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Bolt: Uncovering and Reducing the Security Vulnerabilities of Shared Clouds

Abstract
Cloud providers routinely schedule multiple applications

per physical host to increase cost efficiency. The resulting
interference in shared resources leads to performance degra-
dation and, more importantly, security vulnerabilities. In-
terference can leak important information ranging from the
placement of a service to confidential data, like private keys.

We present Bolt, a practical system that accurately detects
the type and characteristics of applications sharing a cloud
platform, based on the interference an adversary sees on
shared resources. Bolt leverages practical data mining tech-
niques for detection that operate online and require 2-5 sec-
onds. In a 40-server shared cluster, Bolt correctly detects 81%
out of 108 diverse batch and interactive workloads. Extract-
ing this information enables a wide spectrum of previously-
impractical cloud attacks, including denial of service (DoS),
resource freeing (RFA) and co-residency attacks. For exam-
ple, Bolt can successfully launch difficult to detect, host-based
DoS attacks, with only a fraction of the resources and time
needed by a conventional distributed DoS that cause the tail
latency of the victim to increase by up to 140x. Finally, we
show that, while advanced isolation techniques, such as cache
partitioning, lower detection accuracy, they are insufficient
to eliminate these vulnerabilities. To do so, one must either
disallow core sharing, or only allow it between threads of
the same application, leading to significant inefficiencies and
performance penalties respectively.

1. Introduction
Cloud computing has reached proliferation by offering re-
source flexibility and cost efficiency [1–3]. Cost efficiency is
achieved through multi-tenancy, i.e., by co-scheduling multi-
ple VMs or containers on the same physical host to increase
utilization. However, multi-tenancy leads to interference in
shared resources, such as last level caches, hard drives, or
network switches causing performance unpredictability [4–6].
More importantly, unmanaged contention also leads to se-
curity and privacy vulnerabilities [7]. This has prompted
significant work on side-channel attacks [8, 9], distributed
denial of service attacks (DDoS) [9–11], data leakage exploita-
tions [8, 12], and attacks that pin-point target VMs in a cloud
system [13–16]. Most of these schemes leverage the lack of
strictly enforced resource isolation between co-scheduled in-
stances and the naming conventions cloud frameworks use
for machines to extract confidential information from victim
applications, such as encryption keys.

This work presents Bolt, a practical system that can extract
detailed information about the type and characteristics of appli-
cations sharing resources in a cloud system. Bolt uses online

data mining techniques to quickly determine the amount of
pressure an application puts in each of several shared resources.
We show that this information is sufficient to determine the
framework type (e.g., Hadoop), functionality (e.g., SVM), and
dataset characteristics of a co-scheduled application, as well
as the resources it is most sensitive to. Bolt periodically col-
lects statistics on the resource pressure applications incur and
projects this signal against datasets from previously-seen work-
loads. Since detection repeats periodically, Bolt accounts for
changes in application behavior and can distinguish between
multiple co-residents on the same physical host. We validate
Bolt’s detection accuracy with a controlled experiment in a
40-server cluster using virtualized instances. Out of 108 co-
scheduled victim applications, including batch and real-time
analytics, and latency-critical services like key-value stores
and databases, Bolt identifies 81% of workloads correctly. We
also used Bolt to determine the most commonly-run applica-
tions on Amazon EC2 and the extent to which applications are
colocated. We find a very small number of application classes
that consistently account for most of the compute cycles across
time intervals, days and availability zones.

Obtaining this information enables Bolt to make several
cloud attacks practical and difficult to detect. For example,
we use Bolt to launch host-based DoS attacks that use the
information regarding the victim’s resource sensitivity to in-
ject carefully-crafted contentious programs that degrade the
victim’s performance. In the 40-server cluster, Bolt’s DoS
attack translates to a tail latency increase of up to 140× for
interactive workloads. Unlike traditional DoS attacks that
saturate compute and memory resources, Bolt maintains low
utilization, by only introducing interference in the most critical
resources, making it resilient to common DoS mitigation tech-
niques, such as load-triggered live VM migration. It also does
not require external, costly load generators aimed at the vic-
tim service, that take time to impact performance, and would
trigger DoS detection mechanisms. We have also used Bolt to
launch resource freeing attacks (RFA) that additionally force
the victim to yield its resources to the adversary [17], and VM
co-residency detection attacks that pinpoint where in a large
shared cluster a specific application resides before negatively
impacting its performance [18]. In all cases we show that the
information obtained through data mining is critical to escalate
the impact of the attack, reduce the time and cost it requires,
and to make it difficult to detect.

Finally, we examine to what degree current isolation tech-
niques can alleviate these security vulnerabilities. We analyze
baremetal systems, containers, and virtual machines with tech-
niques like thread pinning, memory bandwidth isolation, and
network and cache partitioning. These are the main isolation
techniques available today, and while they progressively re-
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duce application detection accuracy from 81% to 50%, they
are not sufficient to eliminate these vulnerabilities. We show
that the only method currently available to reduce accuracy
down to 14% is core isolation, where an application is only al-
lowed to share cores with itself to avoid malicious co-residents.
However, since application threads contend for shared on-chip
resources performance degrades by 34% on average. Alter-
natively, if we allocate more cores per application to mitigate
performance unpredictability, we end up with resource under-
utilization and a big reduction in cloud efficiency. We hope
that this study will motivate public cloud providers to intro-
duce stricter isolation solutions in their platforms and systems
architects to develop fine-grain isolation techniques that pro-
vide strong isolation and performance predictability at high
utilization.

2. Related Work

Performance unpredictability is a well-researched problem in
public clouds that stems from network congestion, platform
heterogeneity, resource interference, software bottlenecks and
temporal load variation [19–21, 21–26]. A lot of recent work
has proposed isolation techniques to reduce unpredictability
by eliminating resource interference [27–31]. With Bolt, we
show that unpredictability due to interference also hides se-
curity vulnerabilities, since it enables ad adversary to extract
information about an application’s type and resource charac-
teristics. Below we discuss related work with respect to cloud
vulnerabilities, such as VM placement detection, DDoS, and
side-channel attacks.

