
Implementing and Evaluating Nested Parallel Transactions
in Software Transactional Memory

Woongki Baek, Nathan Bronson, Christos Kozyrakis, Kunle Olukotun
Computer Systems Laboratory

Stanford University
Stanford, CA 94305

{wkbaek,nbronson,kozyraki,kunle}@stanford.edu

ABSTRACT
Transactional Memory (TM) is a promising technique that sim-
plifies parallel programming for shared-memory applications. To
date, most TM systems have been designed to efficiently support
single-level parallelism. To achieve widespread use and maximize
performance gains, TM must support nested parallelism available
in many applications and supported by several programming mod-
els.

We present NesTM, a software TM (STM) system that supports
closed-nested parallel transactions. NesTM is based on a high-
performance, blocking STM that uses eager version management
and word-granularity conflict detection. Its algorithm targets the
state and runtime overheads of nested parallel transactions. We
also describe several subtle correctness issues in supporting nested
parallel transactions in NesTM and discuss their performance im-
pact.

Through our evaluation, we quantitatively analyze the perfor-
mance of NesTM using STAMP applications and microbenchmarks
based on concurrent data structures. First, we show that the perfor-
mance overhead of NesTM is reasonable when single-level paral-
lelism is used. Second, we quantify the incremental overhead of
NesTM when the parallelism is exploited in deeper nesting levels
and draw conclusions that can be useful in designing a nesting-
aware TM runtime environment. Finally, we demonstrate a use-
case where nested parallelism improves the performance of a trans-
actional microbenchmark.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Programming –
parallel programming

General Terms
Algorithms, Design, Performance

Keywords
Transactional Memory, Nested Parallelism, Parallel Programming

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPAA’10, June 13–15, 2010, Thira, Santorini, Greece.
Copyright 2010 ACM 978-1-4503-0079-7/10/06 ...$10.00.

1. INTRODUCTION
Transactional Memory (TM) [13] has surfaced as a promising

technique to simplify parallel programming. TM addresses the dif-
ficulty of lock-based synchronization by allowing programmers to
simply declare certain code segments as transactions that execute
in an atomic and isolated way with respect to other code. TM takes
responsibility for all concurrency control. The potential of TM
has motivated extensive research on hardware, software, and hy-
brid implementations. We focus on software TM (STM) [8,11,19],
because it is the only approach compatible with existing and up-
coming multicore chips.

Most TM systems, thus far, have assumed that the code within
a transaction executes sequentially. However, real world applica-
tions often include the potential for nested parallelism in various
forms such as nested parallel loops, recursive function calls, and
calls to parallel libraries [21]. As the number of cores scales, it is
important to fully exploit the parallelism available at all levels to
achieve the best possible performance. In this spirit, several paral-
lel programming models that support nested parallelism have been
proposed [1, 20]. Hence, to maximize performance gain and in-
tegrate well with popular programming models, TM must support
nested parallelism.

However, efficiently exploiting nested parallelism in TM is not
trivial. The general challenge of nested parallelism is amortizing
the overhead for initiating, synchronizing, and balancing inner-
level, fine-grained parallelism [5]. Nested parallelism within trans-
actions exacerbates this challenge due to the extra overheads for
initiating, versioning, and committing nested transactions. The de-
sign of a TM system that supports nested parallel transactions is
also challenging. First, the conflict detection scheme must be able
to correctly track dependencies in a hierarchical manner instead of
a flat way. Nested parallel transactions may conflict and restart
without necessarily aborting their parent transaction. Second, apart
from the runtime overhead, we must ensure that the memory over-
head necessary for tracking the state of nested transactions is small.
Third, since some applications may not use nested parallelism, we
must ensure that its overhead is reasonable when only a single level
of parallelism is used.

A few recent works on nested parallelism in STM have discussed
the semantics of nested parallel transactions and provided proto-
type implementations [2, 4, 18, 22]. However, the following ques-
tions still require further investigations. First, what is a cost-effective
algorithm for nested parallelism in high-performance STMs? Sec-
ond, using a detailed performance analysis, what are the practical
tradeoffs and issues when using nested parallelism in STM? An-
swering these questions is also important to guide future work on
nesting-aware TM runtime environments.

This paper presents NesTM, an STM that supports closed-nested
parallel transactions. NesTM is based on a high-performance, block-
ing STM that uses eager versioning and word-granularity conflict
detection. NesTM extends the baseline STM to support nested par-
allel transactions in a manner that keeps state and runtime over-
heads small.

The specific contributions of this work are:

• We propose an STM system that supports nested parallelism
with transactions and parallel regions nested in arbitrary man-
ners.

• We present several complications of concurrent nesting, de-
scribe solutions for correct execution, and discuss their im-
pact on performance.

• We provide a quantitative performance analysis of NesTM
across multiple use scenarios. First, we show that the perfor-
mance overhead of NesTM is reasonable when using only a
single level of parallelism. Second, we quantify the overhead
of NesTM when we exploit the parallelism in deeper nest-
ing levels. Finally, we demonstrate that NesTM improves
the performance of a transactional microbenchmark that uses
nested parallelism.

The rest of the paper is organized as follows. Section 2 reviews
the baseline STM and the semantics of nested parallel transactions.
Section 3 describes NesTM and Section 4 discusses subtle correct-
ness issues. Section 5 presents the quantitative evaluation. Sec-
tion 6 reviews related work. Finally, Section 7 concludes the paper.

2. BACKGROUND

2.1 Baseline STM
Our starting point is a blocking STM algorithm that uses eager

versioning [11, 19]. This approach has been shown to have per-
formance advantages over non-blocking or lazy versioning STMs
and is used by the Intel STM compiler [19] and the Microsoft Bar-
tok environment [11]. While we focus on an STM with word-
granularity conflict detection, our findings can apply to STMs that
perform object-granularity conflict detection.

The exact code we start with is an eager variant of TL2 STM [6,
9]. It maintains an undo log for data written within a transaction.
The STM uses a global version clock to establish serializability.
Using a hashing function, each memory word is associated with a
variable (voLock) that either acts as a lock or stores a version num-
ber (i.e., the clock value when the word was written by a commit-
ting transaction). When a transaction reads data, it inserts them in
its read-set. When a transaction writes data, it acquires the associ-
ated locks. The code for the read and write barriers is carefully op-
timized to keep the overhead per call (some parts are in assembly)
small. Conflicts are detected by checking the associated voLocks
when read, write, and commit barriers are executed. A randomized
exponential backoff scheme is used for contention management.

