
Paragon: QoS-Aware Scheduling for Heterogeneous Datacenters

ABSTRACT
Large-scale datacenters (DCs) host tens of thousands of diverse ap-
plications each day. However, interference between colocated work-
loads and the difficulty to match applications to one of the many
hardware platforms available can degrade performance, violating the
quality of service (QoS) guarantees that many cloud workloads re-
quire. While previous work has identified the impact of heterogene-
ity and interference, existing solutions are computationally intensive,
cannot be applied online and do not scale beyond few applications.

We present Paragon, an online and scalable DC scheduler that is
heterogeneity and interference-aware. Paragon is derived from ro-
bust analytical methods and instead of profiling each application in
detail, it leverages information the system already has about applica-
tions it has previously seen. It uses collaborative filtering techniques
to quickly and accurately classify an unknown, incoming workload
with respect to heterogeneity and interference, by identifying similar-
ities to previously scheduled applications. The accurate classification
allows Paragon to greedily schedule applications in a manner that
minimizes interference and maximizes server utilization. Paragon
scales to tens of thousands of servers without introducing significant
overheads in terms of execution time or required state.

We evaluate Paragon with a wide range of workload scenarios, on
both small and large-scale systems, including 1,000 servers on EC2.
For a 2500-workload scenario, Paragon enforces QoS for 91% of ap-
plications, while significantly improving utilization. In comparison,
heterogeneity-oblivious, interference-oblivious and random assign-
ment schedulers only provide similar guarantees for 14%, 11% and
3% of workloads. Even more striking are cases of oversubscribed
scenarios where efficient scheduling is more critical.

Categories and Subject Descriptors: C.5.1 [Computer System Im-
plementation]: Super (very large) computers; C.1.3 [Processor Ar-
chitectures]: Heterogeneous (hybrid) systems, C.1.4 [Parallel Archi-
tectures]: Scheduling and task partitioning

General Terms: Design, Performance

Keywords: Datacenter, cloud computing, heterogeneity, interfer-
ence, scheduling, QoS

1. INTRODUCTION
An increasing amount of computing is performed in the cloud,

primarily due to cost benefits for both the end-users and the oper-
ators of datacenters (DC) that host cloud services [4]. Large-scale
providers such as Amazon EC2 [12], Microsoft Windows Azure [40],
Rackspace [30] and Google Compute Engine [16] host tens of thou-
sands of applications on a daily basis. Several companies also or-
ganize their IT infrastructure as private clouds, using management
systems such as VMware vSphere [38] or Citrix XenServer [43].

The operator of a cloud service must schedule the stream of in-
coming applications on available servers in a manner that leads to
both fast execution (user’s goal) and good resource utilization (oper-
ator’s goal). This scheduling problem is particularly difficult as cloud

0 1000 2000 3000 4000 5000
Workloads

0.0

0.2

0.4

0.6

0.8

1.0

Sp
ee

du
p

ov
er

 A
lo

ne
 o

n
Be

st
 P

la
tfo

rm

Alone on Best Platform
No Heterogeneity

No Interference
Random

Figure 1: Performance degradation for 5,000 applications on
1,000 EC2 servers with heterogeneity-oblivious, interference-
oblivious and random schedulers compared to ideal scheduling
(application runs alone on best platform). Results are ordered
from worst to best-performing workload.

services must accommodate a diverse set of workloads in terms of
resource and performance requirements [4]. Moreover, the operator
often has no a priori knowledge of workload characteristics. In this
work, we focus on two basic challenges that complicate scheduling
in large-scale DCs: hardware platform heterogeneity and workload
interference.

Heterogeneity occurs because servers are gradually provisioned
and replaced over the typical 15-year lifetime of a DC [4, 18, 22,
24, 28]. At any point in time, a DC may host 3-5 server genera-
tions with a few hardware configurations per generation, in terms
of the specific speeds and capacities of the processor, memory, stor-
age and networking subsystems. Hence, it is common to have 10
to 40 configurations throughout the DC. Ignoring heterogeneity can
lead to significant inefficiencies, as some workloads are sensitive to
the hardware configuration. Figure 1 shows that a heterogeneity-
oblivious scheduler will slow applications down by 22% on average,
with some running nearly 2x slower (see Section 4 for the experimen-
tal methodology). This is not only suboptimal from the user’s per-
spective, but also for the DC operator as workloads occupy servers
for significantly longer.

Interference is the result of co-scheduling multiple workloads on a
single server to increase utilization and achieve better cost efficiency.
By co-locating applications a given number of servers can host a
larger set of workloads (better scalability). Alternatively, by pack-
ing workloads in a small number of servers when the overall load
is low, the rest of the servers can be turned off to save energy. The
latter is needed because modern servers are not energy-proportional
and consume a large fraction of peak power even at low utilization [3,
4, 23, 26]. Co-scheduled applications may interfere negatively even
if they run on different processor cores because they share caches,
memory channels, storage and networking devices [17, 25, 29]. Fig-
ure 1 shows that an interference-oblivious scheduler will slow work-
loads down by 34% on average, with some running more than 2x

1

slower. Again, this is undesirable for both users and operators. A ran-
dom scheduler that is both interference and heterogeneity-oblivious
is even worse (48% average slowdown), causing some workloads to
crash due to resource exhaustion on the server.

Previous work has showcased the potential of heterogeneity and
interference-aware scheduling [24, 25]. However, their techniques
rely on detailed application characterization and cannot scale to large
DCs that receive tens of thousands of potentially unknown workloads
every day [8]. Most cloud management systems have some notion of
contention or interference-awareness [19, 29, 36, 37, 42]. However,
they either use empirical rules for interference management or as-
sume long-running workloads (e.g., online services), whose repeated
behavior can be progressively modeled. In this work, we target both
heterogeneity and interference and assume no a priori analysis or
knowledge of the application. Instead, we leverage information the
system already has about the large number of applications it has pre-
viously seen.

We present Paragon, an online and scalable datacenter scheduler
that is heterogeneity and interference-aware. The key feature of Par-
agon is its ability to quickly and accurately classify an unknown ap-
plication with respect to heterogeneity (which server configurations
it will perform best on) and interference (how much interference it
will cause to co-scheduled applications and how much interference
it can tolerate itself). Paragon’s classification engine exploits existing
data from previously scheduled applications and offline training and
requires only a minimal signal about a new workload. Specifically,
it is organized as a low-overhead recommendation system similar to
the one deployed for the Netflix Challenge [6], but instead of discov-
ering similarities in users’ movie preferences, it finds similarities in
applications’ preferences with respect to heterogeneity and interfer-
ence. It uses singular value decomposition to perform collaborative
filtering and identify similarities between incoming and previously
scheduled workloads.

Once an incoming application is classified, a greedy scheduler as-
signs it to the server that is the best possible match in terms of plat-
form and minimum negative interference between all co-scheduled
workloads. Even though the final step is greedy, the high accuracy of
classification leads to schedules that satisfy both user requirements
(fast execution time) and operator requirements (efficient resource
use). Moreover, since classification is based on robust analytical
methods and not merely empirical observation, we have strong guar-
antees on its accuracy and strict bounds on its overheads. Paragon
scales to systems with tens of thousands of servers and tens of config-
urations, running large numbers of previously unknown workloads.

We implemented Paragon and evaluated its efficiency using a wide
spectrum of workload scenarios (light, high, and oversubscribed).
We used Paragon to schedule applications on a private cluster with 40
servers of 10 different configurations and on 1000 exclusive servers
on Amazon EC2 with 14 configurations. We compare Paragon to
a heterogeneity-oblivious, an interference-oblivious and a random
assignment scheduler. For the 1000-server experiments and a sce-
nario with 2500 workloads, Paragon maintains QoS for 91% of work-
loads (within 5% of their performance running alone on the best
server). The heterogeneity-oblivious, interference-oblivious and ran-
dom schedulers offer such QoS guarantees for only 14%, 11%, and
3% of applications respectively. The results are more striking in
the case of an oversubscribed workload scenario, where efficient re-
source use is even more critical. Paragon provides QoS guarantees
for 52% of workloads and bounds the performance degradation to
less than 10% for an additional 33% of workloads. In contrast, the
random scheduler dramatically degrades performance for 99.9% of
applications. We also evaluate Paragon on a Windows Azure and a
Google Compute Engine cluster and show similar gains. Finally, we
validate that Paragon’s classification engine achieves the accuracy

and bounds predicted by the analytical methods and evaluate various
parameters of the system.

The rest of the paper is organized as follows. Section 2 describes
the analytical methods that drive Paragon. Section 3 presents the im-
plementation of the scheduler. Section 4 presents the experimental
methodology and Section 5 the evaluation of Paragon. Finally, Sec-
tion 6 discusses related work and Section 7 concludes the paper.

2. FAST & ACCURATE CLASSIFICATION
The key requirement for heterogeneity and interference-aware sche-

duling is to quickly and accurately classify incoming applications.
First, we need to know how fast an application will run on each of
the tens of configurations available. Second, we need to know how
much interference it can tolerate from other workloads without sig-
nificant performance loss and how much interference it will gener-
ate itself. Our goal is to perform online scheduling for large-scale
DCs without any a priori knowledge about incoming applications.
Most previous schemes address this issue with detailed but offline
application characterization or long-term monitoring and modeling
approaches [25, 29, 36]. Instead, Paragon takes a different perspec-
tive. Its core idea is that, instead of learning each new workload in
detail, the system leverages information it already has about appli-
cations it has seen to express the new workload as a combination of
known applications. For this purpose we use collaborative filtering
techniques that combine a minimal profiling signal about the new
application (e.g., a minute’s worth of profiling data on two servers)
with the large amount of data available from previously scheduled
applications. The result is fast and highly accurate classification of
incoming applications with respect to both heterogeneity and inter-
ference. Within a minute of its arrival, an incoming workload can be
scheduled efficiently on a large-scale cluster.

