
iBench: Quantifying Interference in

Datacenter Applications

Christina Delimitrou and Christos Kozyrakis

Stanford University

IISWC – September 23th 2013

2

Executive Summary

 Problem: Increasing utilization causes interference between co-scheduled apps

 Managing/Reducing interference critical to preserve QoS

 Difficult to quantify can appear in many shared resources

 Relevant both in datacenters and traditional CMPs

 Previous work:

 Interference characterization: BubbleUp, Cuanta, etc. cache/memory only

 Long-term modeling: ECHO, load prediction, etc. training takes time, does not

capture all resources

 iBench is an open-source benchmark suite that:

 Helps quantify the interference caused and tolerated by a workload

 Captures many different shared resources (CPU, cache, memory, net, storage, etc.)

 Fast: Quantifying interference sensitivity takes a few msec-sec

 Applicable in several DC and CMP studies (scheduling, provisioning, etc.)

3

Outline

 Motivation

 iBench Workloads

 Validation

 Use Cases

4

Motivation

 Interference is the penalty of resource efficiency

 Co-scheduled workloads contend in shared resources

 Interference can span the core, cache/memory, net, storage

Loss

5

Motivation

 Interference is the penalty of resource efficiency1

 Co-scheduled workloads contend in shared resources

 Interference can span the core, cache/memory, net, storage

1 C. Delimitrou, C. Kozyrakis. “Paragon: QoS-Aware Scheduling for Heterogeneous Datacenters”. In ASPLOS 2013.

Gain

6

Motivation

 Exhaustive characterization of interference sensitivity against all

possible co-scheduled workloads infeasible

7

Motivation

 Instead profile against a set of carefully-designed benchmarks

 Common reference point for all applications

 Requirements for interference benchmark suite:

 Consistent behavior predictable resource pressure

 Tunable pressure in the corresponding resource

 Span multiple shared resources (one per benchmark)

 Not-overlapping behavior across benchmarks

8

Outline

 Motivation

 iBench Workloads

 Validation

 Use Cases

9

iBench Overview

 iBench consists of 15 benchmarks

 Each targets a different system resource

 First design principle: benchmark intensity is a tunable

parameter

 Second design principle: benchmark impact increases almost

proportionately with intensity

 Third design principle: each benchmark only (mostly) stresses

its target resource (no overlapping effects)

10

iBench Workloads

 Memory capacity/bandwidth [1-2]

 Cache:

 L1 i-cache/d-cache [3-4]

 L2 capacity/bandwidth [3’-4’]

 LLC capacity/bandwidth [5-6]

 CPU:

 Integer [7]

 Floating Point [8]

 Prefetchers [9]

 TLBs [10]

 Vector [11]

 Interconnection network [12]

 Network bandwidth [13]

 Storage capacity/bandwidth [14-15]

11

Memory Capacity

 Progressively increase memory footprint (low memory bandwidth usage)

 Random (or strided) access pattern (using a low-overhead random generator

function)

 Uses single static assignment (SSA) to increase ILP in memory accesses

 Fraction of time in idle state depends on intensity levels decreases as

intensity increases

// for intensity level x

while (coverage < x%) {

 // SSA: to increase ILP

 access[0] += data[r] << 1;

 access[1] += data[r] << 1;

 ...

 access[30] += data[r] << 1;

 access[31] += data[r] << 1;

 // idle for tx = f(x)

 wait(tx);

}

12

Memory Bandwidth

 Progressively increases used memory bandwidth (low memory capacity usage)

 Serial (streaming) memory access pattern

 Accesses happen in a small fraction of the address space (> LLC)

 Fraction of time in idle state depends on intensity levels decreases as

intensity increases

// for intensity level x

for (int cnt = 0; cnt < access_cnt; cnt++) {

 access[cnt] = data[cnt]*data[cnt+4];

 // idle for tx = f(x)

 wait(tx);

}

13

Processor benchmarks

 CPU (Int/FP/vector):