2.2 Semantics of Concurrent Nesting
We describe a few concepts for nested parallel transactions. Ad-

ditional discussion is available in [2, 16].
Definitions and concepts: At runtime, each transaction is assigned
with a transaction ID (TID), a unique positive integer. Root trans-
action (TID 0) is reserved to represent the globally committed state
of the system. Every non-root transaction has a unique parent trans-
action. Top-level transactions are the ones whose parent is the root
transaction. Following the assumption in [16], a transaction is only
allowed to execute when it does not have any active children.

Owner (if L==1) or Version Number (if L==0) L

N-1 01

(a) voLock in the baseline STM

(b) voLock in NesTM

Version Number Owner (TID)

N-1 T-1 0

Figure 1: Comparison of voLocks.

Transactional semantics: We describe the definition of conflict
discussed in [2] for TM systems with closed nesting. For a memory
object l, let readers(l) be a set of active transactions that have l in
their read-sets. writers(l) is defined similarly. When a transaction
T accesses l, the following two cases are conflicts:
• T reads from l: if there exists a transaction T ′ such that T ′ ∈

writers(l), T ′ 6= T and T ′ /∈ ancestors(T).
• T writes to l: if there exists a transaction T ′ such that T ′ ∈

readers(l) ∪ writers(l), T ′ 6= T and T ′ /∈ ancestors(T).
As for the commit semantics, if T is not a top-level transaction,

its read- and write-sets are merely merged into its parent’s read- and
write-sets. Otherwise, all the values written by T become visible to
other transactions and its read- and write-sets are reset. If T aborts,
all the changes made by T are discarded and previous states are
restored [16].

3. DESIGN AND IMPLEMENTATION OF
NESTM

This section describes the NesTM algorithm, an execution ex-
ample, and the main issues related to performance.

3.1 NesTM Algorithm
The key design goal of NesTM is to keep state and runtime over-

heads small in supporting nested parallel transactions. For instance,
we do not want to significantly increase memory footprint by using
multiple sets of locks and global version clocks to support multiple
nested parallel regions. The blocking, eager versioning STM used
as our baseline has a useful property that helps us meet our goal:
once a transaction writes (i.e., acquires a lock) to a memory object,
it is guaranteed to have an exclusive ownership for the object until
it commits or aborts.

Before discussing the NesTM algorithm, we describe the changes
in the version-owner locks (voLock) compared to the baseline STM.
As shown in Figure 1, voLock in the baseline STM is a word-sized
data structure (i.e., N=32 and 64 on 32-bit and 64-bit machines)
that encodes the version or owner information on the associated
memory object. If L=1 (locked), the remaining N-1 bits store the
owner information. If L=0 (unlocked), the remaining N-1 bits store
the version number. This encoding is sufficient to support only
top-level transactions because once a transaction locks a memory
object, no other transactions are allowed to access the object un-
til the transaction commits or aborts. In NesTM, however, other
transactions can correctly access the locked object as long as they
are descendants of the owner. To allow this, the ownership informa-
tion should always be available in voLock to consult the ancestor
relationship at any time. Similarly, the version number in voLock
should also be always available to serialize the conflicting transac-
tions.

1: procedure ISINREADSET(Self , addr)
2: acquireLock(Self.commitLock)
3: result← addr ∈ Self.RS
4: releaseLock(Self.commitLock)
5: return result
6: procedure DOOMHIGHESTCONFLICTTX(Self , Owner)
7: ptr← Self
8: while ptr.Parent /∈ {Root,Owner,Ances(Owner)} do
9: ptr.doomed← true

10: ptr← ptr.Parent
11: procedure VALIDATEREADERS(Self , Owner, addr)
12: ptr← Self
13: hcr← NIL
14: while ptr /∈ {Root,Owner,Ances(Owner)} do
15: if getTS(addr) > ptr.rv and isInReadSet(ptr, addr) then
16: ptr.doomed← true
17: hcr← ptr
18: ptr← ptr.Parent
19: return hcr
20: procedure TXSTART(Self)
21: Self.aborts← 0
22: checkpoint()
23: if isAnyDoomedAnces(Self) then
24: return fail
25: Self.doomed← false
26: Self.rv← GlobalClock
27: return success
28: procedure TXLOAD(Self , addr)
29: if Self.doomed = true or isAnyDoomedAnces(Self) then
30: TxAbort(Self)
31: retry_load:
32: rb← RollbackCounter
33: cv← getVoVal(addr)
34: Owner← extractOwn(cv)
35: value←Memory[addr]
36: if Owner = Self then
37: Self.RS.insert(addr)
38: return value
39: else if Owner∈Ances(Self) and cv = getVoVal(addr) then
40: if rb 6= RollbackCounter then
41: goto retry_load
42: if extractTS(cv) > Self.rv then
43: TxAbort(Self)
44: else
45: Self.RS.insert(addr)
46: return value
47: else
48: if Owner/∈Ances(Self) and Self.aborts%p = p− 1 then
49: DoomHighestConflictTx(Self , Owner)
50: TxAbort(Self)
51: procedure TXABORT(Self)
52: Self.doomed← false
53: Self.aborts← Self.aborts + 1
54: Self.RS.reset()
55: atomicIncrementRollbackCounter()
56: for all e in Self.WS do . Traversing direction: backward
57: Memory[e.addr]← Self.WS.lookup(e.addr)
58: for all e in Self.WS do . Traversing direction: forward
59: Owner← getOwner(e.addr)
60: if Owner = Self then
61: setVoVal(e.addr, e.prevV oLock)
62: Self.WS.reset()
63: doContentionManagement()
64: restoreCheckpoint()

Algorithm 1: Pseudocode for the basic functions in NesTM.

1: procedure TXSTORE(Self , addr, data)
2: if Self.doomed = true or isAnyDoomedAnces(Self) then
3: TxAbort(Self)
4: Owner← getOwner(addr)
5: if Owner = Self then
6: cv← getVoVal(addr)
7: Self.WS.insert(addr, Memory[addr], cv)
8: Memory[addr]← data
9: else

10: cnt← 1
11: repeat
12: cv← getVoVal(addr)
13: ov← cv
14: nv← extractTS(cv) | Self.T ID
15: if extractOwner(cv) ∈ Ances(Self) then
16: ov← atomicCAS(getVoAddr(addr), cv, nv)
17: if ov = cv then
18: hcr←ValidateReaders(Self ,extractOwner(cv),addr)
19: if hcr 6= NIL then
20: setVoVal(addr, cv)
21: TxAbort(Self)
22: Self.WS.insert(addr, Memory[addr], cv)
23: Memory[addr]← data
24: return
25: cnt← cnt + 1
26: until cnt = C
27: if Self.aborts % p = p− 1 then
28: DoomHighestConflictTx(Self , extractOwner(ov))
29: TxAbort(Self)