2.1 Collaborative Filtering Background
Collaborative filtering techniques are frequently used in recom-

mendation systems. We will use one of their most publicized appli-
cations, the Netflix Challenge [6], to provide a quick overview of the
two analytical methods we rely upon, Singular Value Decomposition
(SVD) and PQ-reconstruction (PQ) [31]. In this case, the goal is
to provide valid movie recommendations for Netflix users given the
ratings they have provided for various other movies.

The input to the analytical framework is a sparse matrix A, the
utility matrix, with one row per user and one column per movie. The
elements of A are the ratings that users have assigned to movies.
Each user has rated only a small subset of movies; this is especially
true for new users which may only have a handful of ratings or even
none. While there are techniques that address the cold start problem,
i.e., providing recommendations to a completely fresh user with no
ratings, here we focus on users for which the system has some min-
imal input. If we can estimate the values of the missing ratings in
the sparse matrix A, we can make movie recommendations: suggest
that users watch the movies for which the recommendation system
estimates that they will give high ratings with high confidence.

The first step is to apply singular value decomposition (SVD), a
matrix factorization method used for dimensionality reduction and
similarity identification. Factoring A produces the decomposition to
matrices U , V and Σ.

Am,n =


a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n

...
...

. . .
...

am,1 am,2 · · · am,n

 = U · Σ · V T

2

where

Um×r =


u11 · · · u1r

u21 · · · u2r

...
. . .

...
um1 · · · umr

 , Vn×r =

v11 v12 · · · v1n
...

...
. . .

...
vr1 vr2 · · · vrn



Σr×r =

σ1 · · · 0
...

. . .
...

0 · · · σr


are the matrices of left and right singular vectors and the diagonal
matrix of singular values.

Dimension r is the rank of matrix A and it represents the number
of similarity concepts identified by SVD. For instance, one similar-
ity concept may be that certain movies belong to the drama category,
while another may be that most users that liked the movie ”Lord of
the Rings 1” also liked ”Lord of the Rings 2”. Similarity concepts
are represented in matrix Σ by singular values (σi) and the confi-
dence in a similarity concept by the magnitude of the corresponding
singular value. Singular values are ordered by decreasing magnitude
in Σ. Matrix U captures the strength of the correlation between a
row of A and a similarity concept. In other words, it expresses how
users relate to similarity concepts such as the one about liking drama
movies. Matrix V captures the strength of the correlation of a col-
umn of A to a similarity concept. In other words, to what extend
does a movie fall in the drama category. The complexity of perform-
ing SVD on a m × n matrix is min(n2m,m2n). SVD is robust
to missing entries and imposes relaxed sparsity constraints to pro-
vide accuracy guarantees. Density less than 1% does not reduce the
decomposition accuracy [35].

Before we can make accurate recommendations, we need the full
scores in the utility matrix A. To recover the missing entries in A,
we use PQ-reconstruction. Building from the decomposition of the
initial, sparse A matrix we have Qm×r = U and PT

r×n = Σ · V T .
The product of Q and PT gives matrix R which is an approximation
of A with the missing entries. To improve R, we use Stochastic Gra-
dient Descent (SGD), a scalable and lightweight latent factor model
that iteratively recreates A:
∀rui, where rui an element of the reconstructed matrix R
εui = rui − qi · puT

qi ← qi + η(εuipu − λqi)
pu ← pu + η(εuiqi − λpu)

until |ε|L2 =
√∑

u,i |εui|2 becomes marginal.

In the process above η is the learning rate and λ is the regulariza-
tion factor. The complexity of PQ is linear with the number of rui
and in practice takes up to a few ms for matrices withm,n ∼ 1, 000.
Once the dense utility matrix R is recovered we can make movie
recommendations. This involves applying SVD to R to identify
which of the reconstructed entries reflect strong similarities that en-
able making accurate recommendations with high confidence.

2.2 Classification for Heterogeneity
Overview: We use collaborative filtering to identify how well an
incoming application will run on the different hardware platforms
available. In this case, the rows in matrix A represent applications,
the columns server configurations (SC) and the ratings represent nor-
malized application performance on each server configuration.

As part of an offline step, we select a small number of applica-
tions, a few tens, and profile them on all different server configura-
tions. We normalize the performance results and fully populate the
corresponding rows of A. This only needs to happen once. If a new

Metric Applications (%)
ST MT MP

Selected best SC 86% 86% 83%
Selected SC within 5% of best 91% 90% 89%
Correct SC ranking (best to worst) 67% 62% 59%
90% correct SC ranking 78% 71% 63%
50% correct SC ranking 93% 91% 89%
Training & best SC match 28% 24% 18%

Table 1: Validation metrics for heterogeneity classification.

configuration is added in the DC, we need to profile these applica-
tions on it and add a column in A. In the online mode, when a new
application arrives, we profile it for a period of 1 minute on any two
server configurations, insert it as a new row in matrix A and use the
process described in Sec. 2.1 to derive the missing ratings for the
other server configurations.

In this case, Σ represents similarity concepts such as the fact that
applications that benefit from SC1 will also benefit from SC3. U
captures how an application correlates to the different similarity con-
cepts and V how an SC correlates to them. Collaborative filtering
identifies similarities between new and known applications. Two ap-
plications can be similar in one characteristic (they both benefit from
high clock frequency) but different in others (only one benefits from
a large L3 cache). This is especially common when scaling to large
application spaces and several hardware configurations. SVD ad-
dresses this issue by uncovering hidden similarities and filtering out
the ones less likely to have an impact on the application’s behavior.

The size of the offline training set is important as a certain num-
ber of ratings is necessary to satisfy the sparsity constraints of SVD.
However, over that number the accuracy quickly levels off and scales
well with the number of applications thereafter (smaller fractions for
training sets of larger application spaces). For our experiments we
use 20 and 50 offline workloads for a 40 and 1,000-server cluster re-
spectively. Additionally, as more incoming applications are added in
A the density of the matrix increases and the recommendation accu-
racy further improves. Note that online training is performed only
on two SCs. This not only reduces the training overhead compared
to exhaustive search but since training requires dedicated servers, it
also reduces the number of servers necessary for it. In contrast, if we
attempted to classify applications through exhaustive profiling, the
number of profiling runs would equal the number of SCs (e.g., 40).
For a cloud service with high workload arrival rates, this would be
infeasible to support, underlining the importance of keeping training
overheads low, something that Paragon does.

Classification is very fast. On a production-class Xeon server, this
takes 10-30 msec for thousands of applications and tens of SCs. We
can perform classification for one application at a time or for small
groups of incoming applications (batching) if the arrival rate is high
without impacting accuracy or speed.

Performance scores: We populate A with normalized scores that
represent how well an application performs on a server configuration.
We use the following performance metrics based on application type:

(a) Single-threaded workloads: We use instructions committed
per second (IPS) as the initial performance metric. Using execution
time would require running applications to completion in the profil-
ing servers, increasing the training overheads. We have verified that
using IPS leads to similar classification accuracy as using full execu-
tion time. For multi-programmed workloads we use aggregate IPS.

(b) Multithreaded workloads: In the presence of spin-locks or
other similar synchronization schemes that introduce active waiting,
aggregate IPS can be deceiving [1, 39]. We address this by periodi-
cally polling low-overhead performance counters, to detect changes
in the register file (read and writes that would denote regular oper-

3

ations other than spinning) and weight-out of the IPS computation
such execution segments. We have verified that scheduling with this
”useful” IPS leads to similar classification accuracy as using full ex-
ecution time. In general, when workloads are not known, or multiple
workload types are present ”useful” IPS is used to drive the schedul-
ing decisions.

The choice of IPS as the base of performance metrics is influenced
by the fact that our current evaluation focuses on CPU and memory
intensive programs. In future work, we will evaluate additional met-
rics such as IOPS or QPS to cover I/O-bound workloads as well.

Validation: We evaluate the accuracy of heterogeneity classification
on a 40-server cluster with 10 SCs (see Section 4 for configuration
details). We use a set of single-threaded (SPEC CPU2006), multi-
threaded (PARSEC, SPLASH-2, BioParallel, Minebench, SPECjbb)
and multi-programmed workloads (350 mixes of 4 SPEC CPU2006
applications [33]). The offline training set includes 20 applications
selected randomly from all workload types. The recommendation
system achieves 20% performance improvement for multithreaded
and 38% for multi-programmed workloads on average, while some
applications have a 2x performance difference. Table 1 summarizes
key statistics on the classification quality. Our classifier correctly
identifies the best SC for 83% of workloads and an SC within 5% of
optimal for 90%. The predicted ranking of SCs is exactly correct for
60% and almost correct (single reordering) for 65% of workloads. In
almost all cases 50% of SCs are ranked correctly by the classification
scheme. Finally, it is important to note that the accuracy does not de-
pend on the two SCs selected for training. The training SC matched
the top performing configuration only for 20% of workloads.