VM co-residency detection: Cloud multi-tenancy has moti-
vated a line of work on locating a target VM in a public cloud.
Ristenpart et al. [13] showed that the IP machine naming con-
ventions of cloud providers allowed adversarial users to narrow
down where a victim VM resided in a large-scale cluster. Xu et
al. [32] and Herzberg et al. [16] extended this study, resulting,
in part, in cloud providers changing their naming conven-
tions, reducing the effectiveness of network topology-based
co-residency attacks. Following this evolution Varadarajan et
al. [18] evaluated the susceptibility of three cloud providers
to VM placement attacks, and showed that techniques like
virtual private clouds (VPC) render some of them ineffective.
Xu et al. [15] studied the extent of co-residency threats in
EC2 and the efficiency of their detection using network route
traces. Bates et al. [33] proposed a system where adversar-
ial VMs introduce traffic congestion in host NICs, which is
then detected by remote clients. Similarly, Zhang et al. [14]
designed HomeAlone, a system that detects VM placement
by issuing side-channels in the L2 cache during periods of
low traffic. Finally, Han et al. [34] proposed VM placement
strategies that defend against placement attacks, although they
are not specifically geared towards public clouds. With Bolt,
we show that leveraging simple data mining techniques on the
pressure applications introduce in shared resources increases

the accuracy of VM co-residency detection significantly. Bolt
does not rely on knowing the cloud’s network topology or
host IPs, making it resilient against recent techniques, such as
VPCs.
Performance attacks: Once an adversary locates a target
victim application, it can negatively affect its performance.
Distributed Denial of Service attacks [17, 35–37] in the cloud
have increased in number and impact over the past years. This
has generated a lot of interest in detection and prevention tech-
niques [38, 39]. Gupta et al. [10] outline the characteristics of
cloud facilities that make DDoS attacks likely, and propose
profiling VMs to detect network DDoS attacks. Bakshi et
al. [11] develop a system that detects abnormally high net-
work traffic that could signal an upcoming DDoS attack, while
Crosby et al. [40] and Edge [41] propose a new DoS attack
relying on algorithmic complexity that drives CPU usage up.
Finally, apart from DoS, resource-freeing attacks (RFAs) also
hurt the performance of a victim, while additionally forcing
it to yield its resources to the adversary [17]. While such
systems degrade the victim’s performance, they require sig-
nificant compute and network resources, and they are prone
to defenses such as live VM migration that cloud providers
are introducing to mitigate unpredictability from resource sat-
uration. In contrast, Bolt launches host-based DoS attacks on
the same machine as the victim that leverage the information
on the resources the application is sensitive to, and keep re-
source utilization moderate, therefore not triggering defense
mechanisms.
Side-channel attacks: There are also attacks that attempt to
extract confidential information from co-scheduled applica-
tions, such as private keys [42–45]. Zhang et al. [12] propose
a system that launches side-channel attacks in a virtualized
environment, and cross-tenant side-channel attacks in PaaS
clouds [46]. The system overcomes three main challenges to
extract an ElGamal decryption key: the frequent re-scheduling
of VMs by the hypervisor, the noise in shared resources and
the implications of core migrations. Wu et al. [47] on the other
hand attempt to affect the performance of a victim application,
by launching a covert-channel attack via the memory bus of
a modern x86 processor. On the defense side, Perez-Botero
et al. [48] analyze the vulnerabilities of common hypervisors,
and Wang et al. [9] propose a system that specifically tar-
gets intrusion detection in cloud settings, while Liu et al. [8]
and Varadajaran et al. [49] design scheduler-based defenses
against covert- and side-channel attacks in resources such as
the memory bus. The latter system controls the overlapping
execution of different VMs and injects noise on the mem-
ory bus to prevent an adversary from extracting confidential
information. Bolt does not rely on accurate microarchitec-
tural event measurements through performance counters to
detect application placement, and is therefore not affected by
similar defenses that limit the fidelity of time-keeping and
performance monitoring to thwart information leakage in side-
channel attacks [50].
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Figure 1: Overview of the application detection process. Bolt first measures the pressure co-residents place in shared resources,
and then uses data mining to determine the type and characteristics of co-scheduled applications.

3. Bolt

3.1. Threat Model

Bolt targets IaaS providers that operate public clouds for mu-
tually untrusting users. Multiple VMs can be co-scheduled
on the same server. Each VM has no control over where it is
placed, and no a priori information on other VMs on the same
physical host. For now, we assume that the cloud provider
is neutral with respect to detection by adversarial VMs, i.e.,
it does not assist such attacks or employ additional resource
isolation techniques than what is available by default to hin-
der them. In Section 6 we explore how additional isolation
techniques affect Bolt’s detection accuracy.
Adversarial VM: An adversarial VM has the goal of deter-
mining the nature and characteristics of any applications co-
scheduled on the same physical host, and negatively impacting
their performance. Adversarial VMs start with zero knowledge
of co-scheduled workloads.
Friendly VM: This is a normal VM scheduled on a physical
host that runs one or more applications. Friendly VMs do not
attempt to determine the existence and characteristics of other
co-scheduled VMs. They also do not employ any schemes to
prevent detection, such as memory pattern obfuscation [51].

3.2. Application Detection

Detection relies on inferring workload characteristics from the
contention the adversary experiences in shared resources. For
simplicity, we assume one co-scheduled victim job for now
and generalize in Section 3.3. Figure 1 shows an overview of
the system’s operation.

Bolt instantiates an adversarial VM on the same physical
host as the victim, friendly VM. Bolt uses its VM to run a few
microbenchmarks of tunable intensity that put progressively
more pressure each on a specific shared resource. The mi-
crobenchmarks are drawn from a set that can stress on-chip re-
sources, such as functional units, and the different levels of the
cache hierarchy, and off-chip resources, such as the memory,
network and storage subsystems [52]. Each microbenchmark
progressively increases its intensity until it detects pressure
from the co-scheduled workload, i.e., until the microbench-
mark’s performance is worse than its expected value when
running in isolation. The intensity of the benchmark at that

point captures the pressure the co-scheduled application puts
in shared resource i and is denoted ci, where i ∈ [1,N] and
N = 10 and ci ∈ [0,100]. 1Large values of ci imply high pres-
sure in resource i. For unconstrained resources, e.g., last
level cache, 100% pressure means that the benchmark takes
over the entire resource capacity. For resources constrained
through partitioning mechanisms, e.g., memory capacity in
VMs, 100% corresponds to taking over the entire memory
partition allocated to the VM.

Bolt uses 2-3 microbenchmarks for profiling, requiring ap-
proximately 2-5 seconds in total. Bolt randomly selects one
core and one uncore benchmark to get a more rounded depic-
tion of the co-resident’s resource profile. If the core is not
shared between the adversarial and friendly VMs, Bolt mea-
sures zero pressure in the shared core resource. In this case, it
uses a third microbenchmark for an additional uncore resource
(shared caches, memory, network or storage).

From this sparse signal we want to determine the appli-
cation’s pressure in all other resources, its type and charac-
teristics. Online data mining techniques have recently been
shown to solve similar problems in datacenter management
in a fast and accurate way by finding similarities between
unknown applications and previously-seen workloads [53].
The Quasar cluster manager, for example, proposed the use
of collaborative filtering to find similarities in terms of het-
erogeneity, interference sensitivity, and provisioning. While
collaborative filtering is useful in identifying resource usage
similarities, it has no application-specific information, such
as critical features, and is therefore insufficient to label the
victim workloads and classify their resource profiles.
Practical data mining: Bolt instead feeds the profiling sig-
nal to a hybrid recommender system using feature augmen-
tation [54, 55] that determines the application type and re-
source characteristics of victim workloads. The recommender
combines collaborative filtering and content-based similarity
detection [54, 56]. The former has good scaling properties,
relaxed sparsity constraints and offers conceptual insight on
similarities, while the latter exploits contextual information
for highly accurate resource profile matching.

