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Abstract—Large-scale datacenters now host a large part of
the world’s data and computation, which makes their design
a crucial architectural challenge. Datacenter (DC) applications,
unlike traditional workloads, are dominated by user patterns
that only emerge in the large-scale. This creates the need for
concise, accurate and scalable analytical models that capture
both their temporal and spatial features and can be used to
create representative activity patterns. Unfortunately, previous
work lacks the ability to track the complex patterns that are
present in these applications, or scales poorly with the size of the
system. In this work, we focus on the network aspect of datacenter
workloads. We present ECHO, a scalable and accurate modeling
scheme that uses hierarchical Markov Chains to capture the
network activity of large-scale applications in time and space.
ECHO can also use these models to re-create representative
network traffic patterns. We validate the model against real
DC-scale applications, such as Websearch and show marginal
deviations between original and generated workloads. We verify
that ECHO captures all the critical features of DC workloads,
such as the locality of communication and burstiness and evaluate
the granularity necessary for this. Finally we perform a detailed
characterization of the network traffic for workloads in DCs of
tens of thousands of servers over significant time frames.

I. INTRODUCTION

As the world’s computation continues to migrate into
massive datacenter (DC) infrastructures, developing highly
efficient systems for these computing platforms has become
increasingly critical. DC architectures are still in their relative
infancy and when optimizing for performance, efficiency, or
cost of ownership (TCO), architects must take into account the
unique characteristics that dominate the behavior of large-scale
applications. Understanding this behavior requires detailed
workload characterization and is crucial not only from the
systems but from the data analytics perspective as well.

DC applications are radically different from conventional
workloads in several ways; first, privacy concerns make their
source code, user behavior patterns and datasets rarely publicly
available. This seriously hinders accurate and convincing stud-
ies. Second, DC applications experience activity patterns that
cannot be reproduced or approximated by traditional bench-
marks in standardized experimental environments because they
only emerge from user behavior in the large scale, such as
localized hotspots. Third, the cost of deploying experimental
system configurations in a production environment is pro-
hibitive both from the time and the cost perspective. This
increases the importance of concise, accurate and scalable
models that representatively capture the behavior of large-scale
workloads and can be used to create realistic access patterns.

The network component of DC applications reflects a large
fraction of user patterns both in time and space. It is often
responsible for Quality of Service (QoS) guarantees violations
and accounts for a significant portion of the infrastructure’s
TCO. Despite the obvious merit in developing representative
analytical models that capture DC network traffic, unfortu-
nately previous work lacks the ability to reflect the complex
spatial and temporal patterns that emerge in the large-scale.
For a workload model to be useful in the context of large-
scale DCs it needs to have three main properties: (a) accuracy,
so that the information in the model closely resembles the
actual behavior of the application, (b) modularity, so that it
can: (i) adjust the granularity of information to the needs
of an application and (ii) be reconfigurable and compatible
with other components, and (c) scalability, in order to capture
large-scale effects in a lightweight manner. Existing solutions
either fail to capture the spatial patterns in network traffic or
introduce significant computational overheads and are unable
to scale past a few servers.

In this paper, we present ECHO, a scalable and accurate
modeling scheme that captures the spatial and temporal behav-
ior of network traffic in large-scale DC applications. ECHO
is derived from validated analytical models that enable it to
concisely represent the network patterns of workloads, while
provably guaranteeing low and upper-bounded errors. As part
of ECHO, we present two models; first we examine a simple,
distribution fitting model that captures and generates per-server
network traffic by recognizing known distributions in network
activity fluctuation. To capture the burstiness and spatial

patterns of network load, e.g., server-to-server traffic, we
propose a Markov Chain model that is topology-independent
and locality of communication-aware and captures individual
server interactions. Additionally, we make ECHO hierarchical,
adjusting the level of detail in the model to the requirements of
each application. Starting from groups of racks and increasing
the level of detail down to individual servers, ECHO captures
and recreates the spatial patterns of network activity in DCs
with tens of thousands of servers. We perform a detailed vali-
dation study and show that the deviations between original and
generated traffic are marginal for the network activity of two
large-scale systems. We also verify that ECHO captures all the
critical features of DC applications, such as spikes in network
activity and inter, intra-rack communication. Additionally, we
perform a detailed characterization of the temporal and spatial
patterns of the network activity of DC applications in three DC
deployments over a period of five months.



The rest of this paper is structured as follows. Section II
discusses related work. Section III presents a description of the
simple temporal model while Section IV includes a detailed
characterization of the network activity of the DC applications.
Section V presents the hierarchical Markov model and its
validation against real network applications. Finally, Section
VI presents topics for future work and concludes the paper.