We also validate the analytical methods. We compare performance
predicted by the recommendation system to performance obtained
through experimentation. The deviation is less than 3.8% on average.

2.3 Classification for Interference
Overview: There are two types of interference we are interested in:
interference that an application can tolerate from pre-existing load on
a server and interference the application will cause on that load. We
detect interference due to contention on shared resources and assign
a score to the sensitivity of an application to a type of interference. To
derive sensitivity scores we develop several microbenchmarks, each
stressing a specific shared resource with tunable intensity. We run an
application concurrently with a microbenchmark and progressively
tune up its intensity until the application violates its QoS, which is set
at 95% of the performance achieved in isolation. Applications with
high tolerance to interference (e.g., sensitivity score over 60%) are
easier to co-schedule than applications with low tolerance (low sen-
sitivity score). Similarly, we detect the sensitivity of a microbench-
mark to the interference the application causes by tuning up its in-
tensity and recording when the performance of the microbenchmark
degrades by 5% compared to its performance in isolation. In this
case, high sensitivity scores, e.g., over 60% correspond to applica-
tions that cause a lot of interference in the specific shared resource.

Identifying sources of interference (SoI): Co-scheduled applica-
tions may contend on a large number of shared resources. We iden-
tified ten such sources of interference (SoI) and designed a tunable
microbenchmark for each one. SoIs span resources such as memory
(bandwidth and capacity), cache hierarchy (L1/L2/L3 and TLBs) and
network and storage bandwidth.

Collaborative filtering for interference: We classify applications
for interference tolerated and caused, using twice the process de-
scribed in Sec. 2.1. The two utility matrices have applications as
rows and SoIs as columns. The elements of the matrices are the sen-
sitivity scores of an application to the corresponding microbench-
mark (sensitivity to tolerated and caused interference respectively).

Metric Percentage (%)
Avg sensitivity error across all SoIs 5.3%
Avg error for sensitivities < 30% 7.1%
Avg error for sensitivities < 60% 5.6%
Avg error for sensitivities > 60% 3.4%
Apps with < 5% error ST: 65% MT: 58%
Apps with < 10% error ST: 81% MT: 63%
Apps with < 20% error ST: 90% MT: 89%
SoI with highest error

for ST: L1 i-cache 15.8%
for MT: LLC cap 7.8%

Frequency L1 i-cache used as offline SoI 14.6%
Frequency LLC cap used as offline SoI 11.5%
SoI with lowest error

for ST: network bw 1.8%
for MT: storage bw 0.9%

Table 2: Validation metrics for interference classification.

Similarly to classification for heterogeneity, we profile a few appli-
cations offline against all SoIs and insert them as dense rows in the
utility matrices. In the online mode, each new application is profiled
against two randomly chosen microbenchmarks for one minute and
its sensitivity scores are added in a new row in each of the matri-
ces. Then, we use SVD and PQ reconstruction to derive the missing
entries and the confidence in each similarity concept. This process
performs accurate and fast application classification and provides in-
formation to the scheduler on which applications should be assigned
to the same server (see Sec. 3.2).

Validation: We evaluated the accuracy of interference classifica-
tion using the single-threaded and multithreaded workloads and the
same systems as for the heterogeneity classification. Table 2 summa-
rizes some key statistics on the classification quality. Our classifier,
achieves an average error of 5.3% in estimating both tolerated and
caused interference across all SoIs. For high values of sensitivity, i.e.,
applications that tolerate and cause a lot of interference, the error is
even lower (3.4%), while for most applications (both single-threaded
and multithreaded) the errors are lower than 5%. The SoIs with the
highest errors are the L1 instruction cache for single-threaded work-
loads and the LLC capacity (L2 or L3) for multithreaded workloads.
The high errors are not a weakness of the classification, since both
resources are profiled adequately, but rather of the difficulty to con-
sistently characterize contention in certain shared resources [25]. On
the other hand, network and storage bandwidth have the lowest er-
rors, primarily due to the fact that we used CPU and memory inten-
sive workloads for this evaluation.

2.4 Putting It All Together
Overall, to classify incoming applications, the recommendation

system requires two short (∼ 1 minute) runs on two SCs for hetero-
geneity and two runs against two microbenchmarks on the best plat-
form in the DC (to decouple machine features from the interference
the application exhibits). Running for 1 minute provides some signal
on the new application without significantly increasing the training
overhead. In Section 3.4 we discuss the issue of workload phases,
i.e., transient effects that do not appear in the 1 minute profiling pe-
riod. Next, we use collaborative filtering to classify the application in
terms of heterogeneity and interference, tolerated and caused. This
cumulatively requires a few msec even when we consider thousands
of applications and several tens of SCs or SoIs. The classification for
heterogeneity and interference are performed in parallel. For the ap-
plications we considered, the overall training and decision overheads
from classification are 1.2% and 0.09% on average.

Using analytical methods for classification has two benefits; first,

4

37

Selection of Colocation Candidates

2x

State: M*16B

Per-server state

(~64B)

Per-app state

(~64B)

Step 2: Server Selection

App

arrival

Scheduling
1 3

1 5
2 3

3 5
2 3

3 4

2 4

5 4

U’ ∑’ V’

1 3

1 5
2 3
3 5

2 3
3 4

2 4

5 4

1 5

5 5 5 1
1 2 5 4

3 5 5 3
4 2

1

5 3
5

3

5
1 3 2

4 4 2
1 5 5 1

Classification for heterogeneity (SVD+PQ)

Classification for interference (SVD+PQ)

State: ((SCs+2)*N*4B)

State: (2*(SoIs+2)*N*4B)

Step 1: Application Classification

U ∑ V

1 3

1 5
2 3

3 5
2 3

3 4

2 4

5 4

U’ ∑’ V’

1 3

1 5
2 3
3 5

2 3
3 4

2 4

5 4

1 5

5 5 5 1
1 2 5 4

3 5 5 3
4 2

1

5 3
5

3

5
1 3 2

4 4 2
1 5 5 1

U ∑ V

Heterogeneity

scores

Interference

scores

S

S

DC servers

S

S

S

S

S

S

S

Figure 2: The components of Paragon and the state maintained by each. Overall, the scheduler requires marginal state overhead that
scales well (logarithmically or linearly) with the number of applications and servers.

we have strong analytical guarantees on the quality of the infor-
mation used for scheduling, instead of relying mainly on empirical
observations. The analytical framework provides low and tight er-
ror bounds on the accuracy of classification, statistical guarantees on
the quality of colocation candidates and detailed characterization of
system behavior. Moreover, the scheduler design is workload inde-
pendent, which means that the analytical or statistical properties the
scheme provides hold for any workload. Second, these methods are
computationally efficient, scale well with the number of applications
and SCs, do not introduce significant training and decision overheads
and enable exact complexity evaluation.

3. PARAGON

3.1 Overview
Once an incoming application is classified with respect to hetero-

geneity and interference, Paragon schedules it on one of the available
servers. The scheduler attempts to assign each workload to the server
of the best SC and colocate it with applications so that interference is
minimized for workloads running on the same server. The scheduler
is online and greedy so we cannot make holistic claims about opti-
mality. Nevertheless, the fact that we start with highly accurate clas-
sification helps achieve very efficient schedules. The interference in-
formation allows Paragon to pack applications on a subset of servers
without significant performance loss1. The heterogeneity informa-
tion allows Paragon to assign to each SC only applications that will
benefit from its characteristics. Both these properties lead to faster
execution, hence resources are freed as soon as possible, making it
easier to schedule future applications (more unloaded servers) and
perform power management (more idling servers that can be placed
in low-power modes).

Fig. 2 presents an overview of Paragon and its components. The
scheduler maintains per-application and per-server state. Per-applicati-
on state includes information for the heterogeneity and interference
classification. For a DC with 10 SCs and 10 sources of interference
(SoI), we store 64B per application. The per-server state records the
IDs of applications running on a server and the cumulative sensi-
tivity to interference (roughly 64B per server). The per-server state
needs to be updated as applications are scheduled and, later on, com-
plete. Paragon also needs some storage for the intermediate and final
utility matrices and temporary storage for ranking possible candi-
date servers for an incoming application. Overall, state overheads
are marginal and scale logarithmically or linearly with the number of
applications (N) and servers (M). In our experiments with thousands
of applications and servers, a single server could handle all process-

1Packing applications with minimal interference should be a prop-
erty exhibited by any optimal schedule.

ing and storage requirements of scheduling2.
We present two methods for selecting candidate servers; a fast,

greedy algorithm that searches for the optimal candidate and a statis-
tical scheme of constant runtime that provides strong guarantees on
the quality of candidates as a function of examined servers.

3.2 Greedy Server Selection
In examining candidates, the scheduler considers two factors: first,

which assignments minimize negative interference between the new
application and existing load and second, which servers have the best
SC for this workload. Decisions are made in this order; first identi-
fying servers that do not violate QoS and then selecting the best SC
between them. This is based on the observation that interference typ-
ically leads to higher performance loss than suboptimal SCs.

