
12

QoS-Aware Scheduling in Heterogeneous Datacenters with Paragon

CHRISTINA DELIMITROU and CHRISTOS KOZYRAKIS, Stanford University

Large-scale datacenters (DCs) host tens of thousands of diverse applications each day. However, interference
between colocated workloads and the difficulty of matching applications to one of the many hardware
platforms available can degrade performance, violating the quality of service (QoS) guarantees that many
cloud workloads require. While previous work has identified the impact of heterogeneity and interference,
existing solutions are computationally intensive, cannot be applied online, and do not scale beyond a few
applications.

We present Paragon, an online and scalable DC scheduler that is heterogeneity- and interference-aware.
Paragon is derived from robust analytical methods, and instead of profiling each application in detail, it
leverages information the system already has about applications it has previously seen. It uses collaborative
filtering techniques to quickly and accurately classify an unknown incoming workload with respect to het-
erogeneity and interference in multiple shared resources. It does so by identifying similarities to previously
scheduled applications. The classification allows Paragon to greedily schedule applications in a manner that
minimizes interference and maximizes server utilization. After the initial application placement, Paragon
monitors application behavior and adjusts the scheduling decisions at runtime to avoid performance degra-
dations. Additionally, we design ARQ, a multiclass admission control protocol that constrains application
waiting time. ARQ queues applications in separate classes based on the type of resources they need and
avoids long queueing delays for easy-to-satisfy workloads in highly-loaded scenarios. Paragon scales to tens
of thousands of servers and applications with marginal scheduling overheads in terms of time or state.

We evaluate Paragon with a wide range of workload scenarios, on both small and large-scale systems,
including 1,000 servers on EC2. For a 2,500-workload scenario, Paragon enforces performance guarantees
for 91% of applications, while significantly improving utilization. In comparison, heterogeneity-oblivious,
interference-oblivious, and least-loaded schedulers only provide similar guarantees for 14%, 11%, and 3% of
workloads. The differences are more striking in oversubscribed scenarios where resource efficiency is more
critical.

Categories and Subject Descriptors: C.5.1 [Computer System Implementation]: Large and Medium
(“Mainframe”) Computers—Super (very large) computers; D.4.1 [Operating Systems]: Process Manage-
ment—Scheduling

General Terms: Design, Performance

Additional Key Words and Phrases: Datacenter, cloud computing, resource-efficiency, heterogeneity, inter-
ference, scheduling, QoS

ACM Reference Format:
Delimitrou, C. and Kozyrakis, C. 2013. QoS-aware scheduling in heterogeneous datacenters with Paragon.
ACM Trans. Comput. Syst. 31, 4, Article 12 (December 2013), 34 pages.
DOI: http://dx.doi.org/10.1145/2556583

This work was partially supported by a Google directed research grant on energy proportional computing.
Christina Delimitrou was supported by a Stanford Graduate Fellowship.
Authors’ addresses: C. Delimitrou and C. Kozyrakis, Electrical Engineering Department, Stanford Univer-
sity; email address: cdel@stanford.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2013 ACM 0734-2071/2013/12-ART12 $15.00

DOI: http://dx.doi.org/10.1145/2556583

ACM Transactions on Computer Systems, Vol. 31, No. 4, Article 12, Publication date: December 2013.

12:2 C. Delimitrou and C. Kozyrakis

Fig. 1. Overview of scheduling in a datacenter. Applications vary in their resource requirements, their
sensitivity to server configuration and interference, and their performance constraints. The scheduler needs
to account for all these factors to assign applications to DC servers.

1. INTRODUCTION
An increasing amount of computing is performed in the cloud, primarily due to the
flexibility and cost benefits for both the end-users and the operators of datacen-
ters (DC) that host cloud services [Barroso and Hoelzle 2009]. Large-scale providers
such as Amazon EC2 [Amazon EC2], Microsoft Windows Azure [Windows Azure],
Rackspace [Rackspace] and Google Compute Engine [GCE] host tens of thousands
of applications on a daily basis. Several companies also organize their IT infrastruc-
ture as private clouds, using management systems such as VMware vSphere [VMWare
vSphere] or Citrix XenServer [Xenserver].

The operator of a cloud service must schedule the stream of incoming applications
on the available servers in a manner that achieves both fast execution (user’s goal) and
high resource efficiency (operator’s goal), enabling better scaling at low cost. Figure 1
shows an overview of how scheduling happens in a datacenter. Applications of differ-
ent types are submitted to the system and the scheduler must decide how to efficiently
assign them to servers. This scheduling problem is particularly difficult, as cloud ser-
vices must accommodate a diverse set of workloads in terms of their resource and
performance requirements and the sensitivity of different applications to server con-
figurations and interference from coscheduled workloads [Barroso and Hoelzle 2009;
Kozyrakis et al. 2010]. As shown in the figure, even when looking only at memory and
CPU requirements, application demands vary widely. The same is the case for their
sensitivity to the configuration of hardware platforms and the contention in shared
resources, as well as their QoS constraints. Moreover, the operator often has no a priori
knowledge of workload characteristics. In this work, we focus on two main challenges
that complicate scheduling in large-scale DCs: hardware platform heterogeneity and
coscheduled workload interference.