II. RELATED WORK

Network Workload Characterization: The network is one
of the most widely characterized aspects of a workload since
it reflects user patterns that emerge in the application. This
characterization becomes more interesting for DC workloads
running on tens to hundreds of thousands of servers. Although
there is extensive prior work on network characterization for
traditional applications [2], [7], [10]; in this paper we focus
on related work in the context of large-scale DC systems.

Feitelson [12] presents a detailed characterization of net-
work requests based on their stationarity, self-similarity, bursti-
ness, and heavy tails; features that dominate DC workloads.
Yu et al. [20] use a detailed profiling of the TCP/IP stack
to troubleshoot network performance problems of multi-tier
DC applications. They design a generic, app-independent
profiler that monitors TPC at the socket-level and identifies
performance bottlenecks within the same and across different
connections. Ersoz et al. [11] also characterize the network
traffic of a multi-tier DC. They observe that inter-arrival
times and message sizes follow log-normal distributions, while
service times fall within the Pareto distribution and show
heavy tails at heavy loads. Benson et al. [5] analyze the
features of network traffic in several cloud DCs classified per
application type, in terms of temporal patterns, network and
link utilization, congestion and packet drops and in [6] propose
a fine-grain scheme for traffic engineering in these systems.

Atikoglu et al. [1] perform a workload analysis of Face-
book’s key-value store, memcached. They observe that GET
requests by far dominate over SETs, while spatial locality
widely varies across memcached servers. They also record
user patterns that experience diurnal behavior and propose
statistical modeling to extract the distribution of request inter-
arrival rate. Also in the area of large-scale workload analysis,
Shafiq et al [18] study the machine-to-machine (M2M) traffic
in cellular networks which has similarities with the traffic
of certain user-interactive DC applications. They characterize
the temporal dynamics (e.g., diurnal behavior, burstiness),
hot spots, application usage and data upload/download of
a dataset from a large network service provider. Many of
their findings are consistent with the behavior we present in
Section IV for latency-critical DC applications. Using network
characterization in a different scope, Gill et al. [13] measure
DC network load to evaluate the system’s reliability and
characterize the components most prone to fail.

Network Workload Modeling: Similar to characterization,
network modeling has attracted significant interest due to the
user patterns of large-scale DC applications. Feitelson [12]
apart from characterizing network loads, presents an overview

of methods to model network request distributions. He sug-
gests distribution fitting through the Kolmogorov-Smirnov test,
to identify known distributions in network traffic fluctuation.
Furthermore, he presents preliminary considerations on the
correlation between task size, arrival rate and execution time
when combining network and CPU modeling. Although his
work presents strong arguments for the value of modeling tem-
poral variations of network traffic, it does not present any val-
idation of the proposed techniques against actual applications.
In Section III we evaluate a similar distribution fitting-based
model, but additionally validate it against real DC workloads.
Building from this paper, Li [15] characterizes network and
CPU-intensive applications running on large-scale grids. He
analyzes features like job arrival rate, size, pseudoperiodicity
and correlation of these features with execution time. He,
then, proposes a two-phase approach to model these workload
attributes. The first step consists of Model-Based Clustering

which performs distribution fitting. The second step generates
autocorrelations to create synthetic workloads that resemble
the original load. Although this work provides some insight
on the performance impact of request distributions in grids, it
is computationally intensive and does not scale beyond a few
nodes, making it inapplicable in large-scale DCs.

Barford et al. [2] study the characteristics of Web servers
and propose a workload generator that recreates patterns with
temporal fluctuation and request sizes similar to the original
application. Joo et al. [14] propose network traffic modeling
to identify and resolve performance bottlenecks in a small ma-
chine cluster. They compare two different models, an infinite

source-based model that is user-invariant, i.e., all users send
the same amount of data, and a SURGE-based model, where
traffic varies per user. They observe that ignoring user variation
and information about network topology causes significant
inaccuracies in the generated workloads. Sengupta et al. [17]
characterize the request arrival rates of a series of OLTP
workloads and propose an analytical distribution fitting and
self-similarity recognition model. They conclude that accurate
modeling of network traffic can facilitate decision-making for
a series of performance/energy-related optimizations, although
their study is only limited in transaction-based applications
running on a small cluster. Similarly, Danzig et al. [8] propose
an empirical workload model based on statistical analysis of
wide-area TCP/IP traffic. They use both request inter-arrival
times to model traffic that follows known distributions and
amount of data transfered to model burstiness. In the same
spirit, Meisner et al. [16] model the network request arrival
rates of a large-scale latency-critical online application with
a G/G/1 queueing model and use it to generate representative
loads, as inputs to a DC simulator. Finally, Tang et al. [19]
propose a framework that captures non-stationarity, burstiness
and request duration to model long-time network behavior.
Based on this model, they develop MediSyn, a publicly
available streaming media workload generator.