1The 10 resources are: L1 instruction and L1 data cache, L2 and last level
cache, memory capacity and memory bandwidth, CPU, network bandwidth,
disk capacity and disk bandwidth.
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First, a collaborative filtering system recovers the pressure
the victim application places in non-profiled resources [5, 57].
The system relies on matrix factorization with singular
value decomposition (SVD) [58] and PQ-reconstruction with
stochastic gradient descent (SGD) [59, 60] to find similarities
between the new victim application and previously-seen work-
loads. SVD produces three matrices, U , Σ and V . The singular
values σi in Σ correspond to similarity concepts, such as the
intensity of compute operations or the correlation between
high network and disk traffic. Similarity concepts are ordered
by decreasing magnitude, with large singular values reveal-
ing stronger similarity concepts (higher confidence in work-
load correlation), while smaller values correspond to weaker
similarity concepts and are typically discarded during the di-
mensionality reduction by SVD. Matrix U(m,r) captures the
correlation between each application and similarity concept,
and V(n,r) the correlation between each resource and similarity
concept.

Once we have identified critical similarity concepts and
discarded inconsequential information, we employ a content-
based system that uses weighted Pearson correlation to com-
pute the similarity between the resource profile u j of a new
application j and the applications the system has previously
seen. Weights correspond to the values of the r more critical
similarity concepts 2, and resource profiles to the rows of the
matrix of left singular vectors U . Using traditional Pearson
correlation would discard the application-specific information
that certain resources are more critical for a given workload.
Similarity between applications A and B is given by:

Weighted Pearson(A,B) =
cov(uA,uB;σ)√

cov(uA,uA;σ) ·cov(uB,uB;σ)
(1)

where uA the correlation of application A with each similar-
ity concept σi, cov(uA,uB;σ) = ∑i σi(uAi−m(uA;σ))(uBi−m(uB;σ))

∑i σi
the covariance of A and B under weights σ , and m(uA;σ) =
∑i σi ·uAi

∑i σi
the weighted mean for A. The output of the hybrid rec-

ommender is a distribution of similarity scores of how closely
a victim resembles different previously-seen applications. For
example, a victim may be 65% similar to a memcached work-
load, 18% similar to a Spark job running PageRank, 10%
similar to a Hadoop job running an SVM classifier, and 3% to
a Hadoop job running k-means. The end-to-end latency of the
recommender is 80msec on average. Apart from application
labels, this analysis yields information on the resources the
victim is sensitive to, enabling several practical performance
attacks (Section 5).
System insights from data mining: Before dimensionality
reduction, each similarity concept corresponds to a shared
resource. Different resources convey different amounts of
information about a workload, and thus have different value
to Bolt in terms of detection. The value of each similarity

2We keep the r largest singular values, such that we preserve 90% of the
total energy: ∑

r
i=1 σ2

i = 90%∑
n
i=1 σ2
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Figure 2: We show the correlation between the pressure in
various resources and the probability of a co-scheduled appli-
cation being memcached. For example, workloads with high
LLC pressure and very high L1-i pressure have a high proba-
bility of being memcached.

concept reflects how strongly it captures application similari-
ties. For the controlled experiment of Section 3.4 that involves
batch and latency-critical workloads, the resources with most
value are the L1 i/d and last level caches, followed by compute
intensity and memory bandwidth. While the exact resource
order depends on the application mix, correlating similarity
concepts to resources shows that certain resources are more
prone to leaking information about a workload, and their iso-
lation should be prioritized.

Finally, we show how resource pressure correlates with the
probability that an application is of a specific type. Figure 2
show the probability that an unknown workload is a mem-
cached instance servicing mostly read requests with KB-range
values, as a function of its measured resource pressure (details
on methodology in Section 3.4). We decouple the 10 resources
in 2D plots for clarity. From the heatmaps it becomes clear
that cache activity is a very strong indicator of workload type,
with applications with very high L1-i pressure and high LLC
pressure corresponding to memcached with a high probability.
Disk traffic also conveys a lot of information, with zero disk
usage signaling a memcached workload with high likelihood.
Similar graphs can be created to fingerprint other application
types. The high heat areas around the red regions of each graph
correspond to memcached workloads with different read:write
ratios and value sizes, and other memory-bound workloads
like Spark.

3.3. Challenges

Multiple co-residents: When a single application shares a
host with Bolt, detection is straightforward. However, cloud
operators colocate VMs more aggressively to maximize the
infrastructure’s utility. Disentangling the contention caused
by several applications in shared resources is challenging. By
default Bolt uses two benchmarks - one core and one uncore
- to measure resource pressure. If the recommender system
cannot determine the type of co-scheduled workload based on
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Applications Detection accuracy (%)
Least Load scheduler Quasar scheduler

Aggregate 81% 83%
memcached 76% 78%

Hadoop 85% 89%
Spark 82% 83%

Cassandra 86% 88%
speccpu2006 81% 82%

Table 1: Bolt’s detection accuracy in the controlled experiment
with the least load scheduler and Quasar.

them, either the application type has not been seen before, or
the resource pressure is the result of multiple co-residents. If
at least one of the co-residents shares a core with Bolt, i.e.,
the core benchmark returns non-zero pressure, we profile with
an additional core benchmark and use them to determine the
type of co-scheduled workload. Because hyperthreads are not
shared between multiple active instances, this allows accu-
rately measuring pressure in core resources. The remainder
of the uncore interference is used to determine the other co-
scheduled workloads. This assumes a linear relationship in
resource pressure for memory, network and storage bandwidth
between workloads, which may introduce some inaccuracies
(see Section 3.5).

Finally, there are cases where none of the co-scheduled ap-
plications shares a core with Bolt. In that case, the system must
rely solely on uncore resource pressure to detect applications.
To gain some insight on the variance of resource characteris-
tics across co-residents, Bolt employs a shutter profiling mode,
which involves frequent, brief profiling phases (100-200msec
each) in uncore resources. The goal of this mode is to capture
at least one of the co-scheduled workloads during a low-load
phase, which would reveal the resource usage of only one of
the co-residents. If a significant drop in resource pressure is
measured in uncore resources, these resources drive the recom-
mender system, following each profiling step. This technique
is particularly effective for user-interactive applications that go
through intermittent phases of low load; it is less effective for
services with constant steady-state load, such as long-running
analytics, or logging services. We will consider whether ad-
ditional input signals, such as per-job cache miss rate curves,
can improve detection accuracy for the latter workloads.
Application changes: Datacenter applications are notorious
for going through multiple phases during their execution. On-
line services in particular follow diurnal patterns with high
load during the day and low load in the night [1, 61, 62]. In
addition, an application may not be immediately detected,
especially during its initialization phase, or cloud users may
purchase instances to run an application, and then maintain
the resources to execute other applications, e.g., different an-
alytics, or analytics over different datasets. In these cases,
the output of Bolt’s detection may become obsolete. We ad-
dress this by periodically repeating the profiling and detection
steps for co-scheduled workloads. Each iteration takes 2-5
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Figure 3: Star charts showing the resource profiles of two
Hadoop and one unknown application. The closer the shared
area is to a vertex the higher the resource pressure in the spe-
cific resource.

seconds for profiling and a few milliseconds for the recom-
mender’s analysis. Section 3.4 shows a sensitivity study on
how frequently detection needs to happen.