The greedy scheduler strives to minimize interference, while also
increasing server utilization. The scheduler searches for servers whose
load can tolerate the interference caused by the new workload and
vice versa, the new workload can tolerate the interference caused
by the server load. Specifically it evaluates two metrics, D1 =
tserver − cnewapp and D2 = tnewapp − cserver , where t is the sen-
sitivity score for tolerated and c for caused interference for a specific
SoI. The cumulative sensitivity of a server to caused interference is
the sum of sensitivities of individual applications running on it, while
the sensitivity to tolerated interference is the minimum of these val-
ues. The optimal candidate is a server for which D1 and D2 are ex-
actly zero for all SoIs. This implies that there is no negative impact
from interference between new and existing applications and that the
server resources are perfectly utilized. In practice, a good selection
is one for which D1 and D2 are bounded by a positive and small ε
for all SoIs. Large, positive values for D1 and D2 indicate subopti-
mal resource utilization. Candidates with negative D1 and/or D2 are
particularly poor and should be avoided, since they imply violation
of QoS guarantees.

We examine candidate servers for an application in the following
way. The process is explained for interference tolerated by the server
and caused by the new workload (D1) and is exactly the same forD2.
Given the classification of an application, we start from the resource
that is most difficult to satisfy (highest sensitivity score to caused
interference). We query the server state and select the server set for
which D1 is non-negative for this SoI. Next, we examine the second
SoI in order of decreasing sensitivity scores, filtering out any servers
for which D1 is negative. The process continues until all SoIs have
been examined. Then, we take the intersection of candidate server
sets for D1 and D2. We now consider heterogeneity. From the set
of candidates we select servers that correspond to the best SC for
the new workload and from their subset we select the server with
min(||D1 +D2||L1).
2Additional scheduling servers can be used for fault-tolerance.

5

As we filter out servers, it is possible that at some point the set of
candidate servers becomes empty. This implies that there is no single
server for whichD1 andD2 are non-negative for some SoI. Although
in practice this is extremely unlikely, it should be supported. We han-
dle this case with backtracking. When no candidates exist the algo-
rithm reverts to the previous SoI and relaxes the QoS constraints until
the candidate set becomes non empty, before it continues. If still no
candidate is found backtracking is extended to more levels. GivenM
servers, the worst-case complexity of the algorithm is O(M ·SoI2),
since theoretically backtracking might extend all the way to the first
SoI. In practice, however, we observe that for a 1000-server system,
89% of applications were scheduled without any backtracking. For
8% of these, backtracking led to negative D1 or D2 for a single SoI
and for 3% for multiple SoIs. Additionally, we bound the runtime of
the greedy search using a timeout mechanism, after which the best
server from the ones already examined is selected in the way previ-
ously described (best SC and minimum interference deviation). In
our experiments timeouts occurred in less than 0.1% of applications
and resulted in a server within 90% of optimal.

3.3 Statistical Framework for Server Selection
The greedy algorithm selects the best server for an application - or

a server close to optimal. However, for very large DCs, e.g., 10-100k
servers, the overhead from examining the server state in the first step
of the search might become high. Additionally, the results depend on
the active workloads and do not allow strict guarantees on the server
quality under any scenario. We now present an alternative, statistical
framework for server selection in very large DCs based on sampling,
which has constant runtime and enables such guarantees.

Instead of examining the entire server state we sample a small
number of servers. We use cryptographic hash functions to introduce
randomness in the server selection. We hash the scores of tolerated
interference of each server using variations of SHA-1 [21] as differ-
ent hash functions (hj) for each SoI to increase entropy. The input to
a hj is a sensitivity score for an SoI and the output a hashed value of
that score. Outputs have the same precision as inputs (14bits). This
process is done once, unless the load of a server changes. When a
new application arrives, we obtain candidate servers by hashing its
sensitivity scores to caused interference for each SoI. For example,
the input to h1 for SoI 1 is a. The output will be a new number, b
which corresponds to server ID u. Re-hashing b obtains additional
IDs of candidate servers. This produces a random subset of the sys-
tem’s servers. After a number of re-hashes the algorithm ranks the
examined servers and selects the best one. Candidates are ranked by
colocation quality, which is a metric of how suitable a given server
is for a new workload. For candidate i, quality is defined as:

Qi = [sign(

SoIs∑
(t− c)i)]|1− ||t− c||1| =

[sign(

SoIs∑
k=1

(t(k)− c(k))i)]|1−
SoIs∑
k=1

|t(k)− c(k)|i|

t is the original, unhashed sensitivity to tolerated interference for a
server and c the original sensitivity to caused interference for the
new workload. The sign in Qi reflects whether a server preserves
(positive) or violates QoS (negative). The L1 norm of (t − c) re-
flects how closely the server follows the application’s requirements
and is normalized to its maximum value, 10, which happens when
for all SoIs t = 100% and c = 0. High and positive Qi values
reflect better candidates, as the deviation between t and c is small
for all SoIs. Poor candidates have small Qi or even negative when
they violate QoS in one or more SoIs. Quality is normalized to the
range [0, 1]. For example, for unnormalized qualities in the range
[−1.2, 0.8] and a candidate with Q = −1.0, the normalized quality

0.0 0.2 0.4 0.6 0.8 1.0
Colocation quality

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

0.0 0.2 0.4 0.6 0.8 1.0
Colocation quality

10-10
10-9
10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1
100

Uniformity Assum. R=16
Experimental R=16

Uniformity Assum. R=64
Experimental R=64

Uniformity Assum. R=128
Experimental R=128

Q
=

0.
6,

 s
te

ps
=

43

Q
=

0.
7,

 s
te

ps
=

18

Q
=

0.
9,

 s
te

ps
=

87

Figure 3: Colocation quality distribution (F (x) = xR, where
R = 16, 64 and 128). Fig. 3b shows the comparison between the
greedy algorithm and the statistical scheme for three colocation
candidates of Q = 0.6, 0.7 and 0.9.

will be: (−1.0+|min|)
|max|+|min| = 0.2/2 = 0.1.

We now make an assumption on the distribution of quality values,
which we verify in practice. Because of the way candidate servers
are selected and the independence between initial workloads, Qi’s
approximate a uniform distribution, for problems of many servers
(e.g., more than 1k) and applications. Figure 3a shows the CDF
of measured quality for 16, 64 and 128 candidates and the corre-
sponding uniform distributions (F (x) = xR, where R the number
of candidates examined) in a system with 1,000 servers. In all cases,
the assumption of uniformity holds in practice with small deviations.
When we exceed 128 candidates (1/8 of the DC) the distribution
starts deviating from uniform. We have observed that for even larger
systems, e.g., a 5,000-server Windows Azure cluster, uniform distri-
butions extend to larger numbers of candidates (up to 512) as well.
The probability of a candidate having quality a is Pr(a) = aR. For
example, for 128 candidates there is a 10−6 probability that no can-
didate will have quality over 0.9.

We now compare the statistical scheme with the greedy algorithm
(Figure 3b). While the latter finds a server with quality Q after a
random number of steps, the statistical scheme provides strong guar-
antees on the number of candidates required for the same quality. For
example, for a candidate with Q = 0.9, the greedy algorithm needs
87 steps, but cannot provide ad hoc guarantees on the quality of the
result, while the statistical scheme guarantees that for the same re-
quirements, with 64 candidates, there is a 10−3 chance that no server
has Q ≥ 0.9. The guarantees become stricter as the distribution gets
skewed towards 1 (more candidates). Therefore, although the statis-
tical scheme cannot guarantee optimality, it shows that examining a
small number of servers provides strict guarantees on the obtained
quality and makes scheduling efficiency workload independent.

In our 1,000-server experiments, the overhead of the greedy algo-
rithm is marginal (less than 0.1% in most cases), while the statistical
scheme induces 0.5-2% overheads due to the computation required
for hashing. Because at this scale the greedy algorithm is faster, all
results in this work are obtained using greedy search. However, for
problems of larger scale the statistical scheme can be more efficient.

3.4 Discussion
Workload phases: Application classification in Paragon is performed
once for each new workload, using the information from its 1 minute
profiling. It is possible that some applications will go through vari-
ous phases that are not captured during profiling. Hence, the sched-
ule will be suboptimal. We detect such workloads by monitoring the
performance scores (e.g., IPS) during their execution. If the moni-
tored performance deviates significantly and for long periods of time
from the performance predicted by the classification engine, the ap-
plication may have changed behavior. Upon detection we can do one
of the following. First, we can avoid scheduling a large number of

6

Server Type GHz/sockets/cores/ L1(KB)/LLC(MB)/mem(GB) #
Xeon L5609 1.87 2 8 32/32 12 24 DDR3 1
Xeon X5650 2.67 2 12 32/32 12 24 DDR3 2
Xeon X5670 2.93 2 12 32/32 12 48 DDR3 2
Xeon L5640 2.27 2 12 32/32 12 48 DDR3 1

Xeon MP 3.16 4 4 16/16 1 8 DDR2 5
Xeon E5345 2.33 1 4 32/32 8 32 FB-DIMM 8
Xeon E5335 2.00 1 4 32/32 8 16 FB-DIMM 8
Opteron 240 1.80 2 2 64/64 2 4 DDR2 7

Atom 330 1.60 1 2 32/24 1 4 DDR2 5
Atom D510 1.66 1 2 32/24 1 8 DDR2 1

Table 3: Main characteristics of the servers of the local cluster.
The total core count is 178 for 40 servers of 10 different SCs.

other workloads on the same server as the interference information
for this workload is likely incorrect. Second, if there is a migration
mechanism available (process or VM migration), we can clone the
workload, repeat the classification from its current execution point
and evaluate whether re-scheduling to another server is beneficial.
Note that migration can involve significant overheads if the applica-
tion operates on significant amounts of state. Re-classification and
migration were not necessary for the workloads studied in this paper.