Overall, the common base in previous work is a focus on
capturing temporal variations in network load using analytical
models such as distribution fitting. Although this can provide



Fig. 1: Distribution fitting model validation.

insights on load variations and identify user patterns over time,
it includes no notion of spatial patterns, which are a crucial
part of DC applications. Hot spots due to load imbalance,
inter-application traffic and server-to server communications
are all features that impact critical design desicions in large-
scale DCs and necessary for a modeling scheme to capture.

III. SINGLE SERVER TEMPORAL MODEL

We first focus on the requirements for simplicity and
conciseness of the scheme, with a simple model that captures
per-server network activity over time. We show which features
of network load this model captures and why on its own it is
not sufficient to model the behavior of DC applications.

We adopt a distribution fitting model which has been
previously shown to be useful to capture the behavior of
conventional network workloads [15], [17]. In this work we
are validating its accuracy in the context of a real large-scale
DC application. The model takes as input a network bandwidth
trace from a single server and identifies known distributions
(e.g., Gaussian, Poisson, Zipf, etc.) in the activity pattern. The
output is a mathematical expression that is the superposition
of identified distributions similar to Exp. 1.
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where N is the number of identified distributions and Ni

the number of individual distributions of each type.

We validate the accuracy of the model by comparing the
network traffic generated based on the model against original
traffic patterns. Fig. 1 shows this comparison for a Webmail
workload running on a production-class server. The deviation
between original and generated load is less than 4.9% on
average, ensuring that the model accurately captures temporal
variations in network load. In this case, the model identifies

three Gaussian, one exponential and one constant distribution
in the network activity. We have performed additional val-
idation experiments with workloads that experience diverse
activity patterns and verified the consistency of the results.

Although the distribution fitting model is a simple and
comprehensive way to capture the load of individual servers,
it is agnostic of the source and destination of traffic, therefore
it cannot represent spatial effects, such as server-to-server
communication. Additionally DC workloads often experience
short bursty periods in their network activity [12], which can-
not be accurately approximated by known distributions. The
next Section describes the most critical features of network
workloads in the large-scale that the model should accurately
capture. To recreate them we adopt a different approach. The
hierarchical Markov chain model described in Section V is a
scalable, yet accurate solution that captures both temporal and
spatial effects without becoming intractable in complexity.

IV. TEMPORAL AND SPATIAL NETWORK TRAFFIC

CHARACTERIZATION

Previous work has established some trends for DC work-
loads, such as diurnal behavior and variation in activity
between different time intervals, e.g., weekdays over weekends
[1], [5], [11]. Here we validate these findings and additionally
perform a detailed study on the spatial locality of network
traffic in DC applications, as well as its fluctuation over
time. We examine the network load of three production DC
deployments; a system with several tens of thousands of
servers from Microsoft running Websearch and two smaller
systems with several hundred and a few thousand servers
respectively running a single application. Specifically, the first
system runs a combiner for query results, part of Websearch
(Combine), while the second system extracts a snippet of
information from backend Websearch servers and displays it
to the user, in the top of the search results (Render).

Fluctuation of network activity over time: We show
network traffic over time in the form of heatmaps. Each tick on
the x-axis represents an interval of 5 minutes and each point on
the y-axis, a server ordered by server id. Consecutive servers
belong to the same rack in groups of 48 servers per rack.
The colorbar on the right shows the range of network traffic
bandwidth observed. Darker color in the heatmap represents
higher network traffic. There are a few servers in each heatmap
that exceed this range, however they represent a very small
percentage of the total deployment, typically 0.1%-0.5%. Fig.
2(a) shows the fluctuation of activity per server in the large
DC running Websearch over the period of one month (Decem-
ber 2011). As shown in the graph, the network load varies
across groups of servers, with specific nodes experiencing
high traffic, although mostly the system remains well load-
balanced. Overall, the network traffic is very low; very few
nodes exceed 0.0064MB/s, which is in agreement with the
extensive overprovisioning present in large-scale deployments
of latency-critical applications such as Websearch [3], [4].
Additionally, the traffic over time remains mostly self-similar,
consistent with well-known DC application characteristics [1].



