start

0.0

0.5

F N1N2N3 F N1N2N3 F N1N2N3 F N1N2N3 F N1N2N3

1 2 4 8 16
(Versions, # Concurrent Threads)

Start
Busy

(b) FaNTM (hybrid)

Figure 11: Execution time breakdowns of rbtree at various nesting levels.

(Figure 10(b)). Therefore, many child transactions can simultane-
ously commit and cause this commit-lock contention. In contrast,
conflicts among nested transactions are relatively frequent in rb-
tree with 16 threads (Figure 11(b)). Thus, the performance impact
of this commit-lock contention is small. Finally, the extra code
in TxStart and TxCommit may introduce additional runtime over-
heads. However, since they are amortized using reasonably large
transactions in both microbenchmarks, their performance impact is
not critical.
Q2-2: Figures 10(a) and 10(b) (and also Figures 11(a) and 11(b))
demonstrate that FaNTM significantly outperforms NesTM, when
executing nested transactions. For example, N1 versions with 16
threads run 4.4× (hashtable) and 12.4× (rbtree) faster on FaNTM
than NesTM. This performance improvement is achieved by ad-
dressing the two critical performance issues of NesTM.

First, FaNTM eliminates the linearly-increasing runtime over-
heads of NesTM such as repeated read-set validation. Since NesTM
repeatedly validates the same memory objects in the read-set across
different nesting levels, it suffers from excessive runtime overheads
that linearly increase with the nesting depth. On the other hand,
since hardware filters continuously provide nesting-aware conflict
detection, FaNTM does not suffer from this performance pathol-
ogy.

Second, the performance of the FaNTM read barrier is almost
unaffected when running nested transactions, whereas the perfor-
mance of the NesTM read barrier is drastically degraded. This is
mainly due to more cache misses when accessing read-set entries
in NesTM. Since committing transactions merge their read-set en-
tries to their parent, NesTM cannot exploit temporal locality when
accessing these entries. In contrast, since software read-sets are re-
placed with hardware signatures, FaNTM does not suffer from this
performance pathology.
Q2-3: We investigate how much computational workload is re-
quired to amortize the runtime overheads of nested transactions
on FaNTM and NesTM. To this end, we compare the performance
of the nested versions of hashtable with the flat version by vary-
ing the size of computational workload within transactions. Fig-
ure 12 presents the normalized performance difference (NPD) with
16 threads. With little work, NPD is very high on NesTM because
the extra overheads of nested transactions cannot be amortized. In
contrast, even with little work, the nested versions on FaNTM per-

200
300
400
500
600
700
800

PD
 (%

, t
o

Fl
at

)

NesTM-N1 NesTM-N2 NesTM-N3
FaNTM-N1 FaNTM-N2 FaNTM-N3

0
100

1 10 100 1000 10000

N

Workload Size

Figure 12: Performance sensitivity to workload size.

form comparably with the flat version because FaNTM introduces
reasonable runtime overheads to nested transactions. Furthermore,
as the nesting depth increases, NesTM requires even larger work-
loads to amortize the linearly-increasing overheads. On the other
hand, the performance of nested transactions on FaNTM is almost
unaffected by nesting depth, requiring no extra workload for deeper
nesting.

5.4 Q3: Improving Performance using
Nested Parallelism

np-rbtree operates on a data structure that consists of multiple
red-black trees. It performs two types of operations on the data
structure: look-up operations that look up (read) entries and insert
operations that insert (read/write) entries in the red-black trees. In-
sert operations often modify the trees in a global manner, causing
many other transactions to abort. The ratio of look-up to insert
operations is configurable. Each operation atomically accesses all
the trees in the data structure within a transaction. After accessing
each tree, np-rbtree executes computational workload whose size
is also configurable.

We exploit the parallelism in np-rbtree in two ways – (1) flat:
parallelism at the outer level (i.e., inter-operation) and (2) nested:

1 0

2.0

3.0

4.0

5.0

6.0

7.0

ee
du

p
(o

ve
r S

eq
. V

er
.)

Flat
Nested

0.0

1.0

4 8 16

Sp
e

Number of Concurrent Threads

(a) Low contention, small workload

9.0
10.0

er
.)

6 0
7.0
8.0

Se
q.

 V
e

4 0
5.0
6.0

(o
ve

r S

Flat

2.0
3.0
4.0

ee
du

p Nested

0.0
1.0Sp

e

4 8 16
Number of Concurrent Threads

(b) Low contention, medium workload

10 0

12.0

er
.)

8.0

10.0

Se
q.

 V
e

6.0

(o
ve

r S

Flat

2 0

4.0

ee
du

p Nested

0.0

2.0

Sp
e

4 8 16
Number of Concurrent Threads

(c) Low contention, large workload

4.5
5.0

er
.)

3 0
3.5
4.0

Se
q.

 V
e

2 0
2.5
3.0

(o
ve

r S

Flat

1.0
1.5
2.0

ee
du

p Nested

0.0
0.5Sp

e

4 8 16
Number of Concurrent Threads

(d) Medium contention, small workload

6 0

7.0

er
.)