30: procedure TXCOMMIT(Self)
31: if Self.doomed = true or isAnyDoomedAnces(Self) then
32: TxAbort(Self)
33: wv← Fetch&Increment(GlobalClock)
34: acquireLock(Self.Parent.commitLock)
35: for all e in Self.RS do
36: cv← getVoVal(e.addr)
37: Owner← extractOwner(cv)
38: if Owner = Self then
39: continue
40: else if Owner ∈ Ances(Self) then
41: if extractTS(cv) > Self.rv then
42: releaseLock(Self.Parent.commitLock)
43: TxAbort(Self)
44: else
45: releaseLock(Self.Parent.commitLock)
46: if Self.aborts % p = p− 1 then
47: DoomHighestConflictTx(Self , Owner)
48: TxAbort(Self)
49: mergeRWSetsToParent(Self)
50: releaseLock(Self.Parent.commitLock)
51: for all e in Self.WS do
52: Owner← getOwner(e.addr)
53: if Owner = Self then
54: nv← wv | Self.Parent.T ID
55: setVoVal(e.addr, nv)
56: Self.RS.reset()
57: Self.WS.reset()

Algorithm 2: Pseudocode for the basic functions in NesTM.

st A

T1

ld B

st B

T2

ld A

T1.1 T2.1

Figure 2: A livelock scenario avoided by eventual rollback of
the outer transaction.

To enable this, we modify the voLock as shown in Figure 1. T
least significant bits (LSBs) are used to encode the owner of the
associated object. Since TID 0 is reserved for the root transaction,
NesTM can support up to 2T − 1 concurrent transactions. While
we use T=10 (i.e., 1023 transactions) in this paper, it is tunable.
The remaining N-T bits store the version number. Since the global
version clock increases by 2T at the commit of each transaction, it
can saturate faster than the baseline STM. Recent work discusses
how to handle the version clock overflow [10].

Algorithms 1 and 2 provide the pseudocode for NesTM algo-
rithm. We summarize the key functions below.

TxStart: This barrier is almost identical to the one in the base-
line STM except that it returns “fail" when there are any doomed
ancestors of the transaction we attempt to initiate. The return value
can be used to restart the doomed ancestor in order to guarantee
forward progress.

TxLoad: Following the conflict definition of nested parallel trans-
actions in Section 2.2, a transaction can read a memory object only
if the owner of the object is itself or its ancestor. When it is the
owner, it can safely read the memory object without checking the
version number (the reason will be explained in the discussion of
TxStore). When the owner is its ancestor, it relies on the version
number to ensure serializability. If the owner is neither itself nor
its ancestor, the transaction conflicts with the owner. In lines 48–
49 in Algorithm 1, it periodically calls DoomHighestConflictTx.
This is to avoid potential livelock cases. Figure 2 illustrates an ex-
ample. If only nested transactions (i.e., T1.1 and T2.1) abort and
restart, none of them can make forward progress because the mem-
ory objects are still (crosswise) locked by ancestors. To avoid the
livelock, at least one of the ancestors should abort and release the
acquired memory objects. For this purpose, NesTM periodically
checks and dooms ancestors. Note that we could use a more pre-
cise livelock detection mechanism, but it would also incur a large
runtime overhead. Also note that similar livelock cases exist even
in the baseline STM. Finally, note that RollbackCounter is used to
avoid the invalid-read problem discussed in Section 4.1.

TxStore: When a transaction attempts to write to a memory ob-
ject, it can safely do so if it is the owner of the memory object.
Otherwise, it attempts to acquire the lock for the memory object,
if the owner is an ancestor. If it fails, the transaction conflicts and
DoomHighestConflictTx is also periodically called to avoid any
potential livelock (lines 27–28 in Algorithm 2). If it successfully
acquires the lock, it calls ValidateReaders with parameters con-
sisting of Self, Owner (the previous owner for the object), and
addr. In ValidateReaders, the transaction itself and all its ances-
tors that are also not an ancestor of Owner are validated for the
object (lines 11–19 in Algorithm 1). The key insight of this is that
once a transaction T or any of its descendants writes (i.e., acquires

the lock) to a memory object, T is guaranteed to have an exclusive
ownership for the object until it commits or aborts. Therefore, if
we ensure that there were no conflicting writes to an object for T
and all of its ancestors at the time when T first attempts to write to
the object, the object is guaranteed to be valid throughout T and its
ancestors’ execution. If there is any invalid reader, it transfers the
ownership to the previous owner and triggers rollback (lines 19–21
in Algorithm 2). Note that validating each transaction is protected
by the commit-lock of that validated transaction to avoid the prob-
lem with non-atomic commit discussed in Section 4.2. Also, note
that TxStore can be expensive when a transaction executes in a
deep nesting level due to read-set search for itself and its ancestors.
We will discuss this performance issue in Section 3.3.

TxCommit: If a transaction or any of its ancestors is doomed, it
aborts (lines 31–32 in Algorithm 2). Otherwise, it validates all the
entries in its read-set (lines 35–48 in Algorithm 2). Once the read-
set is validated, it merges its read- and write-sets to its parent’s
(line 49 in Algorithm 2). Note that to avoid the problem with the
non-atomic commit discussed in Section 4.2, the process of read-
set validation and merging is protected by the commit-lock of the
parent. To reduce the execution time in the critical section, merg-
ing is done by linking (instead of copying) the pointers in read- and
write-sets implemented using linked-lists. Then, the version num-
ber and ownership for each object in the write-set are incremented
and transferred to the parent.

TxAbort: After updating transactional metadata and increment-
ing RollbackCounter, the write-set is traversed backward (i.e., from
the newest to oldest) to roll back the speculatively-written memory
values. Then, the write-set is traversed forward (i.e., from the old-
est to newest) to restore the value of voLock to the first observed
value. Note that the voLock is released only when the owner of the
memory location is the transaction itself (lines 60 in Algorithm 1)
to avoid the double-release problem [22]. Finally, the checkpoint is
restored to restart the transaction.

Note that by calling DoomHighestConflictTx in TxLoad, Tx-
Store, and TxCommit, possible livelock scenarios similar to Fig-
ure 2 can be avoided. In addition, a randomized exponential back-
off scheme is used for the contention management to probabilisti-
cally provide liveness.

3.2 Example
Figure 3 illustrates an example of how a simple application using

nested parallel transactions executes on NesTM. Initially, GC=0
and TS(A)=TS(B)=0. Note that GC is incremented by 210 in the
real implementation. For simplicity, we assume GC is incremented
by 1 in this and subsequent examples.