The diurnal patterns in network activity, i.e., difference in load
between day and night, become more clear in Fig. 3(a) and
(c) which show per-server traffic for Combine and Render.
Every dark vertical band representing the hours of the day is
followed by a lighter interval (e.g., in the x-axis: vertical band
at range 970-1030) representing the low activity period of the
night. There are 31 dark and 31 light bands in total in the
graph representing each 24h period in the month. Compared
to Websearch, both Combine and Render have significantly
higher network traffic, as a result of the lookups necessary to
extract and aggregate search results. Between Combine and
Render, the former has slightly higher network activity, since
larger chunks of data are transfered between servers. To better
visualize the diurnal patterns in network activity and their
change, in Fig. 4 we plot network load over time, averaged
across all servers. Fig. 4(a) shows the fluctuation in load for
Websearch across five consecutive months (November 2011-
March 2012). Overall, the patterns are similar, although their
magnitude varies across different months, with significantly
higher loads in December and January. Fig.4(b) shows the
per-week breakdown of network load for December. Again,
diurnal patterns are present, with load being 10-15% higher
in the last two weeks of the month, and 15-18% higher in the
days of the weekend, compared to weekdays. Finally, Fig. 4(c)
shows the per-day breakdown for the last week of the month.
The load experiences two peaks, one from 12pm to 6pm and
another from 8am to 12pm while progressively decreasing in
the hours of the night.

Although the time aspect of DC applications has been
extensively studied, the same is not the case for the locality of
communication in network applications. This study has three
types of contributions; first, it can verify that the application
takes advantage of data locality by confining most requests to
servers of the same or neighboring racks to reduce latencies,
second, in the presence of multiple applications, it can provide
insight to the scheduler, on how to assign machines to jobs
to confine inter-application traffic to neighboring nodes and
third, it can verify that load balancing prohibits the formation
of extensive hot spots. In this work, we examine both the
average locality of network traffic and its fluctuation over time
to provide insights on these issues.

Spatial locality of network activity: Fig. 2(b), Fig. 3(b)
and Fig. 3(d) show the server-to-server network traffic for
Websearch, Combine and Render. Both the x and y axes
represent servers and the graphs are symmetric over the minor
diagonal since, for example, traffic between servers 2 and 3
is the same as traffic between servers 3 and 2. This includes
both sent and received traffic for each pair of servers. More
prominently in Websearch, but for the other applications as
well, the majority of traffic is confined within servers of the
same or consecutive racks, seen by the darker colors along the
diagonal. For all three applications, especially Combine and
Render, there is a small number of servers that talk to most of
the machines in the system. These are likely servers running
the cluster scheduler, aggregators (in multi-tier Websearch) or
monitoring systems.

In the smaller clusters of Combine and Render, we observe
less network locality, as several servers, especially in the first
few racks, exchange requests with machines outside their rack.
This is consistent with the functionality of the two applica-
tions, aggregating and caching or displaying results extracted
from search queries. Data used to service these queries may
require a large number of shards, spanning multiple servers.
Overall, we observe that in Websearch, which is dominated
by query latency, the job scheduler is data locality-aware and
tries to minimize long request round trips to servers that are
far from each other.

Finally, we examine the actual network traffic map for
Websearch in Fig. 2(c), where each shaded region corresponds
to a rack, with 48 servers within each region. All servers in
a rack are connected to the same switch, while servers in
different racks are connected to different switches. As seen in
the figure, with the exception of few, most racks have similar
levels of network load, verifying that the load balancer assigns
work to machines preserving fairness, while the small number
of racks which have slightly higher network traffic are the ones
that talk to most of the servers in the DC.

Fluctuations in the locality of network activity: Apart
from examining the average locality of network activity, we
look at how these patterns change over time. Fig. 5 shows the
server-to-server network activity for Websearch over a period
of five consecutive months in 2011 and 2012. In most cases
the patterns remain consistent across different months with a
slight surge in traffic in December and January, which is in
agreement with our findings for the activity fluctuation over
time for the same period (Fig. 4). When comparing this to the
fluctuation in locality observed in Combine in the same period
(Fig. 6) there are significant differences. Unlike Websearch,
Combine experiences significant differences in its locality
over different months, probably the result of changes in the
application’s structure and functionality. For example, while
in November and December there is a significant number of
servers polling a large fraction of the system, in the following
months the requests become progressively more localized
in servers of the same or neighboring racks. March also
experiences an interesting access pattern with high localized
network activity in specific servers (range 180-250).