3.4. Detection Accuracy

We first evaluate Bolt’s detection accuracy in a controlled
environment, where all applications are known. We use a 40-
machine cluster with 8 core (2-way hyperthreaded) Xeon-class
servers, and schedule a total of 108 workloads, including batch
analytics in Hadoop [63] and Spark [64] and latency-critical
services, such as webservers, memcached [65] and Cassan-
dra [66]. For each application type, there are several different
workloads, with respect to algorithms, framework versions,
datasets and input load patterns. Friendly applications are
scheduled using a least-loaded (LL) scheduler that allocates
resources on the machines with the most available compute,
memory and storage resources. All workloads are provisioned
for peak requirements to reduce interference. Even so, in-
terference between co-residents exists, since the scheduler
does not account for the sensitivity applications have to con-
tention. In the end of this section, we evaluate how a sched-
uler that accounts for cross-application interference affects
detection accuracy. The training set consists of 120 diverse
applications including webservers, different analytics algo-
rithms and datasets and different versions of key-value stores
and databases. Increasing the training set size further did not
improve the detection accuracy.
Training vs. testing set: All algorithms, datasets, and input
loads used by applications in the training set are different from
the ones used for testing workloads.

In each server we instantiate an adversarial VM running
Ubuntu 14.04. By default the VM has 4vCPUs (2 physical
cores) to generate enough contention (Figure 8 shows a sen-
sitivity analysis on the VM size). The remainder of each
machine is allocated to at least one or more friendly VMs. The
maximum number of VMs (five in our setting) depends on the
server configurations available. Friendly VMs run on either
Ubuntu 14.04 or Debian 8.0. Adversarial VMs have no a pri-
ori information on the number and type of their co-residents.
Applications are allowed to share a physical core, but must
be on different hyperthreads (vCPUs). While sharing a single
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Figure 4: Detection accuracy as a function of the number
of co-scheduled apps (left) and the applications’ dominant re-
sources (right).

hyperthread is common in private deployments hosting batch
jobs in small containers [67], it is uncommon in public clouds,
where 1 vCPU is the minimum guaranteed size of dedicated
resources for non-idling instances.

Table 1 shows Bolt’s detection accuracy, per application
class, and aggregate. We signal a detection as correct if Bolt
identifies correctly the framework (e.g., Hadoop) or service
(e.g., memcached) the application uses, and the algorithm it
performs, e.g., SVM classifier on Hadoop. We do not currently
examine more detailed characteristics, such as the distribution
of individual query types. Bolt correctly identifies the majority
of jobs, 81%, and for certain application types like databases
and analytics, the accuracy exceeds 85%. Misclassified appli-
cations are typically identified as workloads with the same or
similar critical resources.
Per-application profiles: Note that although in Table 1 we
group applications by programming framework or online ser-
vice, each framework does not correspond to a single resource
profile. Profiles of applications within a framework can vary
greatly depending on functionality, complexity, and dataset
features. Bolt’s recommender system matches resource pro-
files to specific algorithmic classes and dataset features within
each framework. Figure 3 shows an example where two
Hadoop jobs, one running word count on a small dataset, and
one running a recommender system on a very large dataset
exhibit very different resource profiles. While the third appli-
cation is also a Hadoop job it is identified as very similar to
the recommender as opposed to word count.
Number of co-residents: The number of victim applications
affects detection accuracy. Figure 4a shows accuracy as a func-
tion of the number of victims per machine. When the number
of co-residents is less than 2, accuracy exceeds 95%. As the
number increases accuracy drops, since it becomes progres-
sively more difficult to differentiate between the contention
caused by each workload. When there are 5 co-scheduled ap-
plications, accuracy is 67%. Interestingly, accuracy is higher
for 4 than for 3 applications, since with 4 workloads the
probability of sharing a core, and thus getting an accurate
measurement of core pressure is higher. While aggressive
multi-tenancy affects accuracy, large numbers of co-residents
in public clouds are unlikely in practice [68].
Dominant resource: We now examine the correlation be-
tween the resource an application puts the most pressure on,
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Figure 5: PDFs of the iterations required for correct detec-
tion in aggregate (left), and as a function of the number of
co-residents (right).

and Bolt’s ability to correctly detect it (Figure 4). The numbers
on each bar show how many applications have each resource
as dominant. In general, applications that are most easily de-
tected are ones with high instruction cache (L1-i), memory
bandwidth, network bandwidth and disk capacity pressure.
These are workloads that fall in one of the following cate-
gories: latency-critical services with large codebases, such as
webservers, in-memory analytics like Spark, and disk-bound
analytics like Hadoop. Interestingly, L2 activity is a poor indi-
cator of application type, in contrast to L1 and LLC, since it
does not capture a significant change in the working set size
(from 32KB to 256KB for our platforms).
Number of iterations: In this controlled experiment, we stop
the detection process upon correct identification of a workload.
For several applications this requires more than one iterations
of profiling and data mining. Figure 5a shows the fraction
of workloads that were correctly-identified after N iterations.
71% of victims only require a single iteration, while an addi-
tional 15% required a second iteration. A small fraction of
applications needed more than two iterations, while applica-
tions that are not identified correctly until the sixth iteration
did not benefit from additional iterations. The number of ap-
plications per machine also affects the iterations required for
detection (Figure 5b). When a single application is sched-
uled on a machine, one iteration is sufficient for almost all
workloads. As the number of victims per machine increases
additional iterations are needed to disentangle the contention
signals of each co-scheduled job.