Suboptimal scheduling: A second concern apart from application
phases is suboptimal scheduling, either due to the selection algo-
rithm assigning applications to servers in a per-workload fashion, or
due to pathological behavior in application arrival patterns. Subopti-
mal scheduling can be detected exactly as the problem of workload
phases and can potentially be resolved by re-scheduling several ac-
tive applications in the system. The results in the next section show
that suboptimal scheduling occurs but not often enough to justify the
overheads of re-scheduling.

Network and storage contention: Although the sources of inter-
ference (SoI) discussed previously include contention in the network
and storage subsystems, the workloads we have studied so far do not
saturate these shared resources, i.e., sensitivity to tolerated interfer-
ence is in most cases very high. We plan to extend the application
space to workloads that are more network and storage I/O-bound to
evaluate the quality of the scheduling decisions in those cases as well.

Workload dependencies: Finally, Paragon does not currently con-
sider dependencies between applications, e.g., a multi-tier service,
such as search or webmail, where tiers communicate and share data.
As long as these applications can be decoupled to individual in-
stances, Paragon is suitable for their scheduling. However, Paragon,
in its current form does not optimize for shared data placement, or
for minimizing network traffic, which might be beneficial for certain
large-scale applications. There is related work on this topic [19] and
we will consider how it interacts with Paragon in future work.

4. METHODOLOGY
Server systems: We evaluated Paragon on a small local cluster
and three major cloud providers. Our local cluster includes servers
of ten different configurations shown in Table 3. We also show
how many servers of each type we use. Note that these configura-
tions range from high-end Xeon systems to low-power Atom-based
boards. There is a wide range of core counts, clock frequencies and
memory capacities and speeds present in the cluster.

For the cloud-based clusters we used exclusive (reserved) server
instances, i.e., no other users had access to these servers. We verified
that no external scheduling decisions or actions such as auto-scaling
or workload migration are performed during the course of the exper-

iments. We used 1,000 servers on Amazon EC2 [12] with 14 dif-
ferent SCs, ranging from small, low-power, single-core machines to
high-end, quad-socket, multi-core servers with hundreds of GBs of
memory. All 1,000 machines are private, i.e., there is no interference
in the experiments from external workloads. We also conducted ex-
periments with 500 servers on Windows Azure [40] with 8 different
SCs and 100 servers on Google Compute Engine [16] with 4 SCs
(small, medium, large, x-large). The results on Azure and GCE are
similar to those presented for the local cluster and EC2.

Schedulers: We compared Paragon to three alternative schedulers.
First, a heterogeneity-oblivious scheme that uses the interference clas-
sification to assign applications to servers without visibility in their
SCs. Second an interference-oblivious scheme that similarly uses
the heterogeneity classification but has no insight on workload inter-
ference. Finally, we evaluate a random scheduler that is both het-
erogeneity and interference-agnostic, thus it assigns workloads ran-
domly to servers without classification or scheduling overheads. The
overheads for the heterogeneity and interference-oblivious schemes
are the corresponding classification and server selection overheads.

Workloads: We used 29 single-threaded (ST), 22 multithreaded
(MT) and 350 multi-programmed (MP) workloads. We use the full
SPEC CPU2006 suite and workloads from PARSEC [7] (blacksc-
holes, bodytrack, facesim, ferret, fluidanimate, raytrace, swaptions,
canneal), SPLASH-2 [41] (barnes, fft, lu, ocean, radix, water), BioPar-
allel [20] (genenet, svm), Minebench [27](semphy, plsa, kmeans) and
SPECjbb (2-, 4- and 8-warehouse instances). For multiprogrammed
workloads, we use 350 mixes of 4 applications each, based on the
methodology described in [33]. For workload scenarios with more
than 401 applications we replicated these workloads with equal like-
lihood (1/3 ST, 1/3 MT, 1/3 MP) and randomized their interleaving.

Workload scenarios: To explore a wide range of behaviors, we
used the applications listed above to create multiple workload scenar-
ios. Scenarios vary in the number and type of submitted applications,
their inter-arrival time and the existence or not of burstiness.

For the small-scale experiments on the local cluster we examine
four workload scenarios. First, a low load scenario with 178 applica-
tions, selected randomly from the pool of workloads previously de-
scribed, which are submitted with 10 sec inter-arrival times. Second,
a medium load scenario with 178 applications, randomly selected as
before and submitted with inter-arrival times that follow a Gaussian
distribution with µ = 10 sec and σ2 = 1.0. Third, a high load
scenario with 178 applications, where 50 memory-bound workloads
arrive in a burst (less than 0.1 sec inter-arrival times) after the first
64 applications. The other applications are chosen randomly and ar-
rive with 10 sec inter-arrival times. Finally, a scenario, where 178
randomly-chosen applications arrive in the system with 1 sec inter-
vals. Note that the last scenario is an over-subscribed one. After a
few seconds, there are not enough servers or cores in the system to
execute all applications concurrently.

For the large-scale experiments on EC2 we examine three work-
load scenarios; a low load scenario where 2,500 randomly-chosen
applications are submitted with 1 sec intervals, a high load scenario
where 5,000 randomly-chosen applications are submitted with 1 sec
intervals and an oversubscribed scenario where 7,500 workloads are
submitted with 1 sec intervals and an additional 1,000 applications
arrive in burst (less than 0.1 sec intervals) after the first 3,750 work-
loads have been submitted. The load is classified based on its relation
to available resources; low: the required core count is significantly
lower than the available processor resources; high: the required core
count approaches the load the system can support but does not sur-
pass it; and oversubscribed: the required core count often exceeds
the system’s capabilities, i.e., certain machines are oversubscribed.

7

0 20 40 60 80 100 120 140 160
Workloads

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Sp
ee

du
p

ov
er

 A
lo

ne
 o

n
Be

st
 P

la
tfo

rm

Alone on Best Platform
No Heterogeneity (NH)
No Interference (NI)

Random (R)
Paragon (P)

-- QoS

Figure 4: Performance impact from scheduling with Paragon
for medium load, compared to heterogeneity and/or interference-
oblivious schedulers. Application arrival times follow a Gaussian
distribution. Applications are ordered from worst to best.

R NH NI P0

20

40

60

80

100

Ap
pl

ic
at

io
n

Pe
rc

en
ta

ge
 (%

)

No degradation
< 10% degradation

< 20% degradation
> 20% degradation

R NH NI P
0

20

40

60

80

100

Figure 5: Breakdown of decision quality for heterogeneity (left)
and interference (right) for the medium load on the local clus-
ter. Applications are divided based on performance degradation
induced by the decisions made by each of the schedulers.

Alone on Best Platform No Heterogeneity (NH) No Interference (NI) Random (R) Paragon (P)

0 20 40 60 80 100 120 140 160
Workloads

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Sp
ee

du
p

ov
er

 A
lo

ne
 o

n
Be

st
 P

la
tf.

Low load

0 20 40 60 80 100 120 140 160
Workloads

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Sp
ee

du
p

ov
er

 A
lo

ne
 o

n
Be

st
 P

la
tf.

High load (Memory-bound)

0 20 40 60 80 100 120 140 160
Workloads

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Sp
ee

du
p

ov
er

 A
lo

ne
 o

n
Be

st
 P

la
tf.

Oversubscribed

Figure 6: Performance comparison between the four schedulers for three workload scenarios: low, high with bursts of memory-bound
applications and oversubscribed.

5. EVALUATION
5.1 Comparison of Schedulers: Small Scale
QoS guarantees: Figure 4 summarizes the performance results across
the 178 workloads on the 40-server cluster for the medium load sce-
nario where application arrivals follow a Gaussian distribution. Ap-
plications are ordered in the x-axis from worst to best-performing
workload. The y-axis shows the performance (execution time) nor-
malized to the performance of an application when it is running in
the best platform in isolation (without interference). Each line corre-
sponds to the performance achieved with a different scheduler. Over-
all, Paragon (P) outperforms the other schedulers, in terms for the
number of workloads it preserves QoS for (95% of optimal perfor-
mance) and the minimization of performance degradation when QoS
requirements cannot be met. 64% of workloads maintain their QoS
with Paragon, while the heterogeneity-oblivious (NH), interference-
oblivious (NI) and random (R) schedulers provide similar guarantees
only for 25%, 18% and 5% of applications respectively. Even more,
for the case of the random scheduler some applications failed to com-
plete due to memory exhaustion on the server. Similarly, while the
performance degradation with Paragon is smooth (90% of workloads
have less than 10% degradation), the other three schedulers dramat-
ically degrade the performance of most applications in almost linear
fashion with the number of workloads. For this scenario, the hetero-
geneity and interference-oblivious schedulers perform almost identi-
cally, although ignoring interference degrades performance slightly
more. This is due to workloads that arrive at the peak of the Gaus-
sian distribution, when the cluster’s resources are heavily utilized.
For the same workloads, Paragon limits performance degradation to
less than 10% in most cases. Also the figure shows that few work-