Although at the month granularity Websearch seems invari-
ant in its locality patterns, when moving to a finer granularity
we see that it also experiences fluctuations in the locality of its
network activity. Fig. 7 and 8 show the server-to-server traffic
for two weeks of December and three days of the second
week respectively. At the granularity of individual days, we
observe that there are significant differences in the locality of
accesses, with different subsets of the DC being more active
than others; however, these fluctuations get hashed out at large
time intervals.

Overall, we observe that the network activity of large-scale
applications changes both in time and space, and for a model
to provide useful insight in the behavior of the application, it
should capture the workload accurately across both these axes.



Fig. 2: (a) Per-server network traffic over a 1 month period, (b) server-to-server traffic (locality of network activity) and (c)
rack-level network traffic map across the entire DC for Websearch.

Fig. 3: Network traffic over time and server-to-server traffic for Combine and Render.

Fig. 4: Network activity averaged over all the servers in the system across (a) five months, (b) four weeks and (c) seven days.

Fig. 5: Server-to-server traffic for Websearch over a period of five consecutive months in 2011 and 2012.

Fig. 6: Server-to-server traffic for Combine over a period of five consecutive months in 2011 and 2012.



Fig. 7: Spatial locality of network activity across
two different weeks in December 2011.

Fig. 8: Spatial locality of network activity across three different days in
December 2011.

V. SYSTEM-WIDE SPATIAL MODEL

A. Overview

From the previous Section there are several network activity
features that are critical for a workload model to accurately
capture; (a) the average activity (per-server and system-wide),
(b) the fluctuation of activity over time, both bursty and
with defined intervals, (c) the locality of activity, i.e., spatial
patterns across the system and (d) the interactions between
specific servers or racks. This is a wide and often conflicting
set of requirements to be met; for example a model that
captures spatial distribution of load might not capture temporal
variations accurately.

B. Design

To address these requirements we propose ECHO, a scalable
modeling scheme that captures both temporal and spatial
network patterns. ECHO leverages robust analytical models
that enable it to provide strict error bounds on the accuracy of
the representation. Specifically, it is driven by a set of Markov
chains that are trained on real input traces from production
DCs and provide a probabilistc framework to both charac-
terize and recreate network activity patterns. The selection
of a Markov model is based on its ability to concisely and
accurately capture the behavior of a wide spectrum of systems,
the identification of more dominating system states (states
with higher probabilities) and the information on transitions
between states. Also, Markov models have previously been
shown to accurately capture the behavior of DC workloads in
other subsystems, such as storage activity [9].

To tackle the scale of modern DCs, ECHO is hierarchical,
starting from groups of racks, and modeling network activity
down to racks and individual servers. This way the level of
granularity is adjusted to the specific patterns of a given appli-
cation. ECHO is topology-independent, since the aggregation
of state in the model is not tied to a specific network or-
ganization, therefore it is portable across different topologies,
provided no radical changes in the system’s organization. Also,
the model is workload-independent and although the exact
structure and probabilities vary across different workloads,
the model’s principal design is preserved. Fig. 9 shows the
hierarchical probabilistic model for a system with four groups
of racks. Each state represents different entities in each level.
In the highest abstraction, a state is a group of racks, while

at the second level it represents a rack, and at the lowest
level it represents an individual server. The number of groups
of racks or racks in each group is a configurable parameter
of the model, while the number of servers per rack is a
design parameter of the system. A transition between any
two states represents the probability/portion of network traffic
between two entities that has certain characteristics. These
characteristics correspond to the size of network requests, the
type and the inter-arrival times that separate them, or their
burstiness. The Markov chain defines such probabilities as:

pij = Pr[Xj |Xi] =

Pr[Serverj ← Serveri | MB/s, rd/wr, int. time] (2)

where there is a pij probability that Serveri interacts with
Serverj over the network with specific bandwidth (MB/s),
request type (rd/wr) and inter-arrival time. Although the
use of both inter-arrival times and probabilities might seem
redundant, it enables modeling both requests that follow well-
defined distributions (in which case the two metrics are almost
equivalent) and bursty behavior (when the inter-arrival rate is
very high, but the probability of the traffic occuring low).