 Progressively increase CPU utilization launch instructions at

increasing rates

 For integer, floating point or vector (of applicable) operations

 Caches:

 L1 i/d-cache: sweep through increasing fractions of the L1 capacity

 L2/L3 capacity: random accesses that occupy increasing fractions of the

capacity of the cache (adapt to specific structure, number of ways, etc. to

guarantee proportionality of benchmark effect with intensity)

 L2/L3 bandwidth: streaming accesses that require increasing fractions of

the cache bandwidth

14

I/O benchmarks

 Network bandwidth:

 Only relevant for the characterization of workloads with network activity

(e.g., MapReduce, memcached)

 Launches network requests of increasing sizes and at increasing rates until

saturating the link

 The fanout to receiving hosts is a tunable parameter

 Storage bandwidth:

 Streaming/serial disk accesses across the system’s hard drives (only cover

subsets of the address space to limit capacity usage)

 Accesses increase as the intensity of the benchmark increases until

reaching the sustained disk bandwidth of the system

15

Outline

 Motivation

 iBench Workloads

 Validation

 Use Cases

16

Validation

1. Individual iBench workloads behavior: create

progressively more pressure in a resource

2. Impact of iBench workloads to other

applications: cause progressively higher

performance degradation

3. Impact of iBench workloads on each other:

the pressure of different workloads should

not overlap

App App

17

Validation: Individual benchmarks

 Increasing intensity of each benchmark proportionately increasing

impact in corresponding resource

Idle Server Server

R
e
so

ur
ce

U
ti
li
za

ti
o
n

Time

R
e
so

ur
ce

U
ti
li
za

ti
o
n

Time

18

Validation: Individual benchmarks

 Increasing intensity of each benchmark proportionately increasing

impact in corresponding resource

19

Validation: Impact on Performance

 Inject a benchmark in an active workload tune up intensity record

increasing degradation in performance

Server running

app A

Server running A

& iBench

P
e
rf

o
rm

a
n
ce

 A

Time P
e
rf

o
rm

a
n
ce

 A

Time

A A

20

Validation: Impact on Performance

 mcf from SPECCPU2006 (memory intensive) + LLC capacity

 Performance degrades as intensity of LLC capacity benchmark

increases

21

Validation: Impact on Performance

 memcached (memory + network intensive) + network bandwidth

 QPS drops as intensity of network bw benchmark increases

22

Validation: Cross-benchmark Impact

 Co-schedule two iBench workloads on the same machine tune up

intensity minimal impact on each other

 A

P
e
rf

o
rm

a
n
ce

 A

Time Pe
rf

o
rm

a
nc

e
 A

Time

Idle Server

B

Server A B

Pe
rf

o
rm

a
nc

e
 B

Time P
e
rf

o
rm

a
n
ce

 B

Time

23

Validation: Cross-benchmark impact

 Co-schedule the memory capacity and memory bandwidth benchmarks

24

Outline

 Motivation

 iBench Workloads

 Validation

 Use Cases

25

Use Cases

 Interference-aware datacenter scheduling

 Datacenter server provisioning

 Resource-efficient application design

 Interference-aware heterogeneous CMP scheduling

26

Use Cases

 Interference-aware datacenter scheduling

 Datacenter server provisioning

 Resource-efficient application design

 Interference-aware heterogeneous CMP scheduling

27

Interference-aware DC Scheduling

 Cloud provider scenario:

 Unknown workloads are submitted in the system

 Cluster scheduler should determine which applications can be scheduled on

the same machine

 Scheduling decisions should be:

 Fast minimize scheduling overheads

 QoS-aware minimize cross-application interference

 Resource-efficient co-schedule as many applications as possible to increase

utilization

 Objective: preserve per-application performance & increase

utilization

28

DC Scheduling Steps

1. Applications are admitted to the system

 Profile against iBench workloads

 Determine the contended resources they are sensitive to

2. Scheduler finds the servers that minimize the:

 ||it-ic||L1

3. If multiple, selects the least-loaded one (can add placement,

platform configuration, etc. considerations)

29

Methodology

 Workloads:

 Single-threaded: SPEC CPU2006

 Multi-threaded: PARSEC, SPLASH-2, BioParallel, Minebench

 Multiprogrammed: 4-app mixes of SPEC CPU2006 workloads

 I/O-bound: Hadoop + data mining (Matlab)

 Latency-critical: memcached

 Systems:

 40 servers, 10 server configurations (Xeons, Atoms, etc.)