loads experience speedups compared to their execution in isolation.
This is a result of cache effects or instruction prefetching between
similar co-scheduled workloads. We expect positive interference to
be less prevalent for a more diverse application space.
Scheduling decision quality: Figure 5 explains why Paragon achieves
better performance. Each bar represents a percentage of applications
based on the performance degradation they experience due to the
quality of decisions of each of the four schedulers in terms of plat-
form selection (left) and impact from interference. Blue bars reflect
good and red bars bad scheduling decisions. In terms of platform de-
cisions the random scheduler (R) maps applications to servers with
no heterogeneity considerations, thus it significantly degrades per-
formance for most applications. The heterogeneity-oblivious (NH)
scheduler assigns many workloads to suboptimal SCs, although fewer
than R, as it often steers workloads to high-end SCs that tend to tol-
erate more interference. However, as these servers become saturated,
applications that would benefit from them are scheduled subopti-
mally and NH ends up making poor quality assignments afterwards.
On the other hand, the schedulers that account for heterogeneity ex-
plicitly (interference-oblivious (NI) and Paragon (P)) have much bet-
ter decision quality. NI induces no degradation to 40% of workloads
and less than 10% for an additional 35%. The reason why NI does
not behave better in terms of platform selection is that it has no in-
put on interference, therefore it assigns most workloads to the best
SCs. As these machines become saturated, destructive interference
increases and performance degrades, although, unlike NH, which se-
lects a random SC next, NI selects the SC that is ranked second for
a workload. Finally, Paragon outperforms the other schedulers and
assigns 80% of applications to their optimal SC.

The right part in Figure 5 shows decision quality with respect to

8

0

50

100

150

200

250

Co
re

 C
ou

nt

Required
Used

Time (s)
 5000 10000 15000 20000 25000 0

5

10

15

20

25

30

35

40

Se
rv

er
s

0
10
20
30
40
50
60
70
80
90
100

Se
rv

er
 U

til
iz

at
io

n
(%

)

Time (s)
 5000 10000 15000 20000 25000

(a) Paragon

0

50

100

150

200

250

Co
re

 C
ou

nt

Required
Used

Time (s)
 5000 10000 15000 20000 25000 0

5

10

15

20

25

30

35

40

Se
rv

er
s

0
10
20
30
40
50
60
70
80
90
100

Se
rv

er
 U

til
iz

at
io

n
(%

)

Time (s)
 5000 10000 15000 20000 25000

(b) No Interference

0

50

100

150

200

250

Co
re

 C
ou

nt

Required
Used

Time (s)
 5000 10000 15000 20000 25000

(c) Random

Figure 7: Comparison of activity and utilization between Paragon, the interference-oblivious and the random scheduler. Plots show
the required and allocated core count at each moment. We also show heat maps of server utilization over time for Paragon and the
interference-oblivious scheme.

R

NH

NI
 P

R

NH

NI
 P

R

NH

NI
 P

R

NH

NI
 P

R

NH

NI
 P

R

NH

NI
 P

R

NH

NI
 P

R

NH

NI
 P

R

NH

NI
 P

R

NH

NI
 P

R

NH

NI
 P

R

NH

NI
 P

R

NH

NI
 P

R

NH

NI
 P

R

NH

NI
 P
 0.0

0.5

1.0

1.5

2.0

ExecTime
Training
Classification
Greedy

Ex
ec

Ti
m

e
+

 O
ve

rh
ea

ds

//
//
//

perlbench gcc mcf leslie-3d gobmk soplex povray calculix blkscholes bodytrack fldanimate canneal genenet svm specjbb-8

Figure 8: Execution time breakdown for selected single-threaded and multithreaded applications.

interference. R behaves the worst for similar reasons, while NI is
slightly better than R since it assigns more applications to high-end
SCs, that are more likely to tolerate interference. NH outperforms
NI as expected, since NI ignores interference altogether. Paragon as-
signs 82% of applications to servers that induce no negative interfer-
ence. Considering both graphs establishes why Paragon significantly
outperforms the other schedulers, as it has better decision quality
both in terms of heterogeneity and interference.
Other workload scenarios: Figure 6 compares Paragon to the three
schedulers for the other three scenarios; low load, high load (with
bursts of memory-bound workloads) and oversubscribed. For low
load, performance degradation is small for all schedulers in most
cases, although R degrades performance by 46% on average. Since
the cluster can easily accommodate the load of most workloads, clas-
sifying incoming applications has a smaller performance impact. Nev-
ertheless, Paragon still outperforms the other three schedulers and
provides 99% of optimal performance on average. Moreover, Paragon
makes more efficient use of resources during low loads.

For the high load scenario, performance degrades for all sched-
ulers as applications that contend on the memory subsystem arrive in
bursts. In this case, NH and NI are almost identical, except for work-
loads that experience severe performance degradation, while Paragon
maintains performance within 0.95 of optimal. Although more appli-
cations now violate their QoS, the scheduler constrains the degrada-
tion better than the other schemes. Finally, for the oversubscribed
scenario, Paragon guarantees QoS for the largest fraction of work-
loads (68%) and induces smaller performance degradation compared
to the other schedulers (0.92 of optimal). In this case, accounting for
interference is much more critical than accounting for heterogeneity
as the system’s resources are fully utilized.
Resource allocation: Ideally, the scheduler should closely follow
the application resource requirements (cores, cache capacity, mem-
ory bandwidth, etc.) and provide them with the minimum number of
servers. This improves performance (applications execute as fast as
possible without interference) and reduces overprovisioning (number
of servers used, periods for which they are active). The latter par-
ticularly extends to the DC operator, as it reduces both capital and
operational expenses. A smaller number of servers needs to be pur-
chased to support a certain load (capital savings). During low load,

many servers can be turned off to save energy (operational savings).
Figure 7a shows how Paragon follows the resource requirements

for the medium load scenario shown in Figure 4. The green line
shows the required core count of active applications at each moment
in time and the blue line the allocated core count by Paragon. Be-
cause the scheduler tracks application behavior both in terms of het-
erogeneity and interference it is able to follow their requirements
with minimal deviation (less than 3.5%), excluding periods when
the system is oversubscribed and the required cores exceed the to-
tal number of cores in the system. In comparison, NI (Figure 7b) and
similarly for NH, either overprovisions or oversubscribes servers, re-
sulting in increased execution time both per-application and for the
overall scenario. Finally, Figure 7c shows the resource allocation for
the random scheduler. There is significant deviation, since the sched-
uler ignores both heterogeneity and interference. All cores are used
but in a suboptimal manner. Hence, execution times are increased
for individual workloads and the overall scenario. Total execution
time increases by 28%, but more importantly per-application time
degrades, which is harmful both for users and DC operators.
Server utilization: In Figure 7 we also plot heat maps of the server
utilization over time for Paragon and the interference-oblivious sched-
uler. Server utilization is defined as average CPU utilization across
the cores of a server. For Paragon, utilization is high in the middle of
the scenario, when many applications are active and returns to zero
when the scenario finishes. This implies good resource usage and is
possible without degrading performance due to interference. On the
other hand, NI keeps server utilization high in some servers and un-
derutilizes others, while violating per-application QoS and extend-
ing the scenario’s execution time. This is undesirable both for the
user who gets lower performance and for the DC operator, since the
high utilization in certain servers does not translate in faster execu-
tion time, adhering scalability to servicing more workloads.
Scheduling overheads: Finally, we evaluate the total scheduling
overheads for the various schemes. These include the overheads of
offline training, classification and server selection using the greedy
algorithm. Figure 8 shows the execution time breakdown for selected
single-threaded and multithreaded applications. These applications
are representative of workloads submitted throughout the execution
of the medium load scenario. All bars are normalized to the execu-

9

Alone on Best Platform No Heterogeneity (NH) No Interference (NI) Random (R) Paragon (P)

0 500 1000 1500 2000 2500
Workloads

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Sp
ee

du
p

ov
er

 A
lo

ne
 o

n
Be

st
 P

la
tfo

rm

Low load

0 1000 2000 3000 4000 5000
Workloads

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Sp
ee

du
p

ov
er

 A
lo

ne
 o

n
Be

st
 P

la
tfo

rm

High load

0 1000 2000 3000 4000 5000 6000 7000 8000
Workloads

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Sp
ee

du
p

ov
er

 A
lo

ne
 o

n
Be

st
 P

la
tfo

rm

Oversubscribed

Figure 9: Performance comparison between the four schedulers, for three workload scenarios on 1,000 EC2 servers.

R NH NI P R NH NI P R NH NI P0

20

40

60

80

100

Ap
pl

ic
at

io
n

Pe
rc

en
ta

ge
 (%

)

No degradation < 10% degradation < 20% > 20%

R NH NI P

R NH NI P R NH NI P0

20

40

60

80

100

Ap
pl

ic
at

io
n

Pe
rc

en
ta

ge
 (%

)

Low load High load Oversubscribed Low load High load Oversubscribed

Figure 10: Breakdown of decision quality in terms of hetero-
geneity (left) and interference for the three EC2 scenarios.

tion time of the application in isolation in the best SC. Training and
classification for heterogeneity and interference are performed in par-
allel so there is a single bar for each for every workload. There is no
bar for the random scheduler for mcf, since it was one of the bench-
marks that did not terminate successfully. Paragon achieves lower
execution times for the majority of applications and close to opti-
mal. The overheads of the recommendation system are low; 1.2% for
training and 0.09% for classification. The overheads of the greedy
algorithm are less than 0.1% in most cases with the exceptions of
soplex and genenet that required extensive backtracking which was
handled with a timeout. Overall, Paragon performs accurate classi-
fication and efficient scheduling within 1 minute of the application’s
arrival, which is marginal for most workloads.

