
SCD: A SCALABLE COHERENCE DIRECTORY
WITH FLEXIBLE SHARER SET ENCODING

Daniel Sanchez and Christos Kozyrakis

Stanford University

HPCA-18, February 27th 2012

Executive Summary
2

 Directories are hard to scale, degrade performance

 SCD: A scalable directory with performance guarantees

 Flexible sharer set encoding: Lines with few sharers use one
entry, widely shared lines use multiple entries Scalability

 Use ZCache Efficient high associativity, analytical models

 Negligible invalidations with minimal overprovisioning (~10%)

 At 1024 cores, SCD is 13x smaller than a sparse directory,
and 2x smaller, faster, simpler than a hierarchical directory

Outline
3

 Introduction

 SCD Design

 Analytical Bounds on Overprovisioning

 Evaluation

Directory-Based Coherence
4

 Scalable coherence protocols use a directory
 Tracks contents of private caches

 Ordering point for conflicting requests

Shared L3

Core Core Core Core Core Core Core

Directory

Main Memory

Core

Private
L2

Private
L2

Private
L2

Private
L2

Private
L2

Private
L2

Private
L2

Private
L2

Directory-Induced Invalidations
5

Shared L3

Core 0 Core 1 Core 2 Core 3 Core 4 Core 6 Core 7

Directory

Main Memory

Core 5

Private
L2 0

Private
L2 1

Private
L2 2

Private
L2 3

Private
L2 4

Private
L2 6

Private
L2 7

Private
L2 5

GET A

ld A

GET A INV B
Limited associativity To track
A, must invalidate B, C, D, or E

INV B

INV B INV B

ld B MISS

Desirable Directory Properties
6

1. Scalability
 Latency, energy, area

 Constant or log(cores) growth

2. Minimal complexity
 No changes to coherence protocol

3. Exact sharer information

4. Negligible directory-induced invalidations
 With minimal, bounded overprovisioning

Sparse Full-Map Directories
7

 Associative array indexed by address

 Sharer sets encoded in a bit-vector

0xF00 Shared

Line Address Coherence State Sharer Set

0 1 0 0 1 1 0 0

Single lookup Low latency, energy-efficient
 Bit-vectors grow with # cores Area scales poorly
 Limited associativity Directory-induced invalidations,

overprovisioning (~2x)

Directory Entry Format

Way 1 Way 2 Way 3 Way 4

Hierarchical Sparse Directories
8

 Multi-level hierarchy of sparse directories

Level-2
Directory

32 Level-1
Directories

…

…

Cores 0-31 Cores 32-63 Cores 992-1023

L1 Dirs 0-31

Small bit-vectors Scalable area & energy
 Multiple lookups in critical path Additional latency
 Needs hierarchical coherence protocol More complexity
 Directory-induced invalidations more expensive

Single-Level Dirs with Inexact Sharer Sets
9

 Coarse-grain bit-vectors (e.g., 1 bit for every 4 cores)

 Limited pointers: Maintain a few sharer pointers,
invalidate or broadcast on overflow

 Tagless [MICRO 09]: Encode sharers with Bloom filters

 SPACE [PACT 10]: De-duplicate sharing patterns

Reduced area & energy overheads
 Overheads still not scalable
 Inexact sharers Broadcasts, invalidations or spurious lookups

Efficient Highly-Associative Caches
10

 ZCache [MICRO 10]: High-associativity cache with few ways
 Draws from skew-associativity and Cuckoo hashing
 Hits take a single lookup
 In a miss, replacement process

provides many candidates
 Provides cheap high associativity

(e.g., 64-way associativity with 4 ways)
 Described by simple & accurate analytical models

 Cuckoo Directory [Ferdman et al., HPCA 11]:
 Apply Cuckoo hashing to sparse directories
 Empirically show that smaller overprovisioning (~25%) eliminates

most invalidations

Indexes

H1

H2

H3

Line
address

Way1 Way2 Way3

Outline
11

 Introduction

 SCD Design

 Analytical Bounds on Overprovisioning

 Evaluation

Scalable Coherence Directory: Insights
12

 Use ZCache

 Cheap high associativity

 Analytical models Bounds on overprovisioning

 Negligible difference with ideal directory regardless of workload

 Validated in simulation

 Provision space per tracked sharer, not line

 Flexible sharer set encoding: Lines with few sharers use a
single entry, widely shared lines use additional entries

SCD Array
13

 ZCache array indexed by (Line Address, Entry Number)

 Allows multiple entries per line

 Insertions walk array until an unused entry is found, or a
limit of candidates (R) is reached, then invalidate one

 Could use a replacement policy to decide victim

 Evictions are negligible no need for replacement policy

Indexes

H1

H2

H3

(Line Address, Entry Number)

Way1 Way2 Way3

SCD Entry Formats
14

 Lines with one or few sharers use a limited pointer entry

 Lines with >3 sharers use root + leaves bit-vector entries

Line Address
(44b)

37b

Unused
(37b)

0 0 INVALID

Coherence State
(5b)

#ptrs
(2b)

3x 10-bit sharer pointers
(30b)

0 1 LIMITED POINTERS

Coherence State
(5b)

1 0 ROOT BIT-VECTOR
Root bit-vector

(32b)

Leaf number
(5b)

1 1 LEAF BIT-VECTOR
Leaf bit-vector

(32b)