 Scenarios:

 Cloud provider: 200 applications submitted with 1 sec inter-arrival times

 Hadoop as the primary workload + batch best-effort apps

 Memcached as the primary workload + batch best-effort apps

214 apps

30

Methodology

 Workloads:

 Single-threaded: SPEC CPU2006

 Multi-threaded: PARSEC, SPLASH-2, BioParallel, Minebench

 Multiprogrammed: 4-app mixes of SPEC CPU2006 workloads

 I/O-bound: Hadoop + data mining (Matlab)

 Latency-critical: memcached

 Systems:

 40 servers, 10 server configurations (Xeons, Atoms, etc.)

 Scenarios:

 Cloud provider: 200 applications submitted with 1 sec inter-arrival times

 Hadoop as the primary workload + batch best-effort apps

 Memcached as the primary workload + batch best-effort apps

214 apps

31

Cloud Provider: Performance

 Least-loaded (interference-oblivious scheduler) vs. interference-aware

scheduling with iBench

32

Cloud Provider: Performance

 Least-loaded (interference-oblivious scheduler) vs. interference-aware

scheduling with iBench

 Performance improves by 16% on average (up to 28%).

 60% of apps preserve their QoS – 5% with the least-loaded scheduler

33

Cloud Provider: Utilization

 Utilization improves by 38% compared to least-loaded

 The scenario completes 28% faster higher resource-efficiency

 Individual servers operate at higher utilization without being oversubscribed

34

DC Server Provisioning

 Default server configuration not necessarily optimal for each DC workload

(custom servers, Open Compute, etc.)

 Study the resources each workload stresses & the resources it is sensitive to

using iBench provision accordingly the machines that service that workload

 Offline characterization, but can also apply online to capture changes in

application behavior

35

DC Server Provisioning

 memcached instance:

 1000 clients

 QoS target 40,000 QPS

 latency constraint of 200usec

 Server: Xeon E5345 (4 cores, 8MB LLC, 16GB RAM), 1GB NIC

 Characterize the interference memcached puts on each resource

captured by iBench

36

DC Server Provisioning

memory bw LLC bw

network bw

Switch to triple memory

 channel & 24GB RAM

Switch to 10 GB NIC

37

DC Server Provisioning

 Memory/cache contention is reduced

 Network contention is reduced

 Core contention starts becoming the bottleneck

38

DC Server Provisioning

 Change in interference profile reflects in performance & resource efficiency

improvement

 IPC increases by 22% on average

 CPU throttling due to memory stalls reduces (utilization decreases by 41%

on average)

39

Other Use Cases

 Resource-efficient application design

 Reduce execution time by 35%

 Reduce memory footprint by 44%

 Interference-aware heterogeneous CMP scheduling

 Map app to specific core minimize interference across co-

scheduled workloads

 Per-app performance improves by 36% compared to random

app-to-core mapping

 Memory stalls decrease by 18%

 Network traffic decreases by 11%

40

Conclusions

 iBench is a set of benchmarks (contentious kernels) that put

pressure on one of many shared resources

 It helps quantify the sensitivity workloads have to interference

 Each benchmark targets a specific resource tunable

intensity

 Applicable to both DC and conventional system studies

41

Thank you

Questions: cdel@stanford.edu

Questions??

42

Thank you

Source code available soon at:

ibench.stanford.edu

Questions??