Figure 6 shows a case of application detection over several
iterations. The victim is a 4vCPU instance executing different
consecutive applications. Detection occurs every 20 sec by
default (see Figure 8 for a sensitivity study on the frequency
of profiling). After the initial iteration, Bolt detects the appli-
cation as mcf from SPECCPU2006. In the subsequent two
iterations the interference profile of the victim continues to
fit the characteristics of mcf. At time t = 60sec, Bolt detects
that the application profile has changed and now resembles an
SVM classifier running on Mahout (a machine learning library
over Hadoop [63]). Similarly at t = 180sec the application
changes again to a Spark data mining workload. Changes are
typically captured within a few seconds.
Resource pressure: Figure 7 shows the correlation between
the pressure of a victim in a given resource and Bolt’s ability
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Figure 6: Example of workload phase detection by Bolt.

to correctly detect it. We plot detection accuracy for three
core and three uncore resources; the results are similar for
the remaining four. In almost all cases, very low or very high
pressure carry the most value for detection. For disk band-
width, accuracy remains high except for the 20-50% region
which contains many application classes with moderate disk
activity, including analytics in Hadoop, databases and graph
applications. Resource pressure also affects the number of
iterations Bolt needs to correctly identify a workload. For
resources with a lot of value for detection, such as the L1-i
and last level caches, when pressure is moderate several it-
erations are necessary for accuracy to increase. In contrast,
for off-chip resources like network bandwidth this effect is
less pronounced. In general, when moderate pressure hurts
detection accuracy a lot (Figure 7), more iterations are needed
for correct identification.
Scheduler: So far we have used a least loaded scheduler,
which is commonly-used in datacenters [69, 70]. This sched-
uler does not account for resource contention between appli-
cations, leading to suboptimal performance [5, 71–74]. Re-
cent work has shown that if interference is accounted for
at the scheduler level both performance and utilization im-
prove [4, 6, 53]. We now evaluate the impact of such a sched-
uler on Bolt’s detection accuracy. Quasar [53] leverages ma-
chine learning to quickly determine which applications can
be co-scheduled on the same machine without destructive in-
terference. We use Quasar to schedule all victim applications
and then inject Bolt in each physical host for detection.

Table 1 shows Bolt’s accuracy with the least loaded sched-
uler (LL) and Quasar. Interestingly, accuracy increases slight-
ly with Quasar, 2% on average, but in general the impact of the
scheduler is small. There are two reasons for the increase; first,
both LL and Quasar do not share a single hyperthread between
applications, so core pressure measurements remain accurate.
Second, because Quasar only co-schedules applications with
different critical resources, it provides Bolt with a less “noisy”
interference signal for uncore resources, making distinguish-
ing between victim co-residents easier. Therefore reducing
interference in software alone is not sufficient to mitigate such
security threats.
Sensitivity analysis: Finally, we examine how design deci-
sions in Bolt affect detection. Figure 8a shows how accuracy
changes as profiling frequency decreases. For profiling in-
tervals beyond 30 sec accuracy drops rapidly. If profiling
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Figure 7: Detection accuracy as a function of the pressure
victims place in various shared resources.

only occurs every 5 minutes almost half the victims are incor-
rectly identified. Note that if workloads are long-running and
mostly-stable, profiling can be less frequent without such an
impact on accuracy. Figure 8b shows accuracy as a function
of the adversarial VM’s size. We examine sizes offered as
on-demand instances by EC2 [2]. If the adversary has fewer
than 4 vCPUs, its resources are insufficient to create enough
contention to capture the co-residents’ pressure. Accuracy
continues to grow for larger sizes, however, the larger the ad-
versarial instance is the less likely it will be co-scheduled with
other VMs, nullifying the value of Bolt. Finally, Figure 8c
shows accuracy as a function of the number of microbench-
marks used for profiling. A single benchmark is not sufficient
to fingerprint the characteristics of a workload, however, using
more than 3 benchmarks has diminishing returns in accuracy.
Unless otherwise specified, we use 20sec profiling intervals, 4
vCPU adversarial VMs and 2 benchmarks for initial profiling.

3.5. Limitations

While Bolt can accurately detect most frequently-run work-
loads, it has certain limitations. First, when no application
shares a core with the adversary, the system assumes linear
relation between the co-residents’ resource pressure in un-
core resources. While this is true in some cases, it may not
be generally accurate. We will explore alternative ways of
distinguishing multiple co-residents in future work. Second,
the system cannot differentiate between multiple applications
running in a single instance and multiple instances running
one application each. While this does not affect detection,
if an side/covert-channel attack is aimed against a particular
user, this information would increase the leverage of the ad-
versary. Similarly, Bolt cannot currently distinguish between
two copies of the same application sharing a platform at low
load and one copy of the application that runs at higher load.
Finally, Bolt relies on measuring resource interference. When
isolation techniques that eliminate interference are in place
detection accuracy drops (Section 6).

4. EC2 Cartography

We now use Bolt to find the most commonly-run applications
on Amazon EC2 and their resource characteristics.
Disclaimer: Since we do not control externally-submitted
applications, we cannot validate detection accuracy for this
study. We rely on the validation of Section 3.4 where Bolt
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Figure 8: Sensitivity to: (a) profiling frequency, (b) adversarial
VM size, and (c) profiling benchmarks.

correctly identifies similar applications. Nevertheless, there
are reasons that may cause inaccuracies, discussed in 4.3.
Ethical considerations: To abide with the Amazon user
agreement, we only conduct experiments that allow us to
detect the types of applications running on EC2, but we do
not exploit side- or covert-channel attacks against co-resident
workloads. The performance implications of Bolt to victim
applications are evaluated exclusively in a controlled local
environment, and described in Section 5.
Detection setting: We request 430 4 vCPU on-demand in-
stances, and verify that they are not placed on the same phys-
ical machine [18, 49].3 The experiment is performed on a
weekday between 11am and 2pm to record a period of high
load. Resources are obtained from the us-west-2 (Oregon)
region. We use Bolt to determine the existence and profiles of
co-scheduled applications. In 41% of obtained instances the
adversary was the only VM occupying the server, despite only
requiring 4 vCPUs. 4 We continue to obtain instances until
we have 430 adversarial VMs with at least one co-resident (in
total 683 instances were examined).

We repeat the same setting during the night on a weekday,
during the day of the weekend and during the day of a weekday
in a different availability zone (us-east-1). To obtain 430
instances with at least one co-resident instance we had to
request 810, 785, and 613 instances respectively. The training
set is the same as in Section 3.4.

4.1. Application Types

Figure 9a shows the distribution (PDF) of detected application
types. We group applications by framework class or service
platform, e.g., Hadoop or SQL server. Because neighboring
frameworks, such as BashReduce or Disco can have similar
resource profiles to Hadoop, their applications may be mis-
classified as Hadoop workloads. To avoid overestimating the
number of Hadoop jobs running on EC2, we label all such
workloads as Hadoop-like. Note that these jobs experience
the two-phase execution control flow of Hadoop, and exhibit
strong similarities in resource pressure.

Interestingly a very small number of application classes
dominates most of the activity in the examined cluster. As
expected, these primarily include analytics, webservers and

3We use several user accounts to launch the adversarial VMs, to reduce
the probability of adversarial-adversarial VM co-residency.

4It is possible that there are dormant instances on the same machine that
were not servicing an application at the time.