At (wall clock) time 0, T1 starts (RV(T1)=0). At time 2, T1
reads B. At time 3 and 4, T2 starts (RV(T2)=0) and writes to A. At
time 5, T2 commits and GC=1 and TS(A)=1. At time 6, threads
executing T1.1 and T1.2 (children of T1) are forked and T1.1 and
T1.2 start (RV(T1.1)=RV(T1.2)=1). At time 7, both T1.1 and T1.2
successfully read A because RV(T1.1)=RV(T1.2)≥TS(A). At time
8, T1.2 attempts to write to A. T1.2 validates itself and its ancestors
(T1) by calling ValidateReaders. T1.2 is valid because A is in its
read-set and RV(T1.2)≥TS(A). T1 is not doomed because A is not
in its read-set (read-sets of T1.1 and T1.2 have not been merged
yet). Therefore, T1.2 can successfully write to A. At time 9, T1.2
successfully commits and GC=2 and TS(A)=2. Also, the read- and
write-sets of T1.2 are merged into the ones of T1. At time 10, T1.1
attempts to commit but fails because A is in the read-set of T1.1 and
RV(T1.1)<TS(A). GC is incremented to 3 due to this unsuccessful
commit.

ld A

T1

ld A

st A

T1.2 T1.1

st A

T2

0

1

2

3

4

5

6

7

8

9

10

11

12

13 ld A

T1.1

14

15

16

17

ld B

W
a

ll
C

lo
c
k
 T

im
e

Fork

Join

Begin

Commit

Abort

ld/st

Figure 3: An example of a TM application running on NesTM.

At time 12, T1.1 restarts (RV(T1.1)=3). At time 13, T1.1 suc-
cessfully reads A because the owner of A is T1 (an ancestor of
T1.1) and RV(T1.1)≥TS(A). At time 14, T1.1 successfully com-
mits, GC is incremented to 4 (but still TS(A)=2), and T1 resumes
its execution after child threads join. At time 16, T1 successfully
commits because it has an ownership for A (transferred from T1.2)
and RV(T1)≥TS(B). GC and TS(A) are incremented to 5.

3.3 Qualitative Performance Analysis
Table 1 provides a symbolic comparison of the common- and

worst-case time complexity of TM barriers in baseline STM and
NesTM. NesTM has two different implementations: (1) NesTM-L:
linked-lists are used to implement read- and write-sets; ancestor re-
lationship is checked by pointer chasing and (2) NesTM-H: hash ta-
bles are used to implement read- and write-sets; ancestor bit vector
(ABV) is used for fast ancestor relationship check. We assume the
common case is a case in which the nesting depth is small and there
is strong temporal locality between reads and writes (i.e., a transac-
tion writes to a recently-read memory object). On the other hand,
we assume the worst case is a case in which the nesting depth is
large and there is weak temporal locality between reads and writes.

In the common case, the time complexity of NesTM-L TM bar-
riers can be almost similar to the ones in the baseline STM because
the nesting depth is small (i.e., d ' 1) and only a few entries in the
read-set need to be looked up at each write to check the validity due
to the strong temporal locality between reads and writes. However,
in the worst case, the time complexity of NesTM-L TM barriers is
significantly higher than the baseline STM. In contrast, NesTM-H
still shows a comparable time complexity as the baseline STM due
to the use of hash tables and ABV. Our current NesTM implemen-
tation follows NesTM-L; the implementation of NesTM-H is part
of our future work.

In addition to the differences in the time complexity of TM bar-
riers, there are three performance issues to note. First, temporal
locality is lost when accessing transactional metadata of nested
transactions. Since, when a child transaction commits, its read-
and write-set entries are merged to its parent, there is no tempo-
ral locality for these entries when a new transaction begins on the
same core. Second, the same memory objects in the read-set are
repeatedly validated across different nesting levels. Finally, when a

large number of child transactions simultaneously attempt to com-
mit, contention on the commit-lock of the parent can become the
critical performance bottleneck. We quantify these performance is-
sues in Section 5.

4. COMPLICATIONS OF CONCURRENT
NESTING

We now discuss subtle correctness issues we have encountered
while developing NesTM. We also describe our on-going efforts on
the correctness and liveness of NesTM.

4.1 Invalid Read
Problem: In the read barrier, reading a voLock and the correspond-
ing memory value does not occur atomically. Because of this, ea-
ger STMs are potentially vulnerable to the invalid-read problem. A
transaction may incorrectly read an invalid memory value specula-
tively written by an aborting transaction. If the aborting transaction
restores the original voLock value, the validation process at the end
of the reading transaction will miss the problem. In flat STMs, this
problem can be simply avoided by always incrementing the times-
tamp values of voLocks even when an aborting transaction releases
them. In NesTM, however, this technique cannot be used due to
the self-livelock problem. If an aborting descendant increments the
timestamp value of the voLock for a memory object, its ancestor
that has the memory object in its read-set can be aborted due to that
incremented timestamp value. Eventually, the subtree rooted by the
ancestor cannot make any forward progress.
Solution: To correctly address both invalid-read and self-livelock
problems at the same time, we propose the RollbackCounter scheme.
On abort, a transaction atomically increases the global Rollback-
Counter in addition to restoring the values of voLocks in its write-
set to the first observed values. When a transaction attempts to read
a memory object, it first samples the value of RollbackCounter be-
fore reading the value of the associated voLock (line 32 in Algo-
rithm 1). After ensuring the voLock value remains unchanged (line
39), the previously sampled value of RollbackCounter is compared
with the current value. If the two values match, it is guaranteed that
there has been no aborting transaction since the voLock value was
read, thus no possibility of invalid read. If the two values differ,
it conservatively avoids the invalid-read problem by retrying the
whole process (line 41).
Performance impact: Since only a single, global RollbackCounter
is used, false positives can degrade the performance by making
transactions repeat the process several times even when they did
not actually read invalid memory values. Furthermore, the extra
code added to access the RollbackCounter in the read barrier can
degrade the performance.
Possible alternatives: Instead of using the eager version manage-
ment (VM) scheme, a lazy VM scheme can be used (while still us-
ing the encounter-lock scheme) to avoid the invalid-read problem.
However, it can cause significant performance issues because the
write-set of a transaction is frequently accessed by the transaction
itself and its descendants.