5.0

6.0

Se
q.

 V
e

3.0

4.0
(o

ve
r S

Flat

1 0

2.0

ee
du

p Nested

0.0

1.0

Sp
e

4 8 16
Number of Concurrent Threads

(e) Medium contention, medium workload

10 0

12.0

er
.)

8.0

10.0

Se
q.

 V
e

6.0

(o
ve

r S

Flat

2 0

4.0

ee
du

p Nested

0.0

2.0

Sp
e

4 8 16
Number of Concurrent Threads

(f) Medium contention, large workload

4.0
4.5

er
.)

3.0
3.5

Se
q.

 V
e

2.0
2.5

(o
ve

r S

Flat

1.0
1.5

ee
du

p Nested

0.0
0.5Sp

e

4 8 16
Number of Concurrent Threads

(g) High contention, small workload

5 0

6.0

er
.)

4.0

5.0

Se
q.

 V
e

3.0

(o
ve

r S

Flat

1 0

2.0

ee
du

p Nested

0.0

1.0

Sp
e

4 8 16
Number of Concurrent Threads

(h) High contention, medium workload

9.0
10.0

Ve
r.)

6 0
7.0
8.0

Se
q.

 V

4.0
5.0
6.0

(o
ve

r

Flat

2.0
3.0
4.0

ee
du

p Nested

0.0
1.0

4 8 16

Sp

4 8 16
Number of Concurrent Threads

(i) High contention, large workload

Figure 13: Scalability of np-rbtree.

parallelism at both levels (i.e., inter-operation and inter-tree). If the
percentage of the insert operations is high, the scalability of the flat
version can be limited due to the frequent conflicts among top-level
transactions.

We performed experiments by varying the two configurable pa-
rameters: the degree of contention and the size of computational
workload. Low, medium, and high contention cases are the ones
where 1%, 5%, and 10% of the operations are inserts. Small,
medium, and large workload cases are the ones where the compu-
tational workload iterates over 32, 128, and 512 loop iterations, re-
spectively. In addition, np-rbtree performs 1024 operations, each
accessing 8 red-black trees atomically.

Figure 13 demonstrates that the flat version significantly outper-
forms the nested version with low contention and small workload.
This performance difference results from the sufficient top-level
parallelism (i.e., low contention) effectively exploited by the flat
version and the unamortized overheads (i.e., small workload) of
the nested version such as runtime overheads of nested transac-
tions. In contrast, the nested version greatly outperforms the flat
version with high contention and large workload. This is because
the nested version can effectively exploit the parallelism available
at both levels and its overheads are sufficiently amortized using

large workload. On the other hand, the scalability of the flat ver-
sion is mainly limited due to the frequent conflicts among top-level
transactions.

6. RELATED WORK
Moss and Hosking proposed the reference model for concurrent

nesting in TM [14]. Based on the proposed model, a few recent
papers investigated nested parallelism in STM [2–4, 15, 21]. While
compatible with existing multicore chips, this software-only ap-
proach may introduce excessive runtime overheads due to the use of
complicated data structures [2, 4] or the use of an algorithm whose
time complexity is proportional to the nesting depth [3], limiting
its practicality. Our work differs because FaNTM aims to eliminate
substantial overheads of software nested transactions using hard-
ware acceleration.

Vachharajani proposed an HTM that supports nested parallelism
within transactions [20]. While insightful, the proposed design
drastically increases hardware complexity by intrusively modify-
ing hardware caches to implement nesting-aware conflict detection
and data versioning. In contrast, FaNTM simplifies hardware by
decoupling nesting-aware transactional functionality from caches
using hardware filters.

7. CONCLUSION
This paper presented FaNTM, a hybrid TM that provides prac-

tical support for nested parallel transactions using hardware fil-
ters. FaNTM effectively eliminates excessive runtime overheads of
software nested transactions using lightweight hardware support.
FaNTM simplifies hardware by decoupling nested parallel transac-
tions from hardware caches. Through our performance evaluation,
we showed that FaNTM incurs a small runtime overhead when only
single-level parallelism is used. We also demonstrated that nested
transactions on FaNTM perform comparably with top-level trans-
actions and run significantly faster than those on a nested STM.
Finally, we showed how nested parallelism can improve the perfor-
mance of a transactional microbenchmark.

Acknowledgements
We would like to thank Daniel Sanchez, Richard Yoo, and the
anonymous reviewers for their feedback. We also want to thank
Sun Microsystems for making the TL2 code available. Woongki
Baek was supported by a Samsung Scholarship and an STMicro-
electronics Stanford Graduate Fellowship. This work was sup-
ported by NSF Award number 0546060, the Stanford Pervasive Par-
allelism Lab, and the Gigascale Systems Research Center (GSRC).

8. REFERENCES

[1] The OpenMP Application Program Interface Specification,
version 3.0. http://www.openmp.org, May 2008.