Fraction of servers (%)
1 app 2 apps 3 apps 4 apps

Weekday:Day:Zone1 61% 22% 16% 1%
Weekday:Night:Zone1 51% 23% 22% 4%
Weekend:Day:Zone1 72% 19% 7% 2%
Weekday:Day:Zone2 56% 25% 16% 3%

Table 2: Breakdown of the number of co-scheduled applica-
tions detected by Bolt in the EC2 setting.

databases. These findings are well aligned with the services
EC2 is starting to offer as SaaS [75]. Apart from the main five
application classes, there is a long tail of less common work-
loads, which were encountered less than 20 times across all in-
stances; including an instance running several SPECCPU2006
benchmarks. We also include a grey bar with applications that
were not identified with satisfactory confidence (similarity
over 75%). 5These are applications that have either not been
seen before by Bolt, or have conflicting idiosyncrasies in their
behavior that do not allow them to be classified with high
confidence in any of the known application types. Such “user”
or “item” occurrences are known as grey and black sheep re-
spectively in the recommender system community. They also
include unknown workloads we detected multiple times each,
but cannot label. A more diverse training set could assist with
such applications.

Figures 9(b-d) show similar PDFs for the other three ex-
periments. The top five classes remain consistent across time
intervals, days and regions, although their order changes. For
example, jobs on SQL servers are more common during the
day than in the night, although their absolute difference is
small. More interestingly, the number of application classes
decreases significantly compared to the default scenario, both
for the night and weekend experiments. Similarly the number
of unknown applications drops, indicating that during peri-
ods of low load most applications are easily-identified and
long-running. The difference between Zone 1 and Zone 2 is
marginal, with slightly more classes in Zone 2. In general, we
observe that a large fraction of cloud activity concentrates on a
small number of frameworks which are independent of timing
and the cloud’s location.

4.2. Resource Usage

Cloud utilization: We now examine the degree of multi-
tenancy on EC2. Table 2 shows the number of detected co-
residents across the 430 instances for each experiment. The
majority of hosts have 1-2 co-residents, while a small number
of machines have 3 or more co-scheduled workloads. We
did not find (or detect) servers with more than 4 co-residents.
Co-scheduling is higher during periods of low load (night
and weekend), indicating that VMs are consolidated to fewer
machines to improve their utilization. However, even during
periods of low load the number of co-scheduled applications

5From the validation study if similarity is over 75% the detection is correct
with a very high probability.
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Figure 9: Application types detected on Amazon EC2 for different time intervals, days, and availability zones.

is not large, confirming studies that report very low utilization
on virtualized clouds like EC2 [68].
Resource characteristics: We observe that for more than
50% of instances, the resource pressure in L1 i/d caches, L2
cache and CPU is significantly lower when measured dur-
ing profiling than when inferred by Bolt. This concurs with
the findings of Table 2 that co-scheduling is limited, with co-
residents mostly sharing the memory, network and storage
subsystems, but not specific cores. In contrast, inferred pres-
sure for memory, network and storage bandwidth is very close
to measure pressure. Since memory and disk capacity allo-
cations are enforced in cloud instances, those measurements
return zero pressure. In general, the resources that experience
the highest pressure are the L1 i/d and last level caches, fol-
lowed by compute and memory bandwidth. The remaining
resources rarely come close to saturation, in part due to the
limited amount of co-scheduling [68]. High resource pres-
sure can be detrimental to performance, highlighting the need
for practical and efficient isolation mechanisms that elimi-
nate interference. In Section 6 we evaluate existing isolation
mechanisms, and underline trade-offs between security and
performance (or utilization).

4.3. Cartography Caveats

There are three main effects that may cause applications to be
misclassified. First, neighboring frameworks, such as BashRe-
duce and Hadoop can have similar resource patterns, causing
the former to be misclassified as Hadoop workloads. We
group all such applications under Hadoop-like to avoid over-
estimating workloads from any particular framework. Second,
while our training set is sufficiently diverse for the validation
study of Section 3.4, public clouds host a wider application
spectrum. While Bolt can still determine the resource char-
acteristics of these applications, it cannot assign a label to
them, conservatively adding them to the unknown category.
Third, aggressive multi-tenancy affects Bolt’s detection ac-
curacy. Beyond 5 co-residents detection accuracy drops to
about 60%. In practice, cloud providers do not co-schedule
non-idling instances this aggressively to prevent performance
unpredictability [68]. We adopt the following methodology
to further minimize misclassifications. We use a training set
that includes many popular frameworks and online services,
with a good coverage of resource characteristics. Additionally,
we only consider an application as “detected” if confidence in
detection is very high, above 75% for this experiment, beyond
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Figure 10: Performance degradation for correctly- and
incorrectly-identified applications.

which point detection is almost always correct. Finally, while
the precise application labels may be prone to such inaccura-
cies, determining the resource characteristics of a co-resident
is sufficient to launch a wealth of performance attacks, as
discussed in Section 5.

5. Security Attacks
Bolt makes several attacks in cloud settings practical and
difficult to detect. Below we discuss three possible attacks that
leverage the information obtained through detection.

5.1. Internal Denial of Service Attack

Attack setting: Denial of service attacks hurt the performance
of a victim service by overloading its resources [11, 35, 39].
Specifically, in cloud settings they can be categorized in two
types; external and internal (or host-based) attacks. External
attacks are the most conventional form of DoS [35, 40, 41].
These attacks utilize many external servers to direct excessive
traffic to the online services, flooding their resources, and hurt-
ing their availability. External DoS attacks affect mostly PaaS
and SaaS systems, and include IP spoofing, synchronization
(SYN) flooding, smurf, buffer overflow, land, and teardrop
attacks.

On the other hand, internal DoS attacks affect a victim’s
performance by taking advantage of IaaS and PaaS cloud
multi-tenancy to launch adversarial programs on the same
host as the victim [13, 37, 39, 76]. For example, Ristenpart
et al. [13] show how an adversarial user can leverage the IP
naming conventions of an IaaS cloud to locate a victim VM
and degrade its performance. Cloud providers are starting to
build defenses against such attacks. For example, Amazon
EC2, offers autoscaling that will scale out the number of in-
stances of a service under heavy resource usage. This means
that DoS attacks that simply overload a physical host are weak
when such defenses are in place. Similarly, there is related
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work on mechanisms that detect saturation in resources such
as memory bandwidth and trigger VM migration [77]. We
focus on host-based DoS attacks that are resilient against such
defenses. Specifically, Bolt launches DoS attacks that do not
saturate system resources. Instead, it leverages the information
obtained during detection to construct targeted interference
signals that affect the performance of the specific application
without overloading the host.

Bolt creates a contentious benchmark that puts pressure
in resources the victim application is most sensitive to. The
benchmark is constructed by combining the microbenchmarks
used to measure the resource pressure of the victim. Since
these microbenchmarks are tunable, Bolt configures their in-
tensity to a higher point than their measured pressure ci dur-
ing detection. For example, if a victim is detected as mem-
cached, and its most critical resources are the L1-i cache (81%
pressure) and the LLC (78% pressure), Bolt uses the two
microbenchmarks for L1-i and LLC respectively at a higher
intensity than what memcached can tolerate.
Impact: Figure 10 shows the performance degradation caused
in correctly- (left) and incorrectly-identified applications (ri-
ght) by Bolt. Performance is shown in terms of execution time
for equal amounts of work. On average, correctly-identified
applications degrade by 77% in execution time, and up to
2.2x. Degradation is much more pronounced for interactive
workloads like key-value stores, with tail latency increasing
by 8-140x, a dramatic impact for applications with strict tail
latency SLAs. Incorrectly-identified workloads experience
moderate performance degradation, as Bolt introduces con-
tention in non-critical shared resources.