4.2 Non-atomic Commit
Problem: Figure 4 illustrates a potential serializability violation
scenario due to the non-atomic commit. Initially, GC and TS(A)
are set to 0. After reading A at time 3, T1.1 initiates its commit
at time 4. At time 5, A is validated. At time 6, T2 writes to A.
At time 7, T2 commits and GC=1 and TS(A)=1. At time 8, T1.2
starts (RV(T1.2)=1). At time 10, T1.2 attempts to write to A. By
calling ValidateReaders in Algorithm 1, T1.2 validates itself and

Baseline NesTM-L (Linked list) NesTM-H (Hash + ABV)
Common Case Worst Case Common Case Worst Case

Read O(1) ∼ O(1) O(d) ∼ O(1) O(d)
Write O(1) ∼ O(1) O(d · (R + d)) ∼ O(1) O(d)
Commit O(R + W) ∼ O(R + W) O(d ·R + W) ∼ O(R + W) O(d + R + W)

Table 1: A symbolic comparison of the common- and worst-case time complexity of TM barriers in baseline STM and NesTM. R,
W , and d denote read-set size, write-set size, and nesting depth, respectively.

ld A

T1

T1.1

st A

T2

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

ld A

st A

T1.2

RV Starts

A is validated

RS is merged

Figure 4: A potential serializability violation scenario due to
the non-atomic commit.

its ancestors (i.e., T1). T1.2 is valid because RV(T1.2)≥TS(A).
T1 is not doomed because A is not yet in its read-set (i.e., T1.1’s
read-set has not been merged yet). Therefore, T1.2 can successfully
write to A. At time 11, T1.1 merges its read-set to its parent’s. At
time 17, T1 successfully commits because it has an ownership for
A (transferred from T1.2). However, this violates serializability
because T1 eventually commits even when the two reads by T1.1
and T1.2 observe different versions of A.
Solution: The cause of this problem is that the commit process of
T1.1 does not appear atomic to T1’s descendants that validate T1
by calling ValidateReaders. To address this problem, we propose
the commit-lock scheme. With this scheme, when a nested transac-
tion attempts to commit, it must acquire the commit-lock of its par-
ent. In addition, when a descendant validates its ancestor by calling
ValidateReaders, it must also acquire the commit-lock of the val-
idated ancestor. This ensures that the commit process of a transac-
tion’s child appears atomic to a validating descendant of the trans-
action. In the previous example, with the commit-lock scheme,
T1.1’s commit either happens before or after the validation by T1.2.
In the first case, T1 will be doomed because RV(T1)<TS(A) and
eventually aborted. In the second case, T1.1 will be aborted be-
cause A is owned by T1.2 when T1.1 attempts to commit. There-
fore, no serializability violation occurs in both cases.
Performance impact: The commit-lock scheme essentially seri-
alizes the commits of child transactions. When a large number of
child transactions simultaneously attempt to commit, performance
can be hugely degraded due to the serialized commit.
Possible alternatives: We could also address this problem by in-
troducing a ValidationCounter to each transaction. The Validation-

ld B

T1

T1.1

st B

T2

0

1

2

3

4

5

6

7

8

9

10

11

12

13

assert(A==B)?

ld A

st A

Figure 5: A problematic scenario due to a zombie transaction.

Counter increments every time when a transaction is validated by
its descendant. When a child transaction attempts to commit, it
samples the value of ValidationCounter of the parent. It then val-
idates its read-set without acquiring the commit-lock of the par-
ent. After the read-set validation, it acquires the commit-lock of
the parent. It then compares the previously sampled value of Val-
idationCounter with the current value. If the two values match, it
can safely merge its read-set to its parent’s because it is guaranteed
that there has been no validation by any descendant of the parent.
If the two values differ, it releases the commit-lock of the parent
and conservatively repeats the whole process. An evaluation of this
alternative is left as future work.

4.3 Zombie Transactions
Problem: Figure 5 illustrates a problematic scenario due to a zom-
bie transaction. Initially, GC=0 and TS(A)=TS(B)=0. At time 0,
T1 starts (RV(T1)=0). At time 2, T2 starts (RV(T2)=0). Then, T2
writes to A and B at times 3 and 4. At time 5, T2 commits and
GC=1 and TS(A)=TS(B)=1. At time 6, T1.1 starts (RV(T1.1)=1).
At time 7, T1.1 can successfully read B because B’s owner is the
root and RV(T1.1)≥TS(B). However, if a programmer assumes that
A is always equal to B within transactions and inserts an asser-
tion check, the program will be unexpectedly terminated by failing
the assertion check. Note that if T1 could reach to its commit,
it would eventually abort, thus no serializability violation. Other
well-known anomalies such as infinite loops can also occur. Cur-
rently, NesTM admits zombie transactions because we have not
been able to find an efficient solution to avoid them in an unman-
aged environment.

Feature Description
Processors In-order, single-issue, x86 cores
L1 Cache 64-KB, 64-byte line, private

4-way associative, 1 cycle latency
Network 256-bit bus, split transactions

pipelined, MESI protocol
L2 Cache 8-MB, 64-byte line, shared

8-way associative, 10 cycle latency
Main Memory 100 cycles latency

up to 8 outstanding transfers

Table 2: Parameters for the simulated CMP system.

4.4 Correctness Status
At this point, we do not have a hand proof of the correctness

(serializability) and liveness of the NesTM algorithm. Therefore,
the correctness and liveness of the NesTM algorithm still remain
unchecked. However, we hope that our paper will generate in-depth
discussions on formally proving and verifying correctness and live-
ness guarantees of timestamp-based, concurrently-nested STM.

To establish some evidence of correctness, we have subjected
the NesTM algorithm to exhaustive tests using our model checker
(ChkTM) [3] and simulator. ChkTM verifies every possible exe-
cution of a small TM program running on the NesTM model. We
configured ChkTM to generate every possible program with four
threads (i.e., [1, 2, 1.1, 1.2]), each running only one transaction that
performs at most two transactional memory operations (i.e., read
or write), each accessing one of the two shared-memory words.
ChkTM then explored every possible interleaving of every possible
program. ChkTM, thus far, has not reported any serializability vio-
lation. Currently, ChkTM fails to verify NesTM with larger config-
urations (e.g., more threads or memory operations) due to the state
space explosion.

To check the correctness and liveness of NesTM for a larger con-
figuration, we performed extensive random tests by running a small
microbenchmark on the implemented NesTM algorithm and simu-
lator. The microbenchmark runs 14 concurrent threads (i.e., [1,
2, 1.1, 1.2, 2.1, 2.2, 1.1.1, 1.1.2, 1.2.1, 1.2.2, 2.1.1, 2.1.2, 2.2.1,
2.2.2]), each running one transaction that performs at most four
transactional reads or writes to two shared-memory words. To bet-
ter expose any potential bugs, we injected random delays at various
points in the NesTM code (e.g., between lines 33 and 35 in Algo-
rithm 1). The serializability checker compares the values observed
by each transactional read and the final memory state of a con-
current run of the test program with the ones produced in a serial
schedule. If this check fails, the checker reports a serializability
violation. The liveness checker checks whether the test program
successfully terminates or not. So far, NesTM has passed more
than one million consecutive random tests without reporting any
serializability or liveness violation.