For the clarity of the representation some transitions are
omitted from Fig. 9. Based on the workload characterization
of Section IV, we observe that the majority of network
traffic, with a few exceptions, is confined within the servers’
corresponding rack. This motivates the use of a hierarchical
rather than a flat model where all transitions are explored.
As seen in Fig. 9 transitions between large states remain
coarse-grain when moving to lower levels of granularity, while
transitions within large states are expanded. This improves
the scalability of the scheme, by enforcing upper bounds
for the transition count and prevents a complexity explosion
when scaling up to thousands of servers, while conveying the
same amount of information about the workload. Comparing
a flat and hierarchical model for a system with 100 racks
reveals a 90% reduction in transition count for the hierarchical
model. Additionally, because of the design of the model, the
representation of network activity becomes very concise; while
raw traces require GB and often TB of storage, the hierarchical
model of the 100-rack system only takes a few KB of storage.
Even the use of compression techniques to reduce the size of
trace data cannot easily offer a 6-9 order of magnitude space
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Fig. 9: Schematic of the hierarchical spatial Markov chain model.

reduction, while it would require additional analysis to explore
activity patterns in the compressed data.

The model described so far captures both spatial and tempo-
ral patterns in a DC for a given time frame. However, network
activity is highly volatile switching from low to high load
frequently and experiencing short periods of high burstiness in
the requests. To capture such evolving patterns we rely not on
one, but on a set of Markov chains, each one corresponding to
a different interval of the application’s execution. The number
of models is a configurable parameter, depends on the char-
acteristics of the application and since individual models can
be created in parallel, higher disaggregation in time not only
does not increase, but decreases the overhead of the modeling
process. For example, to create a single Markov chain a
system-wide bandwidth trace is required. Parsing the entire
trace, although only done once can introduce some overhead
in the modeling process. However, partitioning this procedure
to create multiple Markov chains for different time periods
and processing them in parallel, both reduces the training
overhead and improves the convergence between original and
generated load. When generating a synthetic workload, the
different models are activated in a Round-Robin fashion based
on the time frame they correspond to, e.g., when there are
separate models for each 12h period of a day, 50% of the time
the generated workload complies with the first model and 50%
of the time with the second model. Finally, although the model
is non-deterministic, which means that subsequent runs may
be different, we verify that each one of them maintains close
resemblance to the original workload.

C. Validation

For our validation we focus on four main metrics, as
discussed in Section IV; (i) average network traffic, i.e., how

much traffic is generated on average irrespective of temporal

and spatial patterns, (ii) per-server activity fluctuation over
time, i.e., how much traffic, (iii) spatial patterns of network

activity, i.e., to whom is the traffic sent and finally a more fine-
grain metric, (iv) individual server interactions, i.e., how much

traffic, to whom and when. We show validation results for the
hierarchical spatial model using as input real network activity
traces from two production DC deployments with hundreds
to tens of thousands of servers. Unless otherwise specified all
results are using the 3-level hierarchical model. Additionally,
experiments shown in this work are repeated over five runs to
verify the consistency of the results. Also, although DCs in this
study host a single application, the model can be applied to
space-multiplexed workloads as well, since typically requests
are tagged with the application id that initiated them. In that
case, a different model for each of the co-hosted applications
would be created.

Average activity validation: We evaluate the model against
two types of systems. First, we validate the model in a small
test cluster of a single rack with 24 servers. The workload
is the network traffic of servers hosting the webmail of an
academic institution. We examine four two-hour instances of
this load; Load A is the load on the morning of a weekday,
Load B the load on the afternoon of a weekday, Load C the
load on a night of a weekday and Load D the load on a
weekend. Fig. 10 shows the comparison between original and
synthetic traffic generated based on the spatial model for Load
A (the results are similar for the other loads) and the table in
Fig. 11 the statistical metrics that quantify this deviation. In all
cases the difference between original and synthetic workload
is less than 7% validating the accuracy of the model.

Second, we validate the model against real DC workloads
on two production systems; the DC running Websearch on
several tens of thousands of servers and the smaller cluster
running Combine. The temporal patterns in Section IV reveal
that load changes significantly both throughout a 24h period,
and between different weekdays compared to the weekend.
Based on these patterns we create a set of 10 models for



Fig. 10: Per-server bandwidth comparison between original and generated
network traffic for a one-rack system running Webmail at load A.

Server
Average Deviation

Percentage
Webmail

LoadA LoadB LoadC LoadD

25% 3.8% 4.3% 2.3% 2.9%
50% 4.2% 5.6% 2.5% 3.4%
75% 4.5% 6.2% 2.7% 3.5%
95% 5.5% 6.3% 3.1% 4.2%

All Servers 5.8% 6.3% 3.0% 4.1%

Fig. 11: Validation of average statistics be-
tween original and generated network load.