Type
(2b)

 Example: 1024 sharers

Example: Adding a Sharer
15

1

0x5CA1AB1E S 3 01 37 265 267

Add sharer 64 to address 0x5CA1AB1E :

Lookup (0x5CA1AB1E, 0), all pointers are used switch to multi-entry format

2 Allocate entries (0x5CA1AB1E, leafNum+1) with leafNum=1,2,8

4 Write (0x5CA1AB1E, 0) as a root bit-vector

(LIMPTRS)

3 Write leaf bit-vectors

2 11 10000000 00000000 0…0 0…0 0x5CA1AB1E

8 11 00000000 10100000 0…0 0…0 0x5CA1AB1E

S 01100000 10000000 0…0 0…0 10 0x5CA1AB1E

(ROOT)

1 11 00000010 00000000 0…0 0…0 0x5CA1AB1E

(LEAF)

SCD & Desirable Properties
16

1. Scalability

 Flexible sharer set encoding Scalable energy and area

 Coherence state stored in a single entry Most operations
have 1 lookup on critical path Scalable latency

2. Minimal complexity

 All entries in the same array No coherence protocol changes

3. Exact sharer information

4. Negligible directory-induced invalidations
 With minimal, bounded overprovisioning

?

Outline
17

 Introduction

 SCD Design

 Analytical Bounds on Overprovisioning

 Evaluation

Analytical Models
18

 Directories built with ZCache arrays can be characterized with simple,
workload-independent analytical models

W

R

occ

occ
AvgLookups

1

1
R

inv
occP

Fraction of insertions that

cause a directory invalidation

Average lookups

per replacement

W Ways

R Replacement candidates

occ Occupancy (fraction of used entries)

Determines performance
impact, interference

Determines replacement
latency and energy

Bounding Invalidations
19

 SCD bounds invalidations with minimal overprovisioning

 Bounded worst-case behavior independent of workload

 For Pinv=10-3 W=4, R=64, 11% overprovisioning

 Max directory occupancy 90%

 Overprovisioning is:

 Smaller than previous empirical results (25%-2x)

 Bounded Strict guarantees, no design-time uncertainty

Outline
20

 Introduction

 SCD Design

 Analytical Bounds on Overprovisioning

 Evaluation

Methodology
21

 Simulated system: 1024-core tiled CMP

 In-order cores with split L1s

 Private inclusive L2s, 128KB/core

 Shared non-inclusive L3, 256MB

 MESI directory protocol

 Directory implementations:

 Sparse, 2-level Hierarchical, SCD

 Directories 100%-provisioned for L2s

 All directories use ZCache arrays
negligible invalidations

 14 workloads from PARSEC, SPLASH2,
SPECOMP/JBB, BioParallel suites

C
o
re

C
o
re

C
o
re

C
o
re

C
o
re

C
o
re

C
o
re

C
o
re

C
o
re

C
o
re

C
o
re

C
o
re

C
o
re

C
o
re

C
o
re

L3 Bank

Mem

Ctrl

Router

Dir

Bank

C
o
re

16-core tile

64-tile CMP (1024 cores)

Area
22

 Area given as a percentage of L2 caches

 At 1024 cores, SCD is:
 13x smaller than Sparse

 2x smaller than Hierarchical

 Takes ~3% of total die area

Cores Sparse Hierarchical SCD Sparse/SCD Hier/SCD

128 34.2% 21.1% 10.9% 3.12x 1.93x

256 59.2% 24.2% 12.5% 4.73x 1.94x

512 109.2% 27.0% 13.9% 7.87x 1.95x

1024 209.2% 30.9% 15.8% 13.22x 1.95x

Performance
23

 Hierarchical up to 10% slower than Ideal

 Sparse has Ideal-like performance, but too expensive

 SCD as fast as Ideal & Sparse, cheapest

0

2

4

6

8

10

12

bscholes applu jbb ocean svm canneal

S
lo

w
d
o
w

n
 o

v
e
r

Id
e
a
l
D

ir
e
ct

o
ry

 (
%

)

Hierarchical

Sparse

SCD

Energy Efficiency
24

 Directory energy = Accesses * Energy/access

 SCD performs slightly more accesses (lookups, writes) than Sparse
 Some operations require multiple lookups

 SCD has higher occupancy, replacements take longer

 SCD energy/access is smaller (narrow entries)

0

5

10

15

20

25

bscholes applu jbb ocean svm canneal

S
C

D
 a

rr
a
y
 a

cc
e
ss

e
s

o
v
e
r

S
p
a
rs

e
 (

%
)

97%

Analytical Models
25

 Empirical results on invalidations match analytical models
 Bounds worst-case invalidations with minimal overprovisioning

 Can provision directory using simple formulas

 Set-associative arrays do not meet analytical models
 Need significant overprovisioning (~2x), no bounds

 Similar results for Sparse & Hierarchical

Conclusions
26

 SCD insights:

 Use a variable number of entries/line Keep entries small

 Use ZCache High associativity + Analytical models

 SCD = Scalability + Performance guarantees

 Scalable area, energy, latency

 Simple: No modifications to coherence protocol

 Negligible invalidations with bounded overprovisioning

 At 1024 cores, SCD is 13x smaller than Sparse, and 2x
smaller, faster and simpler than Hierarchical

THANK YOU FOR
YOUR ATTENTION

QUESTIONS?