5. EVALUATION

5.1 Methodology
We use an execution-driven simulator for x86 multi-core sys-

tems. Table 2 summarizes architectural parameters. All operations,
except for loads and stores, have a CPI of 1.0, however all the de-
tails in the memory hierarchy timings are modeled, including con-
tention and queueing events. We use the simulation results as our
main results because they allow us to report results for larger CMP
configurations and provide detailed performance breakdowns with-
out perturbing the results.

Threads G I K L S V Y
1 13.9 13.9 3.7 0.1 7.2 22.2 4.7
2 11.5 17.4 3.6 0.1 6.5 21.6 3.4
4 15.6 14.6 3.9 0.1 5.6 21.9 -0.5
8 11.1 17.3 5.6 0.0 3.4 20.9 3.0

16 4.8 16.4 16.1 3.7 0.1 20.9 5.5

Table 3: Normalized performance difference (%) of NesTM
relative to the baseline STM for STAMP applications. G, I, K,
L, S, V, and Y indicate genome, intruder, kmeans, labyrinth,
ssca2, vacation, and yada, respectively.

0 2

0.4

0.6

0.8

1.0

1.2

1.4

m
. E

xe
c.

 T
im

e
(to

 B
as

e,
 1

 T
hr

ea
d)

Busy RB WB Aborted Commit Other

0.0

0.2

B
as

e

N
es

TM

B
as

e

N
es

TM

B
as

e

N
es

TM

B
as

e

N
es

TM

B
as

e

N
es

TM

B
as

e

N
es

TM

B
as

e

N
es

TM

genome intruder kmeans labyrinth ssca2 vacation yada

N
or

m

Figure 6: Execution time breakdowns of STAMP applications
with 1 thread.

Our evaluation aims to answer the following three questions:
Q1: What is the runtime overhead due to NesTM when we do not
need nested parallelism (i.e., running only top-level transactions)?
Q2: What is the incremental overhead if we push down the avail-
able parallelism to a deeper nesting level (NL)? Q3: How does
nested parallelism improve application performance? Q1 and Q3
address the practicality of NesTM, while Q2 provides insights into
the overheads and the issues that a nesting-aware runtime system
should address.

For Q1, we use seven of the eight STAMP applications with the
simulation datasets [6]1. For Q2, we use two microbenchmarks that
implement concurrent hash table (hashtable) and red-black tree
(rbtree). Finally, for Q3, we use a microbenchmark, c-hashtable
that uses composed hash tables. Further details on the benchmarks
are provided later in this section.

5.2 Q1: Overhead for Top-Level Parallelism
Table 3 compares the baseline STM and NesTM running the

STAMP benchmarks using only top-level transactions. It lists the
normalized performance difference (NPD)2 calculated using the
following equation:

NPD(%) =
TNesTM − TBase

TBase
× 100

Overall, Table 3 shows that the maximum NPD is about 20%
across all benchmarks and thread counts. While NesTM barri-

1We exclude bayes because its non-deterministic behavior makes
it difficult to compare results across STMs.
2A positive NPD means that NesTM is slower.

1.4
ad

s)
Busy RB WB Aborted Commit Other

1.0

1.2

, 1
6

Th
re

a

0.6

0.8

e
(to

 B
as

e

0.2

0.4

Ex
ec

. T
im

e

0.0

as
e

sT
M

as
e

sT
M

as
e

sT
M

as
e

sT
M

as
e

sT
M

as
e

sT
M

as
e

sT
MN

or
m

. E

B

N
es B

N
es B

N
es B

N
es B

N
es B

N
es B

N
es

genome intruder kmeans labyrinth ssca2 vacation yada

Figure 7: Execution time breakdowns of STAMP applications
with 16 threads.

ers have additional code, some of it can be conditionally skipped
when top-level transactions are used. To investigate the exact over-
heads further, we show the execution time breakdowns of STAMP
applications in Figures 6 and 7. The execution time of each ap-
plication is normalized to the execution time on the baseline STM
with 1 (Figure 6) and 16 (Figure 7) threads, respectively. Execution
time is broken into “busy" (useful instructions and cache misses),
“RB" (read barriers), “WB" (write barriers), “aborted" (time spent
on aborted transactions), “commit" (commit overhead), and “other"
(work imbalance, etc.).

With 1 thread (Figure 6), NPD is relatively high (i.e., NesTM is
slower) when transactions include a large number of TM barriers
(e.g., intruder, vacation) [6]. This is mainly due to the extra over-
head in NesTM barriers that cannot be amortized in this case. On
the other hand, the overhead is negligible when very large transac-
tions with few TM barriers are used (e.g., labyrinth). With more
threads (Figure 7), more time is spent on aborted transactions with
several applications (e.g., intruder, kmeans, yada). This is due to
the validation that NesTM performs at the first write to each vari-
able. This extra validation often detects conflicts more aggressively
than the baseline STM, leading to more time spent on aborted trans-
actions.

5.3 Q2: Incremental Overhead of
Deeper Nesting

To study the incremental overhead of pushing down the available
parallelism to deeper nesting levels (NLs), we use two microbench-
marks. hashtable and rbtree perform concurrent accesses to a
hash table with 4K buckets and a red-black tree. Among 4K oper-
ations, 12.5% are inserts (writes) and 87.5% are look-ups (reads).
Each benchmark has 4 versions. flat uses only top-level transac-
tions, each performing 16 operations (hashtable) and 4 operations
(rbtree). N1 pushes down the parallelism to NL=1, using the same
code enclosed with one big outermost transaction3. N2 and N3
are implemented by adding more outer transactions in a repeated
manner.

In Figures 8 and 9, we show the execution time breakdowns of
hashtable and rbtree. The execution time of each microbench-
mark is normalized to the execution time on an STM that flat-
3While flat and nested versions have different transactional seman-
tics (i.e., whether to perform 4K operations atomically or not), we
compare them to investigate performance issues.

0 2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

xe
c.

 T
im

e
(to

 S
ub

su
m

ed
 S

eq
.)

Busy RB WB Aborted Commit CL NLC Other

0.0
0.2

F N1 N2 N3 F N1 N2 N3 F N1 N2 N3 F N1 N2 N3 F N1 N2 N3

1 2 4 8 16

N
or

m
. E

x

(# Concurrent Threads, Version)

Figure 8: Execution time breakdowns of hashtable.

2.5

q.
)

Busy RB WB Aborted Commit CL NLC Other

2.0

um
ed

 S
e

1.0

1.5
(to

 S
ub

s

0.5

1.0

xe
c.