Application
Average Deviation for Percentages of Servers

25% 50% 75% 95% System-Wide

Websearch 7.2% 5.9% 4.2% 3.9% 3.8%
Combine 8.5% 6.9% 5.3% 4.4% 4.4%

TABLE I: Validation of average statistics between original and
generated network load for Websearch and Combine.

each system; 4 models from six hours periods of two different
weekdays (2 · 4) and 2 models for 12h periods of a day of
the weekend. This choice is configured to the features of the
specific applications and can be different for other workloads.
We first validate the average statistics of network activity
between original and generated workloads. Table I shows
the deviation in average traffic both for fractions of servers
and system-wide. The first 4 columns show the deviation
for the 25, 50, 75 and 95 percentages of servers, sorted by
increasing average network load and the last one shows the
average deviation across the entire system. In all cases, the
deviation is marginal, with the system-wide being lower than
the ones for server subsets for both applications. We also
observe that the lower the load of a server the higher the
deviation between original and synthetic workload, while for
higher loads the deviations are lower. Additionally the larger
the modeled system the lower the deviation.

Activity fluctuation validation: We validate the accuracy
of the model in capturing the fluctuation of network activity
by generating synthetic workloads for subsets of the two pro-
duction DCs, Websearch and Combine. There are two reasons
for not validating the model against the entire DC; first, the
unavailability of an equally large system to run the generated
workload and more importantly the fact that although possible,
system-wide generation of a workload obscures some of the
value of the model, which is identifying interesting patterns
or performance issues in network traffic and reproducing
them independently, without full application deployment. The
validation process works as follows:

• We select subsets of servers in the original workload that
present interesting traffic patterns.

• We create models that are trained on network activity
traces from each subsystem.

• We generate a synthetic workload for each subsystem
based on the corresponding model.

• We compare the network traffic between original and
synthetic workload.

Fig. 12(a) shows this validation for Websearch and Fig.
12(b) for Combine using as input the network activity over
a one month period (December 2011). This activity for
Websearch includes traffic from multiple components of the
application, such as indexing, advertisements and answers to
user queries, while for Combine it represents network traffic
from a single application. We have selected four server subsets
in each case, representing machines with both low and high
activity, as well as static or varying traffic patterns over
time. The figures visually demonstrate the similarity between
original and synthetic patterns, while the corresponding Table
II quantitatively confirms these findings. In all cases, the errors
both for percentages of servers and across the entire sample are
lower than 7% for Websearch and 8% for Combine, verifying
the accuracy of the model in capturing time variations. In
general, errors for activity fluctuation increase as we move
to larger server percentages, in contrast to what we saw
for average activity errors. This happens because mildly-
fluctuating activity of lightly-loaded servers is easier to model,
than server subsets with drastic load changes. Additionally,
short time skews between original and modeled workload,
create large errors for activity fluctuation, but are hashed out
when validating average statistics.

An important point when modeling system subsets is that
traffic is not necessarily self-contained in them. For example,
if a subsystem includes servers 1-10, it is not necessarily true
that server 1 does not interact with server 11 and vice versa.
Therefore to maintain the accuracy of per-server load when
choosing parts of the system, we need to ensure that the
external traffic is also represented in the model. We do this by
introducing a single ”cloud” node that generates and receives
all traffic from and to servers in the subsystem. Fig. 15 shows
how this external node is integrated in the model. Essentially
the model has one additional state which is responsible for
the network traffic outside the selected subsystem.



Application
Average Deviation (%) for Percentages of Servers in each Subset

Subset S1 Subset S2 Subset S3 Subset S4
25 50 75 95 100 25 50 75 95 100 25 50 75 95 100 25 50 75 95 100

Websearch 1.2 2.4 5.7 6.8 6.6 3.9 3.8 4.7 5.3 5.2 3.2 3.6 3.7 4.1 4.0 7.2 6.7 6.8 7.1 7.0
Combine 2.3 3.5 3.6 4.4 4.2 4.2 3.8 3.6 3.7 3.8 5.1 4.8 4.9 4.6 4.5 7.6 7.9 8.1 8.0 8.0

TABLE II: Validation of generated network activity over time for server subsets in two DCs.

 

 

 

 






  

 












Fig. 12: Spatial model validation for server activity over time. Fig. 12a shows the validation of ECHO against subsets of the
large-scale DC running Websearch and Fig. 12b a similar validation for Combine running on a smaller DC.

Application
Average Deviation (%) for Percentages of Servers in each Subset

Subset S1 Subset S2 Subset S3 Subset S4
25 50 75 95 100 25 50 75 95 100 25 50 75 95 100 25 50 75 95 100

Websearch 9.5 5.2 3.4 3.2 2.7 6.2 5.4 4.9 4.6 4.6 4.2 4.1 4.3 4.3 4.4 10.8 9.9 7.6 8.1 8.2
Combine 6.5 4.9 4.3 2.4 2.4 3.4 3.5 4.7 4.6 4.5 5.8 6.7 7.3 6.3 6.4 11.2 10.8 8.2 5.6 5.4

TABLE III: Validation of generated network traffic map for server subsets in two DCs.





