5.2 Comparison of Schedulers: Large scale
Performance impact: Figure 9 shows the performance for the three
workload scenarios on the 1,000-server EC2 cluster. Similar to the
results on the local cluster, the low load scenario, in general, does
not create significant performance challenges. Nevertheless, Paragon
outperforms the other three schemes, it maintains QoS for 91% of
workloads and achieves on average 0.96 of the performance of a
workload running in isolation in the best SC. When moving to the
case of high load, the difference between schedulers becomes more
obvious. While the heterogeneity and interference-oblivious sche-
mes degrade performance by an average of 22% and 34% and violate
QoS for 96% and 97% of workload respectively, Paragon degrades
performance only by 4% and guarantees QoS for 61% of workloads.
The random scheduler degrades performance by 48% on average,
while some applications do not terminate (crash). The differences in
performance are larger for workloads submitted when the system is

heavily loaded and becomes oversubscribed. Although, we currently
do not support admission control (servers are overloaded during over-
subscription periods instead of queuing applications until resources
are available), Paragon bounds performance degradation (only 0.6%
of workloads degrade more than 20%), since it co-schedules work-
loads that minimize destructive interference. We plan to incorporate
admission control in the scheduler in future work.

Finally, for the oversubscribed case, NH, NI and R dramatically
degrade performance for most workloads, while the number of appli-
cations that do not terminate successfully increases to 10.4%. Parag-
on, on the other hand, provides strict QoS guarantees for 52% of
workloads, while the other schedulers provide similar guarantees
only for 5%, 1% and 0.09% of workloads respectively. Addition-
ally, Paragon maintains performance degradation moderate (no cliffs
in performance such as for NH in applications [1-1000]) and limits
degradation to less than 10% for an additional 33% of applications.
Decision quality: Figure 10 shows a breakdown of the decision qual-
ity of the different schedulers for heterogeneity (left) and interference
across the three experiments. R induces more than 20% performance
degradation to most applications, both in terms of heterogeneity and
interference. NH has low decision quality in terms of platform se-
lection, while NI causes performance degradation by colocating un-
suitable applications. The errors increase as we move to scenarios
of higher load. Paragon decides optimally for 65% of applications
for heterogeneity and 75% for interference on average, significantly
higher than the other schedulers. It also constrains decisions that
lead to larger than 20% degradation due to interference to less than
8% of workloads. The results are consistent with the findings for the
small-scale experiments.
Resource allocation: Figure 11 shows why this deviation exists.
We omit the graph for low load where deviations are small and show
the high and oversubscribed scenarios. The yellow line represents
the required core count based on the applications running at a snap-
shot of the system, while the other four lines show the allocated core
count by each of the schedulers. Since Paragon optimizes for in-
creased utilization within QoS constraints, it follows the application
requirements closely. It only deviates when the required core count
exceeds the resources available in the system. NH has mediocre ac-
curacy, while NI and R either significantly overprovision the number
of allocated cores, or oversubscribe certain servers. There are two
important points in these graphs: first, as the load increases the differ-
ence in execution time significantly exceeds the optimal one, which
Paragon approximates with minimal deviation. Second, for higher
loads, the errors in core allocation increase dramatically for the other
three schedulers, while for Paragon the average deviation remains

10

Required NH NI R Paragon

0

1000

2000

3000

4000

5000

6000

7000

Co
re

 C
ou

nt

High load

Time (s)
 6000 12000 18000 24000 30000 0

1000

2000

3000

4000

5000

6000

7000

Co
re

 C
ou

nt

Oversubscribed load

Time (s)
 10000 20000 30000 40000 50000

Figure 11: Comparison of required and performed core allo-
cation between Paragon and the other three schedulers for the
three workload scenarios on EC2. The total number of cores in
the system is 4960.

constant, excluding the part where the system is oversubscribed.

Windows Azure & Google Compute Engine: We validate our re-
sults on a 500-server Azure and a 100-server Compute Engine (GCE)
cluster. We run a scenario with 2,500 and 500 workloads respec-
tively. Due to space reasons we omit the performance figures for
these experiments, however, in both cases the results are consistent
with what was noted for EC2. In Azure, Paragon achieves 94.3% of
the performance in isolation and maintains QoS for 61% of work-
loads, while the other three schedulers provide the same guarantees
for 1%, 2% and 0.7% of workloads. Additionally, this was the only
time where NI outperformed NH, most likely due to the wide varia-
tion between SCs which increases the importance of accounting for
heterogeneity. In the GCE cluster, which has only 4 SCs, workloads
exhibit mediocre benefits from heterogeneity-aware scheduling (7%
over random), while the majority of gains comes from accounting
for interference. Overall, Paragon achieves 96.8% of optimal perfor-
mance and NH 90%. The consistency between experiments, despite
the different cluster configurations and underlying hardware, shows
the robustness of the analytical methods that drive Paragon.

6. RELATED WORK
We discuss work relevant to Paragon in the areas of DC schedul-

ing, VM management and workload rightsizing. We also present
related work from scheduling for heterogeneous multi-core chips.
Datacenter scheduling: Recent work on DC scheduling has high-
lighted the importance of platform heterogeneity and workload inter-
ference. Mars et al. [24, 25] showed that the performance of Google
workloads can vary by up to 40% due to heterogeneity even when
considering only two SCs and up to 2x due to interference even when
considering only two co-located applications. In [24] they present
an offline scheme that used combinatorial optimization to select the
proper SC for each workload. In [25] they present an offline, two-
step method to characterize the sensitivity of workloads to memory
pressure and the stress each application exercises to the memory sub-
system. Govindan et al. [17] also present a scheme to quantify
the effects of cache interference between consolidated workloads,
although they require access to physical memory addresses. Finally,
Nathuji et al. [29] present a control-based resource allocation scheme
that mitigates the effects of cache, memory and hardware prefetch-
ing interference of co-scheduled workloads. In Paragon, we extend
the concepts of heterogeneity and interference-aware DC scheduling
in several ways. We provide an online, highly-accurate and low-
overhead methodology that classifies applications for both hetero-
geneity and interference across multiple resources. We also show
that our classification engine allows for efficient, online scheduling
without using computationally intensive techniques which require

exhaustive search between colocation candidates.
VM management: VM management systems such as vSphere [38],
XenServer [43] or the VM platforms on EC2 [12] and Windows
Azure [40] can schedule diverse workloads submitted by a large num-
ber of users on the available servers. In general, these platforms ac-
count for application resource requirements which they learn over
time by monitoring workload execution. Paragon can complement
such systems by making efficient scheduling decisions based on het-
erogeneity and interference and detecting when an application should
be considered for migration (re-scheduling).
Resource management and rightsizing: There has been signifi-
cant work on resource allocation in virtualized and non-virtualized
large-scale DCs, including Mesos [19], Rightscale [32], resource
containers [2], Dejavu [36] and the work by Chase et al. [9]. Mesos
performs resource allocation between distributed computing frame-
works like Hadoop or Spark [19]. Rightscale automatically scales
out 3-tier applications to react to changes in the load in Amazon’s
cloud service [32]. Dejavu serves a similar goal by identifying a
few workload classes and based on them, reuses previous resource
allocations to minimize reallocation overheads [36]. Zhu et al. [44]
present a resource management scheme for virtualized DCs that pre-
serves SLAs and Gmach et al. [15] a resource allocation scheme for
DC applications that relies on the ability to predict their behavior a
priori. In general, Paragon is complementary to resource allocation
and rightsizing systems. Once such a system determines the amount
of resources needed by an application (e.g., number of servers, mem-
ory capacity, etc.), Paragon can classify and schedule it on the proper
hardware platform in a way that minimizes interference. Currently,
Paragon focuses on online scheduling of previously unknown work-
loads. We will consider how to integrate Paragon with a rightsizing
system for scheduling long running, 3-tier services in future work.
Scheduling for heterogeneous multi-core chips: Finally, schedul-
ing in heterogeneous CMPs shares some concepts and challenges
with scheduling in heterogeneous DCs, therefore some of the ideas
in Paragon can be applied in heterogeneous CMP scheduling as well.
Fedorova et al. [13] discuss OS level scheduling for heterogeneous
multi-cores as having the following three objectives: optimal perfor-
mance, core assignment balance and response time fairness. Shele-
pov et al. [34] present a scheduler that exhibits some of these fea-
tures and is simple and scalable, while Craeynest et al. [10] use per-
formance statistics to estimate which workload-to-core mapping is
likely to provide the best performance. DC scheduling also has sim-
ilar requirements as applications should observe their QoS, resource
allocation should follow application requirements closely and fair-
ness between co-scheduled workloads should be preserved. Given
the increasing number of cores per chip and co-scheduled tasks, tech-
niques such as those used for the classification engine of Paragon can
be applicable when deciding how to schedule applications to hetero-
geneous cores as well.