 T
im

e

0.0
F N1 N2 N3 F N1 N2 N3 F N1 N2 N3 F N1 N2 N3 F N1 N2 N3

N
or

m
. E

x

1 2 4 8 16

N

(# Concurrent Threads, Version)

Figure 9: Execution time breakdowns of rbtree.

tens and serializes nested transactions (i.e., performs all 4K op-
erations sequentially in a top-level transaction). In addition to the
segments explained in Section 5.2, each bar contains newly added
segments: “CL" (time spent acquiring the commit locks of parents),
and “NLC" (time spent committing non-leaf transactions).

We observe that NesTM continues to scale up to 16 threads.
For example, N1 versions of hashtable and rbtree are faster than
the subsumed version by 2.4× and 1.8× with 16 threads. Due
to the larger number of conflicts, rbtree does not scale as well as
hashtable. Figures 8 and 9 also reveal the three major performance
challenges in NesTM. First, the runtime overhead of the read and
write barriers of nested transactions is more expensive than those
of top-level transactions. This is mainly due to more cache misses
when accessing each entry in read- and write-sets. Since previously
used entries in read- and write-sets of a transaction are merged to
its parent, NesTM cannot exploit temporal locality on accessing
transactional metadata when it runs nested transactions. In contrast,
when top-level transactions are used, there is significant locality in
metadata accesses. This performance issue might be mitigated us-
ing prefetching techniques.

Second, commit time increases linearly with the nesting level
mainly due to the repeated read-set validation across different nest-
ing levels. Alternatively, a runtime may choose different policies

0 1

0.2

0.3

0.4

0.5

0.6
m

. E
xe

c.
 T

im
e

(to
 S

ub
s.

)

Other
NLC
CL
Commit
Aborted
WB

0.0

0.1

4 8 16 32

N
or

m

Txn Size (# of HT Ops per Txn)

RB
Busy

Figure 10: Execution time breakdowns of hashtable with var-
ious transaction sizes.

(e.g., serialization, reader-lock) depending on the nesting depth to
achieve better performance. Finally, contention on the commit-
locks of parents can become a performance bottleneck when a large
number of nested transactions simultaneously commit. Since con-
flicts are infrequent in hashtable even with 16 threads, many child
transactions can simultaneously commit and trigger this lock con-
tention. In contrast, due to frequent conflicts in rbtree with 16
threads, this commit-lock contention is not a critical issue.

To understand the performance impact of transaction sizes, we
measure the performance of hashtable by varying the transaction
size from 4 to 32 operations per transaction. Figure 10 presents
the normalized execution time with 16 threads. With smaller trans-
actions (e.g., 4), a significant portion of the time is spent on the
commit-lock contention because more (small) transactions simul-
taneously attempt to commit. With larger transactions (e.g., 32), the
performance overhead due to the commit-lock contention is miti-
gated, while more time is spent on aborted (large) transactions.

To study how much work is required to amortize the overhead
of nested transactions, we compare the performance of nested ver-
sions of hashtable with flat by varying the amount of computa-
tional workload in transactions. The amount of workload is pro-
portional to the number of loop iterations. With little work, NPD is
high due to the unamortized overhead of repeated read-set valida-
tion. One possible optimization is to use lightweight hardware sup-
port for validation [7]. With sufficient work, the overhead is amor-
tized and nested versions comparably perform (e.g., N1: 39.7%
with 1K iterations, N3: 9.9% with 10K iterations) to flat.

5.4 Q3: Improving Performance using
Nested Parallelism

c-hashtable operates on a two-level structure with customer data
with a single, first-level (L1) hash table and multiple, second-level
(L2) hash tables. The L1 hash table stores customer information,
and the L2 hash tables store customer orders. Each customer op-
eration must be atomic including the updates to both levels. There
are three ways in exploiting the parallelism in c-hashtable: (1)
outer: parallelism in the L1 hash table across customers, (2) inner:
parallelism in the L2 hash tables (multiple transactions from a sin-
gle customer), and (3) nested: parallelism in both levels. Nested
parallelism can be advantageous if each level alone (outer or inner)
does not have sufficient parallelism to saturate a large-scale system.

In the experiment in Figure 11, the L1 hash table has 20 buckets
and the L2 hash tables have 15 buckets. There are 256 randomly

1
2
3
4
5
6
7
8

ee
du

p
(o

ve
r S

eq
.)

Outer Inner Nested (Best Config.)

0
1

4 8 16

Sp
e

Number of Concurrent Threads

Figure 11: Scalability of the three versions of c-hashtable.

generated customers and each customer places 32 orders. The three
lines in Figure 11 show the speedup of outer, inner, and nested
over the sequential run without TM barriers. At lower thread counts
(e.g., 4), outer performs best due to rare conflicts and low overhead
(e.g., thread synchronization, coarse-grain transactions). With 16
concurrent threads, however, nested performs best by efficiently
exploiting the parallelism at both levels. Scalability of the other
versions is limited mainly due to frequent conflicts at higher thread
counts.

6. RELATED WORK
Moss and Hosking discussed the reference model for closed and

open nesting in transactional memory and described preliminary
architectural sketches [16]. In addition, they proposed a simpler
model called linear nesting in which nested transactions run se-
quentially. There has been previous work on supporting linear nest-
ing in HTM [14, 15] and STM [12, 17]. Our work differs since
NesTM targets concurrent nesting.

Recently, there has been research on supporting nested paral-
lelism in STM [2, 4, 18, 22]. Agrawal et al. proposed CWSTM,
a theoretical STM algorithm that supports nested parallel transac-
tions with the lowest upper bound of time complexity [2]. In [4],
Barreto et al. proposed a practical implementation of the CWSTM
algorithm. While achieving depth-independent time complexity of
TM barriers, their work builds upon rather complex data structures
such as concurrent stacks that could introduce additional runtime
(especially to top-level transactions) and state overheads [4]. In
contrast, NesTM extends a timestamp-based STM. Ramadan and
Witchel proposed SSTM, a lazy STM-based design that supports
nested parallel transactions [18]. However, their work extends a
lazy STM and does not provide a detailed performance analysis.
Our algorithm differs by extending an eager STM that has lower
baseline overheads. Finally, Volos et al. proposed NePaLTM that
supports nested parallelism inside transactions [22]. While effi-
ciently supporting nested parallelism when no or low transactional
synchronization is used, NePaLTM serially executes nested paral-
lel transactions using mutual exclusion locks. In contrast, NesTM
implements concurrent execution of nested transactions.

