Automatic Management of TurboMode

David Lo

Christos Kozyrakis

Stanford University http://mast.stanford.edu

Executive Summary

- TurboMode overclocks cores to exhaust thermal budget
 - O An important performance feature of multi-core x86 servers
- Challenge: TurboMode does not always benefit workloads
 - Naively turning TurboMode on often leads to high energy waste
- Solution: predictive model to manage TurboMode (on/off)
 - O Using machine learning on performance counter data
 - O Eliminates negative cases, boosts EDP and ED²P by 47% and 68%

What is TurboMode (TM)?

- Dynamic overclocking of cores to exhaust thermal budget
 - Matches actual power consumption to max design TDP
 - O Big performance gains: up to 60% frequency boost
 - Found on all modern x86 multi-cores

- TurboMode control
 - O Black-box HW control decides when and how much to overclock
 - SW has limited control: can only turn TurboMode on/off

Characterizing TurboMode

- O Evaluate the effects of TM across the board
 - O Efficiency metrics: EDP, ED²P, throughput/W, throughput/\$, ...
 - O Many hardware platforms: Intel/AMD, server/notebook
 - O Many workloads: SpecCPU, SpecPower, websearch, ...

- O Characterization
 - Run with TurboMode on and TM off
 - Compare impact on all of efficiency metrics

4

Efficiency Metrics

- Guidelines
 - We all care about performance <u>and</u> energy consumption
 - Capture both latency and throughput workloads

- Metric recap
 - O EDP: latency & energy
 - O ED2P: latency & energy, more weighted towards latency (think servers)
 - Throughput/W: throughput & energy
 - Throughput/\$: throughput & cost efficiency (think datacenter TCO)

HPCA-20 February 19, 2014 5

Evaluation Hardware

- O Intel Sandy Bridge server [SBServer]: 19% max boost
- O Intel Sandy Bridge mobile [SBMobile]: 44% max boost
- O AMD Interlagos [ILServer]: 59% max boost
- O Intel Ivy Bridge server [IBServer]: 12% max boost
- O Intel Haswell server [Hserver]: 13% max boost

6

Evaluation Workloads

- Representative of multiple domains
- O CPU, memory, and IO workloads

- Single-threaded SpecCPU benchmarks
- O Multi-programmed SpecCPU mixes
- Multi-threaded PARSEC
- Enterprise SPECpower_ssj2008
- O Websearch

>100 configs

Observation: No Optimal On/Off Setting

Observation: TM leads to High Variance on Efficiency

Characterization Analysis

- TurboMode mostly benefits CPU bound workloads
 - O Boost in performance and efficiency from higher frequency
 - O SpecCPU mixes of CPU-intensive workloads, SpecPower, websearch, ...
- TurboMode ineffective when memory/IO bound
 - Interference on memory/IO really aggravates this
 - O Small/no performance gain, high energy waste with higher frequency
 - O SpecCPU mixes of memory-intensive workloads, canneal, streamcluster, ...
- Applications have multiple phases
 - O CPU bound vs. memory/IO bound
 - SpecCPU mixes

TurboMode Control

- Naïve TurboMode control
 - O Always off: miss boost on CPU bound applications
 - Always on: suffer inefficiency on memory-bound applications

- Need dynamic TurboMode control
 - Understands applications running and metric of interest
 - O Predicts optimal setting (on/off), adjust dynamically to phases
 - O No a priori knowledge of applications, no new hardware needed

Autoturbo: Predictive Control for TurboMode

Training the Predictive Model

Raw training data

Single SpecCPU, TurboMode on

Single SpecCPU,
TurboMode off

Single SpecCPU+stream, TurboMode on

Single SpecCPU+stream,
TurboMode off

Feature selection

Model selection

Naïve Bayes

85%

Logistic Regression

81%

Nearest Neighbors

73%

Decision Tree

75%

Model Validation

O Model accuracy: ~90% on cross-validation

- O Best counters: those that indicate memory-bound workload
 - O SBServer/SBMobile: % cycles with outstanding memory requests, ...
 - O ILServer: L2 MPKI, # requests to memory/instruction, ...

- O CPU/thermal intensity counters don't correlate strongly!
 - O E.g., floating-point intensity counters

Autoturbo Evaluation

- Used autoturbo in conjunction with workloads
 - O Evaluation workloads are apps other than single-thread SpecCPU
- O Measure efficiency metrics

- O Compare against
 - O Baseline: TurboMode is always off
 - O Naïve TM: TurboMode is always on
 - O Static oracle: TurboMode on if leads to benefit for the overall run

Autoturbo results

Autoturbo Analysis

- Autoturbo gets best of both worlds
 - O Reduces cases where TurboMode causes efficiency degradation
 - O Keeps cases where TurboMode leads to benefits

- O Autoturbo sometimes disables TM even though it is beneficial
 - O Cause: the interference predictor assumes worst case interference
- O Autoturbo beats the static oracle
 - O Cause: autoturbo can take advantage of dynamism during the run

Conclusions

TurboMode is useful but must be managed dynamically

- O This work: dynamic TurboMode control
 - O Predictive model for memory interference
 - O Dynamic control with no hand-tuning needed
 - O Eliminates efficiency drops, maintains efficiency gains of TurboMode

- O Future work
 - Apply similar approach to manage advanced power settings

Autoturbo Dealing With a Phase Change