7. CONCLUSIONS
We have presented Paragon, a scalable scheduler for DCs that

is both heterogeneity and interference-aware. Paragon is derived
from validated analytical methods, such as collaborative filtering to
quickly and accurately classify incoming applications with respect
to platform heterogeneity and workload interference. Classification
uses minimal information about the new application and relies mostly
on information from previously scheduled applications. The output
of classification is used by a greedy scheduler to assign workloads to
servers in a manner that maximizes application performance and op-
timizes resource usage. We have evaluated Paragon with both small
and large-scale systems. Even for very demanding scenarios, where
heterogeneity and interference-agnostic schedulers degrade perfor-

11

mance for up to 99.9% of workloads, Paragon maintains QoS guaran-
tees for 52% of the applications and bounds degradation to less than
10% for an additional 33% out of 8500 applications on a 1,000-server
cluster. Paragon preserves QoS guarantees while improving server
utilization, hence it benefits both the DC operator, who achieves per-
fect resource use and the user, who gets the best performance. In
future work we will evaluate Paragon for a wider application space
(long-running and I/O-bound workloads and workloads with phases)
and consider how to couple its capabilities with VM management
and rightsizing systems for large-scale datacenters.

8. REFERENCES
[1] A. Alameldeen, D. Wood. ”IPC Considered Harmful for

Multiprocessor Workloads”. In IEEE Micro, July/Aug. 2006.
[2] G. Banga, P. Druschel and J. C. Mogul. ”Resource containers:

a new facility for resource management in server systems”. In
Proc. of OSDI ’99, CA, 1999.

[3] L. Barroso. "Warehouse-Scale Computing: Entering the
Teenage Decade". ISCA Keynote, SJ, June 2011.

[4] L. A. Barroso, U. Holzle. "The Datacenter as a Computer".
Synthesis Series on Computer Architecture, May 2009.

[5] L. A. Barroso and U. Holzle. "The Case for Energy-
Proportional Computing". Computer, 40(12):33–37, 2007.

[6] R. M. Bell. Y. Koren, C. Volinsky. "The BellKor 2008 Solution
to the Netflix Prize". Technical report, AT&T Labs, Oct 2007.

[7] C. Bienia, S. Kumar, et al. ”The PARSEC benchmark suite:
Characterization and architectural implications”. In Proc. of
PACT, 2008.

[8] B.Calder, J. Wang, A. Ogus, et al. ”Windows Azure Storage:
A Highly Available Cloud Storage Service with Strong
Consistency”. In Proc. of SOSP’11, Portugal, 2011.

[9] J. S. Chase, D. C. Anderson, P. N. Thakar, A. M. Vahdat, and
R. P. Doyle. "Managing Energy and Server Resources in
Hosting Centers". In SIGOPS, 35(5):103–116, 2001.

[10] K. Craeynest, A. Jaleel, L. Eeckhout, P. Narvaez, J. Emer.
”Scheduling Heterogeneous Multi-Cores through Performance
Impact Estimation (PIE)”. In Proc. of ISCA, OR, 2012.

[11] J. Dean and S. Ghemawat. ”MapReduce: Simplified Data
Processing on Large Clusters”. In Proc. of OSDI, SF, 2004.

[12] Amazon Elastic Compute Cloud-EC2.
http://aws.amazon.com/ec2/

[13] A. Fedorova, D. Vengerov, D. Doucette. ”Operating System on
Heterogeneous Core Systems”. In Proc. of OSHMA, 2007.

[14] S. Ghemawat, H. Gobioff, and S.-T Leung . ”The Google File
System”. In Proc. of SOSP, NY, 2003.

[15] D. Gmach, J. Rolia, L. Cherkasova, A. Kemper. ”Workload
Analysis and Demand Prediction of Enterprise Data Center
Applications”. In Proc. of IISWC, 2007.

[16] Google Compute Engine. http://cloud.google.com/
products/compute-engine.html

[17] S. Govindan, J. Liu, et al. ”Cuanta: Quantifying effects of
shared on-chip resource interference for consolidated virtual
machines. In Proc. of SOCC ’11, Portugal, 2011.

[18] J.R. Hamilton. ”Cost of Power in Large-Scale Data Centers”.
http://perspectives.mvdirona.com

[19] B. Hindman, A. Konwinski, et al. ”Mesos: A Platform for
Fine-Grained Resource Sharing in the Data Center”. In Proc.
of NSDI, March 2011.

[20] A. Jaleel, M. Mattina, B. Jacob. ”Last Level Cache (LLC)
Performance of Data Mining Workloads On a CMP - A Case

Study of Parallel Bioinformatics Workloads”. In Proc. of 12th

HPCA, TX, 2006.
[21] J. Katz and Y. Lindell. ”Introduction to Modern

Cryptography”. Chapman & Hall/CRC Press, 2007.
[22] C. Kozyrakis, A. Kansal, S. Sankar, K. Vaid. "Server

Engineering Insights for Large-Scale Online Services". In
IEEE Micro, vol.30, no.4, July 2010.

[23] J. Leverich, C. Kozyrakis. "On the Energy (In)Efficiency of
Hadoop Clusters". In Proc. of the Workshop on Power Aware
Computing and Systems (HotPower), MT, October 2009.

[24] J. Mars, L. Tang and R. Hundt. "Heterogeneity in
”Homogeneous” Warehouse-Scale Computers: A Performance
Opportunity". In IEEE CAL, July-December 2011.

[25] J. Mars, L. Tang, et al. ”Bubble-Up: Increasing Utilization in
Modern Warehouse Scale Computers via Sensible
Co-locations”. In Proc. of MICRO-44, Brazil, December 2011

[26] D. Meisner, C. M Sadler, L. A. Barroso, W.-D. Weber, T. F.
Wenisch. "Power Management of On-line Data-Intensive
Services". In Proc. of ISCA, SJ, CA, June 2011.

[27] R. Narayanan, B. Ozisikyilmaz, et al. ”MineBench: A Bench-
mark Suite for DataMining Workloads”. In Proc. of IISWC,
CA, 2006.

[28] R. Nathuji, C. Isci, and E. Gorbatov. "Exploiting platform
heterogeneity for power efficient data centers". In Proc. of
ICAC’07, FL, 2007.

[29] R. Nathuji, A. Kansal, A. Ghaffarkhah. ”Q-Clouds: Managing
Performance Interference Effects for QoS-Aware Clouds”. In
Proc. of EuroSys 2010, France, 2010.

[30] Rackspace. http://www.rackspace.com/
[31] A. Rajaraman and J. Ullman. ”Textbook on Mining of Massive

Datasets”, 2011.
[32] Amazon EC2: Rightscale. https://aws.amazon.com/

solution-providers/isv/rightscale
[33] D. Sanchez, C. Kozyrakis. ”Vantage: Scalable and Efficient

Fine-Grain Cache Partitioning”. In Proc. of ISCA, SJ, 2011.
[34] D. Shelepov, J. Saez, et al. ”HASS: A Scheduler for

Heterogeneous Multicore Systems”. In OSP, vol. 43, 2009.
[35] J. Sun, Y. Xie, H. Zhang, C. Faloutsos. ”Less is More:

Compact Matrix Decomposition for Large Sparse Graphs”. In
Proc. of SDM, 2007.

[36] N. Vasic, D. Novakovic, S. Miucin, D. Kostic, R. Bianchini.
”DejaVu: Accelerating Resource Allocation in Virtualized
Environments”. In Proc. of ASPLOS’12, London, UK, 2012.

[37] vMotion
TM

. "Migrate VMs with Zero Downtime".
http://www.vmware.com/products/vmotion

[38] VMWare vSphere.
http://www.vmware.com/products/vsphere/

[39] T. Wenisch, R. Wunderlich, et al. ”SimFlex: Statistical
Sampling of Computer System Simulation”. In IEEE MICRO,
vol. 26, no. 4, Jul./Aug. 2006.

[40] Windows Azure. http://www.windowsazure.com/
[41] S. Woo, M. Ohara, et al. ”The SPLASH-2 Programs:

Characterization and Methodological Considerations”. In
Proc. of the 22nd ISCA, 1995.

[42] Xen Hypervisor 4.0. http://www.xen.org/
[43] XenServer. http://www.citrix.com/English/ps2/

products/product.asp?contentID=683148
[44] X. Zhu, D. Young, et al. ”1000 Islands: An Integrated

Approach to Resource Management for Vurtualized
Datacenters”. In Journal of Cluster Computing, vol. 12, 2009.

12

http://aws.amazon.com/ec2/
http://cloud.google.com/products/compute-engine.html
http://cloud.google.com/products/compute-engine.html
http://perspectives.mvdirona.com
http://www.rackspace.com/
https://aws.amazon.com/solution-providers/isv/rightscale
https://aws.amazon.com/solution-providers/isv/rightscale
http://www.vmware.com/products/vmotion
http://www.vmware.com/products/vsphere/
http://www.windowsazure.com/
http://www.xen.org/
http://www.citrix.com/English/ps2/products/product.asp?contentID=683148
http://www.citrix.com/English/ps2/products/product.asp?contentID=683148

	Introduction
	Fast & Accurate Classification
	Collaborative Filtering Background
	Classification for Heterogeneity
	Classification for Interference
	Putting It All Together

	Paragon
	Overview
	Greedy Server Selection
	Statistical Framework for Server Selection
	Discussion

	Methodology
	Evaluation
	Comparison of Schedulers: Small Scale
	Comparison of Schedulers: Large scale

	Related Work
	Conclusions
	References