[2] K. Agrawal, J. T. Fineman, and J. Sukha. Nested parallelism
in transactional memory. In PPoPP ’08: Proceedings of the
13th ACM SIGPLAN Symposium on Principles and practice
of parallel programming, pages 163–174, New York, NY,
USA, 2008. ACM.

[3] W. Baek, N. Bronson, C. Kozyrakis, and K. Olukotun.
Implementing and evaluating nested parallel transactions in
software transactional memory. In 22nd ACM Symposium on
Parallelism in Algorithms and Architectures. June 2010.

[4] J. Barreto, A. Dragojević, P. Ferreira, R. Guerraoui, and
M. Kapalka. Leveraging parallel nesting in transactional
memory. In PPoPP ’10: Proceedings of the 15th ACM
SIGPLAN symposium on Principles and practice of parallel
programming, pages 91–100, New York, NY, USA, 2010.
ACM.

[5] C. Cao Minh, J. Chung, C. Kozyrakis, and K. Olukotun.
STAMP: Stanford transactional applications for
multi-processing. In IISWC ’08: Proceedings of The IEEE
International Symposium on Workload Characterization,
September 2008.

[6] C. Cao Minh, M. Trautmann, J. Chung, A. McDonald,
N. Bronson, J. Casper, C. Kozyrakis, and K. Olukotun. An
effective hybrid transactional memory system with strong
isolation guarantees. In Proceedings of the 34th Annual
International Symposium on Computer Architecture. June
2007.

[7] P. Damron, A. Fedorova, Y. Lev, V. Luchangco, M. Moir, and
D. Nussbaum. Hybrid transactional memory. In
ASPLOS-XII: Proceedings of the 12th international
conference on Architectural support for programming
languages and operating systems, October 2006.

[8] D. Dice, O. Shalev, and N. Shavit. Transactional locking II.
In DISC’06: Proceedings of the 20th International
Symposium on Distributed Computing, March 2006.

[9] L. Hammond, V. Wong, M. Chen, B. D. Carlstrom, J. D.
Davis, B. Hertzberg, M. K. Prabhu, H. Wijaya, C. Kozyrakis,
and K. Olukotun. Transactional memory coherence and
consistency. In Proceedings of the 31st International
Symposium on Computer Architecture, pages 102–113, June
2004.

[10] T. Harris and K. Fraser. Language support for lightweight
transactions. In OOPSLA ’03: Proceedings of the 18th
annual ACM SIGPLAN conference on Object-oriented
programing, systems, languages, and applications, pages
388–402. ACM Press, 2003.

[11] M. Herlihy and J. E. B. Moss. Transactional memory:
Architectural support for lock-free data structures. In
Proceedings of the 20th International Symposium on
Computer Architecture, pages 289–300, 1993.

[12] J. Larus and R. Rajwar. Transactional Memory. Morgan
Claypool Synthesis Series, 2006.

[13] K. E. Moore, J. Bobba, M. J. Moravan, M. D. Hill, and D. A.
Wood. LogTM: Log-Based Transactional Memory. In 12th
International Conference on High-Performance Computer
Architecture, February 2006.

[14] J. E. B. Moss and T. Hosking. Nested Transactional
Memory: Model and Preliminary Architecture Sketches. In
OOPSLA 2005 Workshop on Synchronization and
Concurrency in Object-Oriented Languages (SCOOL).
University of Rochester, October 2005.

[15] H. E. Ramadan and E. Witchel. The Xfork in the Road to
Coordinated Sibling Transactions. In The Fourth ACM
SIGPLAN Workshop on Transactional Computing
(TRANSACT 09), February 2009.

[16] B. Saha, A. Adl-Tabatabai, and Q. Jacobson. Architectural
support for software transactional memory. In MICRO ’06:
Proceedings of the International Symposium on
Microarchitecture, 2006.

[17] B. Saha, A.-R. Adl-Tabatabai, R. L. Hudson, C. Cao Minh,
and B. Hertzberg. McRT-STM: A high performance software
transactional memory system for a multi-core runtime. In
PPoPP ’06: Proceedings of the 11th ACM SIGPLAN
symposium on Principles and practice of parallel
programming, New York, NY, USA, March 2006. ACM
Press.

[18] Supercomputing Technologies Group, Massachusetts
Institute of Technology Laboratory for Computer Science.
Cilk 5.4.6 Reference Manual, Nov. 2001.

[19] Y. Tanaka, K. Taura, M. Sato, and A. Yonezawa.
Performance Evaluation of OpenMP Applications with
Nested Parallelism. In LCR ’00: Languages, Compilers, and
Run-Time Systems for Scalable Computers, pages 100–112,
London, UK, 2000. Springer-Verlag.

[20] N. A. Vachharajani. Intelligent Speculation for Pipelined
Multithreading. PhD thesis, Princeton University, 2008.

[21] H. Volos, A. Welc, A.-R. Adl-Tabatabai, T. Shpeisman,
X. Tian, and R. Narayanaswamy. NePaLTM: Design and
Implementation of Nested Parallelism for Transactional
Memory Systems. In ECOOP, 2009.