 





 







Fig. 13: Server-to-server network traffic map validation for server subsets of (a) Websearch and (b) Combine.



Fig. 14: Inter-server communication validation for a day of the week (Fig.
14a) and a day of the weekend (Fig. 14b) for two Websearch servers.

Fig. 15: Modified model for server subsets.
The ”Cloud” node represents traffic gener-
ated from or directed to external nodes in
the system.

Fig. 16: Model representation when moving from single-level to two and
three-level hierarchy for a DC running Combine.

Fig. 17: CDFs of error distribution across
servers for (a) network activity fluctuation
and (b) network activity locality.

Validation of locality of network activity: A critical goal
of the model’s design is capturing spatial patterns in network
activity. We verify this with a similar experiment to the one
previously described. We select four subsets of servers from
the server-to-server traffic maps for Websearch and Combine
and generate synthetic workloads based on the corresponding
models. Fig. 13 shows a visualization of the similarities
between original and synthetic subsets and Table III presents
the quantitative metrics that confirm these similarities. For
both systems the deviations are low, with higher load servers
typically experiencing smaller inaccuracies. Overall the devi-
ation is less than 10% for Websearch and 11% for Combine.

Finally, Fig. 17 shows the error CDFs for the temporal
(Fig. 17a) and spatial (Fig. 17b) patterns of the generated
workload against the original application. The y-axes in both
graphs represent server percentiles. The errors reported are
for the large-scale DC running Websearch. From the figure,
the errors for spatial patterns are slightly higher than for
temporal patterns, but it all cases the 50th percentiles of
servers have less than 4% error in temporal and less than 5.2%
in spatial patterns while the 90th percentiles of servers have
less than 7.3% in temporal and 9.8% in spatial patterns. Only
few outliers experience errors larger than 10%, validating the
accuracy of the modeling scheme.

Validation of server interaction: Finally, we validate the
accuracy of the model in capturing network interactions be-
tween specific servers. Potentially this is the highest source
of inaccuracy for the model given its probabilistic nature.
Fig. 14 shows the comparison between original and synthetic
workload for the isolated network activity of a server pair
across two different days (a weekday and a weekend day).
The upper figures show traffic from Server A to Server B
and the lower figures traffic from Server B to Server A.
The two servers are chosen randomly across the pool of
servers of the large Websearch cluster. As the graph shows, the
hierarchical design and temporal variance of ECHO enables
close resemblance for the point to point network traffic. The
deviation between original and synthetic workloads is 12.2%
for the weekday, on average and 8.9% for the weekend, which
is higher than the system-wide deviation but still a very close
approximation of the original traffic. Most of the error occurs
when very low traffic in the original application is not reflected
in the generated workload. We have verified the consistency
of these results with different server pairs.

Overall, the network load captured and generated by the
model deviates marginally from the original application in
all four critical characteristics, with average deviation being
smaller than the other metrics and the recreation of temporal



patterns being slightly more accurate than that of spatial
patterns.

Sensitivity to model granularity: Finally, we examine the
impact of hierarchy on the accuracy of the model. For the
small DC running Combine we create three different sets
of models; the first has information only at the granularity
of groups of racks (level 1), the second at the granularity
of individual racks (level 2) and the last one captures the
workload at individual server granularity (level 3). Fig. 16
shows the network traffic generated by the model as more
levels are added in the representation. Adding more levels
significantly improves the accuracy of the model, as reflected
in the corresponding deviations which are: 28% for the level-1,
9.1% for the level-2 and 4.4% for the level-3 model.

VI. CONCLUSIONS

We presented ECHO, a concise and scalable modeling and
generation scheme for network traffic in large-scale DCs.
ECHO captures both the temporal and spatial characteristics of
large-scale applications and recreates per-server and system-
wide network traffic maps. ECHO is driven by robust analyt-
ical models which allow us to provide strong guarantees on
the accuracy of the workload information. We have validated
the accuracy of these models against real DC applications
and have shown marginal deviations between original and
generated traffic. Thus, ECHO can be used to derive confident
decisions on DC-related system studies. Specifically, we have
studied the temporal and spatial patterns of two large-scale
production DCs running Websearch. As part of future work,
we plan to extend the applicability of ECHO in areas such as
workload migration and server consolidation.
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