7. CONCLUSION AND FUTURE WORK
This paper presented NesTM, an STM system that extends a

state-of-the-art eager STM with closed-nested parallel transactions.
NesTM is designed to keep state and runtime overheads small. We

also discussed the subtle corner cases of concurrent nesting. Fi-
nally, we evaluated the performance of NesTM across multiple sce-
narios. Our future work will focus on a more rigorous correctness
argument. We will also investigate how to improve the performance
of NesTM by exploring alternative implementations, nesting-aware
contention management, and lightweight hardware support.

Acknowledgements
We would like to thank Richard Yoo and the anonymous reviewers
for their feedback. We also want to thank Sun Microsystems for
making the TL2 code available. Woongki Baek was supported by a
Samsung Scholarship and an STMicroelectronics Stanford Gradu-
ate Fellowship. This work was supported by NSF Awards number
0546060, the Stanford Pervasive Parallelism Lab, and the Gigas-
cale Systems Research Center (GSRC).

8. REFERENCES
[1] The OpenMP Application Program Interface Specification,

version 3.0. http://www.openmp.org, May 2008.
[2] K. Agrawal, J. T. Fineman, and J. Sukha. Nested parallelism

in transactional memory. In PPoPP ’08: Proceedings of the
13th ACM SIGPLAN Symposium on Principles and practice
of parallel programming, pages 163–174, New York, NY,
USA, 2008. ACM.

[3] W. Baek, N. Bronson, C. Kozyrakis, and K. Olukotun.
Implementing and Evaluating a Model Checker for
Transactional Memory Systems. In ICECCS ’10:
Proceedings of the 15th IEEE International Conference on
Engineering of Complex Computing Systems, March 2010.

[4] J. Barreto, A. Dragojević, P. Ferreira, R. Guerraoui, and
M. Kapalka. Leveraging parallel nesting in transactional
memory. In PPoPP ’10: Proceedings of the 15th ACM
SIGPLAN symposium on Principles and practice of parallel
programming, pages 91–100, New York, NY, USA, 2010.
ACM.

[5] R. Blikberg and T. Sorevik. Load balancing and OpenMP
implementation of nested parallelism. Parallel Comput.,
31(10-12):984–998, 2005.

[6] C. Cao Minh, J. Chung, C. Kozyrakis, and K. Olukotun.
STAMP: Stanford transactional applications for
multi-processing. In IISWC ’08: Proceedings of The IEEE
International Symposium on Workload Characterization,
September 2008.

[7] C. Cao Minh, M. Trautmann, J. Chung, A. McDonald,
N. Bronson, J. Casper, C. Kozyrakis, and K. Olukotun. An
effective hybrid transactional memory system with strong
isolation guarantees. In Proceedings of the 34th Annual
International Symposium on Computer Architecture. June
2007.

[8] D. Dice, O. Shalev, and N. Shavit. Transactional locking II.
In DISC’06: Proceedings of the 20th International
Symposium on Distributed Computing, March 2006.

[9] D. Dice and N. Shavit. Understanding tradeoffs in software
transactional memory. In CGO ’07: Proceedings of the
International Symposium on Code Generation and
Optimization, March 2007.

[10] P. Felber, C. Fetzer, and T. Riegel. Dynamic performance
tuning of word-based software transactional memory. In
PPoPP ’08: Proceedings of the 13th ACM SIGPLAN
Symposium on Principles and practice of parallel

programming, pages 237–246, New York, NY, USA, 2008.
ACM.

[11] T. Harris, M. Plesko, A. Shinnar, and D. Tarditi. Optimizing
memory transactions. In PLDI ’06: Proceedings of the 2006
ACM SIGPLAN Conference on Programming Language
Design and Implementation, New York, NY, USA, 2006.
ACM Press.

[12] T. Harris and S. Stipic. Abstract nested transactions. In
Second ACM SIGPLAN Workshop on Transactional
Computing, 2007.

[13] M. Herlihy and J. E. B. Moss. Transactional memory:
Architectural support for lock-free data structures. In
Proceedings of the 20th International Symposium on
Computer Architecture, pages 289–300, 1993.

[14] A. McDonald, J. Chung, B. D. Carlstrom, C. Cao Minh,
H. Chafi, C. Kozyrakis, and K. Olukotun. Architectural
Semantics for Practical Transactional Memory. In ISCA ’06:
Proceedings of the 33rd annual international symposium on
Computer Architecture, pages 53–65, Washington, DC,
USA, June 2006. IEEE Computer Society.

[15] M. J. Moravan, J. Bobba, K. E. Moore, L. Yen, M. D. Hill,
B. Liblit, M. M. Swift, and D. A. Wood. Supporting nested
transactional memory in LogTM. In Proceedings of the 12th
international conference on Architectural support for
programming languages and operating systems, pages
359–370, New York, NY, USA, 2006. ACM Press.

[16] J. E. B. Moss and T. Hosking. Nested Transactional
Memory: Model and Preliminary Architecture Sketches. In
OOPSLA 2005 Workshop on Synchronization and
Concurrency in Object-Oriented Languages (SCOOL).
University of Rochester, October 2005.

[17] Y. Ni, V. S. Menon, A.-R. Adl-Tabatabai, A. L. Hosking,
R. L. Hudson, J. E. B. Moss, B. Saha, and T. Shpeisman.
Open nesting in software transactional memory. In PPoPP
’07: Proceedings of the 12th ACM SIGPLAN symposium on
Principles and Practice of Parallel Programming, pages
68–78, New York, NY, USA, 2007. ACM Press.

[18] H. E. Ramadan and E. Witchel. The Xfork in the Road to
Coordinated Sibling Transactions. In The Fourth ACM
SIGPLAN Workshop on Transactional Computing
(TRANSACT 09), February 2009.

[19] B. Saha, A.-R. Adl-Tabatabai, R. L. Hudson, C. Cao Minh,
and B. Hertzberg. McRT-STM: A high performance software
transactional memory system for a multi-core runtime. In
PPoPP ’06: Proceedings of the 11th ACM SIGPLAN
symposium on Principles and practice of parallel
programming, New York, NY, USA, March 2006. ACM
Press.

[20] Supercomputing Technologies Group, Massachusetts
Institute of Technology Laboratory for Computer Science.
Cilk 5.4.6 Reference Manual, Nov. 2001.

[21] Y. Tanaka, K. Taura, M. Sato, and A. Yonezawa.
Performance Evaluation of OpenMP Applications with
Nested Parallelism. In LCR ’00: Languages, Compilers, and
Run-Time Systems for Scalable Computers, pages 100–112,
London, UK, 2000. Springer-Verlag.

[22] H. Volos, A. Welc, A.-R. Adl-Tabatabai, T. Shpeisman,
X. Tian, and R. Narayanaswamy. NePaLTM: Design and
Implementation of Nested Parallelism for Transactional
Memory Systems. In ECOOP, 2009.