We now examine the impact of the DoS attack on utiliza-
tion. If interference translates to resource saturation, there is a
high probability that the DoS will be detected by mitigation
mechanisms and the victim migrated to a new machine. The
experimental cluster supports live migration. If CPU utiliza-
tion (sampled every 1 sec) exceeds 70% the victim is migrated
to an unloaded host. Figure 11 compares the tail latency and
CPU utilization with Bolt to that of a naïve DoS that saturates
the CPU through a compute-intensive kernel. We focus on a
single victim VM running memcached. The overhead of migra-
tion (time between initiating migration and latency returning
to normal levels) for this VM is 8 seconds. Performance degra-
dation is similar for both systems until time 80sec, at which
point the victim is migrated to a new host. The reason for mi-
gration is the compute-intensive kernel causing utilization to
exceed 70%. While during migration performance continues
to degrade, once the VM resumes in the new server, latency
returns to nominal levels. In contrast, Bolt keeps utilization
low, and impacts the performance of memcached beyond the
80sec mark.

5.2. Resource Freeing Attack

Attack setting: A resource freeing attack (RFA) has the
goal of modifying the workload of a victim VM in a way
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Figure 11: Latency and utilization with Bolt and a naïve DoS
attack that saturates CPU resources.

that frees up resources for the adversary, improving its per-
formance [17, 78]. The adversarial VM consists of two com-
ponents, a beneficiary and a helper. The beneficiary is the
program whose performance the attacker wants to improve,
and the helper is the program that forces the victim to yield its
resources. The RFA works by adding load in the victim’s criti-
cal resource, causing other resources to free up. For example,
if the victim is a memory-bound Spark job running k-means,
introducing additional traffic in the memory system will re-
sult in Spark stalling in memory, and lessening its pressure in
the other resources, until it can reclaim its required memory
bandwidth. When launched in a public cloud, the victim of an
RFA ends up paying more and achieving worse performance
compared to running in isolation.

We now create a proof of concept RFA for a webserver, a
network-bound Hadoop job and a memory-bound Spark job.
Launching RFAs requires in depth knowledge of the resource
requirements of the victim [17]. Bolt resolves this issue by
leveraging data mining to determine the dominant resource of
each workload. Once determined, the runtime then applies a
target helper program that saturates the critical resource. For
the webserver, this is a CPU-intensive benchmark launching
CGI requests, thus causing the victim to saturate its CPU us-
age, freeing up cache resources, and servicing fewer real user
requests. For the Hadoop job, we use a network-intensive
benchmark similar to iperf, which saturates network band-
width, and frees up CPU and memory resources for the ben-
eficiary. Similarly, for Spark we use a streaming memory
benchmark that slows down k-means and frees network and
compute resources for the adversary. The selection of the ben-
eficiary is of lesser importance; without loss of generality we
select mcf, a CPU- and memory-intensive benchmark from
SPECCPU2006. The same methodology can be used with
other beneficiaries, conditioned to their critical resource not
overlapping with the victim’s.
Impact: Table 3 shows the performance degradation for the
three victim applications, and the improvement in execution
time for the beneficiary. The webserver suffers the most in
terms of queries per second, as the helper’s CGI requests pol-
lute its cache, preventing it from servicing legitimate user re-
quests. Hadoop and Spark experience significant degradations
in execution time, due to network and memory bandwidth
saturation respectively. Execution time for mcf improves
by 16-28%, benefiting from the victim stalling in its critical
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Victim Beneficiary Target
App Perf App Perf Resource

Apache Webserver -64% (QPS) mcf +24% CPU
Hadoop (SVM) -36% (Exec.) mcf +16% Network BW

Spark (k-means) -52% (Exec.) mcf +28% Memory BW

Table 3: Resource freeing attack impact.

resource to improve its cache and CPU usage.

5.3. VM Co-residency Detection

Attack setting: Sections 3.4 and 4 showed that we can deter-
mine the applications sharing a cloud infrastructure. However,
a malicious user is rarely interested in any random service
running on a public cloud. More often, they target a specific
workload, e.g., a competitive e-commerce site. Therefore they
need to pinpoint where a target application resides in a practi-
cal manner. This requires a launch strategy and a mechanism
for co-residency detection [18]. The attack is practical if the
target is located with high confidence, in reasonable time and
with modest resource costs. Bolt enables this attack to be
carried out in a practical way, and remains resilient against co-
residency detection defense mechanisms that cloud providers
have put in place, such as virtual private clouds (VPCs) which
make internal IP addresses private to a single tenant. Once a
target VM is located, the adversary can then launch DoS or
RFAs as previously described. Co-residency detection attacks
rely on leakage of logical information, e.g., IP address, or on
observing the performance impact of a side-channel attack due
to resource contention. Bolt relies on a variation of the latter
approach.

Assume a system of N servers. A target victim user launches
k VMs. The adversary launches n malicious VMs. Instances
are launched simultaneously to avoid malicious-malicious in-
stance co-residency [18]. The probability that at least one
adversarial VM will be co-scheduled with one victim instance
is: P( f ) = 1− (1− k/N)n. The adversary then uses a two-
process detection scheme. The sender is a process that creates
contention that degrades the victim’s performance. The re-
ceiver is the process that detects this degradation, running
either on the same host as the victim (cooperative detection)
or externally (uncooperative detection). We assume an unco-
operative victim, which is the more general case. Bolt works
as the sender and uses its detection strategy to determine the
type of co-residents on each sampled host and determine if one
or more are of the desired type. Assume m VMs of the desired
type have been detected in the sample set. Bolt now needs to
prune down this space to VM(s) from the specific victim. It
launches an external receiver aiming at the victim that uses a
public channel, e.g., HTTP, or key-value protocol, to ping the
victim service. This is the only point of communication with
the victim. At the same time the sender introduces contention
in the resources the victim is most sensitive to. If the sender
and victim are co-residents the receiver’s user requests will
be slower due to contention. Bolt quickly prunes down the

sampled VMs by determining the type of co-residents. In a
large cluster this reduces both the time it takes to pinpoint
a victim, and the cost of the adversary’s resources. It also
increases the confidence in the detection, in the presence of
noise from other co-residents.
Impact: We evaluate co-residency detection on the same
40-node cluster. The victim is a SQL server, instantiating a
single VM. The cluster also hosts 7 other VMs running SQL.
The other running jobs include key-value stores, Hadoop and
Spark analytics. Bolt launches 10 senders simultaneously
on randomly-selected machines (P( f ) = .), and detects 3
VMs running SQL in the sample set. It then introduces mem-
ory interference, while the receiver launches a large number
of SQL queries. While the same set of queries return with
8.16msec mean latency without interference, latency is now
measured at 26.14msec. Therefore we conclude that a ∼ 3×
latency increase shows that one of the co-residents is the vic-
tim SQL server. Detection required 6sec from instantiation to
receiver detection, and 11 adversary VMs.

6. Improving Security through Resource Isola-
tion

Since interference is at the heart of Bolt’s detection methodol-
ogy, isolation mechanisms that attenuate resource contention
should reduce Bolt’s accuracy. We first evaluate to what extent
existing isolation techniques mitigate security vulnerabilities,
and then highlight trade-offs between security and perfor-
mance (or utilization). We use the same experimental setting
as in the controlled experiment of Section 3.4.

We evaluate 4 resource-specific isolation techniques with 3
settings for OS level isolation mechanisms: baremetal, con-
tainerized, and virtualized. The baremetal system does not
employ any OS level isolation. For the containerized setup, we
use Linux containers (lxc), and control the cores for each ap-
plication via cpuset cgroups. Both containers and VMs
constrain memory capacity. Baremetal experiments do not
enforce memory capacity allocations, and the Linux scheduler
is free to float applications across cores.

First, we introduce thread pinning to physical cores, to
constrain interference from scheduling actions, like context
switching. The number of cores an application is allocated
can change dynamically, and is limited by how fast Linux can
migrate tasks, typically in the tens of milliseconds.

For network isolation, we use the outbound network band-
width partitioning capabilities of Linux’s traffic control. Spec-
ifically, we use the qdisc [79] scheduler with hierarchical
token bucket queueing discipline (HTB) to enforce outgress
bandwidth limits. The limits are set to the maximum traf-
fic burst rate for each application to avoid contention (ceil
parameter in HTB interface). Ingress network bandwidth isola-
tion has been extensively studied in previous work [80]; these
approaches can be applied here as well.

For DRAM bandwidth isolation, there is no commercially
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Figure 12: Detection accuracy with isolation techniques.

available partitioning mechanism. To enforce bandwidth isola-
tion we use the following approach: we monitor the DRAM
bandwidth usage of each application in software (through per-
formance counters) [29] and modify the scheduler to only
colocate applications on machines that can accommodate their
aggregate peak memory bandwidth requirements. 6

Finally, for last level cache (LLC) isolation, we use the
Cache Allocation Technology (CAT) available in recent Intel
chips [81]. CAT partitions the LLC in ways, which in a highly-
associative cache enables defining non-overlapping partitions
at the granularity of a few percent of the LLC capacity. Each
co-resident is allocated one partition configured to its current
capacity requirements [82]. Partitions can be resized at run-
time by reprogramming specific low-level registers (MSRs);
changes take effect after a few milliseconds.

We add one isolation mechanism at a time in the three sys-
tem settings (baremetal, containers, VMs). Figure 12 shows
the impact isolation techniques have on the application detec-
tion accuracy of Bolt. The application scenario is the same as
in the controlled experiment of Section 3.4.

As expected, when no isolation is used, baremetal allows
a significantly higher detection accuracy than container- and
VM-based systems; mostly due to the latter constraining core
and memory capacity usage. As a result, introducing thread
pinning benefits baremetal the most, since it reduces con-
tention in cores. It also benefits container- and VM-based
setups to a lesser degree, by eliminating unpredictability intro-
duced by the Linux scheduler (e.g., context switching) [83].
The dominant resource of each application determines which
isolation technique benefits it the most. Thread pinning mostly
benefits workloads bound by on-chip resources, such as L1,
L2 caches and cores. Adding network bandwidth partitioning
lowers detection accuracy for all three settings almost equally.
It primarily benefits network-bound workloads, for which net-
work interference conveys the most information for detection.
Memory bandwidth isolation further reduces accuracy by 10%
on average, benefiting jobs dominated by DRAM traffic. Fi-
nally, cache partitioning has the most dramatic reduction in
accuracy, especially for LLC-bound workloads. We attribute
this to the importance cache pressure has as a detection signal.
The number of co-residents also affects the extent to which
isolation helps. The more co-scheduled applications exist per

6This requires extensive application knowledge, and is used simply to
highlight the benefits of DRAM bandwidth isolation.

machine, the more isolation techniques degrade accuracy, as
they make distinguishing between co-residents harder.

Unfortunately, even with all previous techniques employed
accuracy is still 50%. There are two reasons for this: current
techniques are not fine-grain enough to allow strict and scal-
able isolation, and core resources (L1 i/d, L2 caches, CPU)
are still prone to interference due to contending hyperthreads.
To evaluate the latter hypothesis, we modify the scheduler,
such that hyperthreads of different instances are never sched-
uled on the same physical core, e.g., if an application needs
7vCPUs it will be allocated 4 dedicated physical cores. The
grey bars of Figure 12 show the detection accuracy. Baremetal
instances still allow certain applications to be detected, but
for containerized and virtualized settings, accuracy drops to
14%, since cores are never shared across applications. The re-
maining accuracy corresponds to disk bandwidth-bound work-
loads. Improving security, however, comes at a significant
performance penalty of 34% on average in execution time, as
threads of the same workload are forced to contend with one
another. Alternatively, users can overprovision their resource
reservations to avoid degradation, which in turn results in a
45% drop in utilization. This means that the cloud provider
cannot leverage CPU idleness to share machines, decreasing
the cost benefits of cloud computing. Note that enforcing core
isolation alone is also not sufficient, as it allows a detection
accuracy of 46%.
Discussion: The previous analysis highlights a design prob-
lem with current datacenter platforms. Traditional multicore
architectures are prone to contention, which will only worsen
as more cores are integrated in each server, and multi-tenancy
becomes more pronounced. Existing isolation techniques are
insufficient to mitigate security vulnerabilities, and techniques
that provide reasonable security guarantees either sacrifice
performance or cost efficiency, through low utilization. This
highlights the pressing need for new fine-grain, and coor-
dinated isolation techniques that guarantee security at high
utilization for core and uncore resources.

7. Conclusions
We have presented Bolt, a practical system that identifies the
type and characteristics of applications running on shared
cloud systems, and enables attacks that degrade their perfor-
mance. Bolt relies on fast and online data mining techniques to
project the interference victims introduce in shared resources
against information on previously-seen workloads. In a 40-
server cluster Bolt correctly identifies 81% out of 108 work-
loads, and degrades tail latency by up to 140x. We also used
Bolt to analyze the most popular services on EC2, across time
and regions. Finally, we show that, while existing isolation
techniques are helpful, they are not sufficient to mitigate such
attacks. Bolt reveals real, easy-to-exploit threats in public
clouds. We hope that this work will motivate cloud providers
and computer scientists to develop and deploy stricter isolation
primitives in cloud servers.
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