Heterogeneity occurs as servers are gradually provisioned and replaced over the typi-
cal 15-year lifetime of a datacenter infrastructure [Barroso and Hoelzle 2009; Hamilton
2010, 2009; Kozyrakis et al. 2010; Mars and Tang 2013; Nathuji et al. 2007]. At any
point in time, a DC may host 3 to 5 server generations with a few hardware configu-
rations per generation, in terms of the specific speeds and capacities of the processor,
memory, storage, and networking subsystems. Hence, it is common to have 10 to 40
configurations throughout the DC. Ignoring heterogeneity can lead to significant inef-
ficiencies, as some workloads are sensitive to the hardware configuration. Figure 2(a)
shows that a heterogeneity-oblivious scheduler will slow applications down by 22%

ACM Transactions on Computer Systems, Vol. 31, No. 4, Article 12, Publication date: December 2013.

QoS-Aware Scheduling in Heterogeneous Datacenters with Paragon 12:3

Fig. 2. Performance degradation for 5,000 applications on 1000 EC2 servers with heterogeneity-oblivious,
interference-oblivious and baseline least-loaded schedulers compared to ideal scheduling (application runs
alone on best platform) (Figure 2(a)). Results are ordered from worst to best-performing workload. Utilization
for the 1000-server cluster when using the least-loaded scheduler (Figure 2(b)). Utilization is defined as CPU
utilization across the cores of each server.

on average, with some running nearly 2× slower. In this experiment 5000 randomly-
selected applications are submitted to a 1000-server EC2 cluster (see Section 5 for
details on the methodology). This is not only suboptimal from the user’s perspective,
but also for the DC operator as workloads occupy servers for significantly longer.

Interference is the result of coscheduling multiple workloads on a single server to
increase utilization and achieve better cost efficiency. By colocating applications, a given
number of servers can host a larger set of workloads (better scalability). Alternatively,
by packing workloads in a small number of servers when the overall load is low, the rest
of the servers can be turned off to save energy. The latter is needed because modern
servers are not energy-proportional and consume a large fraction of peak power even
at low utilization [Barroso 2011; Barroso and Hoelzle 2009; Leverich and Kozyrakis
2010; Meisner et al. 2011]. Coscheduled applications may interfere negatively even if
they run on different processor cores because they share caches, memory channels,
storage and networking devices [Govindan et al. 2011; Mars et al. 2011; Nathuji et al.
2010]. Figure 2(a) shows that an interference-oblivious scheduler will slow workloads
down by 34% on average, with some running more than 2× slower. Again, this is
undesirable for both users and operators. Finally, a baseline scheduler that is both
interference- and heterogeneity-oblivious and schedules applications to least-loaded
servers is even worse (48% average slowdown), causing some workloads to crash due to
resource exhaustion on the server. Figure 2(b) shows the cluster utilization achieved by
the least-loaded baseline scheduler. Utilization is calculated as average CPU utilization
across a server’s cores. For the majority of servers, utilization rarely exceeds 20 to
30%, and in the few cases where utilization is high, performance suffers from either
contention or inappropriate server configuration.

Previous work has showcased the potential of heterogeneity and interference-aware
scheduling [Mars and Tang 2013, 2011; Delimitrou and Kozyrakis 2013c; Govindan
et al. 2011; Nathuji et al. 2007]. Mars et al. [2013, 2011] profile the sensitivity of ap-
plications to hardware platforms and to contention to memory resources, and propose
techniques that significantly improve utilization with minimal performance degrada-
tion. However, techniques that rely on detailed application characterization cannot
scale to large DCs that receive tens of thousands of potentially unknown workloads
every day [Shen et al. 2011; Barroso 2011; Calder et al. 2011]. Most cloud manage-
ment systems have some notion of contention or interference-awareness [Hindman

ACM Transactions on Computer Systems, Vol. 31, No. 4, Article 12, Publication date: December 2013.

12:4 C. Delimitrou and C. Kozyrakis

et al. 2011; Nathuji et al. 2010; Vasić et al. 2012; vMotion; Xenserver]. Nonetheless,
these schemes either use empirical rules for interference management or assume long-
running workloads (e.g., online services), whose repeated behavior can be progressively
modeled. In this work, we target both heterogeneity and interference and assume no a
priori analysis of the application. Instead, we leverage information the system already
has about the large number of applications it has previously seen.

We present Paragon [Delimitrou and Kozyrakis 2013b], an online and scalable dat-
acenter scheduler that is heterogeneity- and interference-aware. The key feature of
Paragon is its ability to quickly and accurately classify an unknown application with
respect to heterogeneity (which server configurations it will perform best on) and in-
terference (how much interference it will cause to coscheduled applications and how
much interference it can tolerate itself in multiple shared resources). Paragon’s classifi-
cation engine exploits existing data from previously scheduled applications and offline
training and requires only a minimal signal about a new workload. Specifically, it is
organized as a low-overhead recommendation system similar to the one deployed in
the Netflix Challenge [Bell et al. 2007], but instead of discovering similarities in users’
movie preferences, it finds similarities in applications’ preferences with respect to
heterogeneity and interference. It uses singular value decomposition to perform collab-
orative filtering and identify similarities between incoming and previously scheduled
workloads.

Once an incoming application is classified, a greedy scheduler assigns it to the server
that is the best possible match in terms of platform and minimum negative interfer-
ence between all coscheduled workloads. Even though the final step is greedy, the high
accuracy of classification leads to schedules that satisfy both user requirements (fast
execution time) and operator requirements (efficient resource use). Moreover, since
classification is based on robust analytical methods and not merely empirical obser-
vation, we have strong guarantees on its accuracy and strict bounds on its overheads.
Paragon scales to systems with tens of thousands of servers and tens of configura-
tions, running large numbers of previously unknown workloads. The system currently
focuses on cloud provider scenarios where independent, unknown applications are sub-
mitted to the DC. Similar techniques can also be applied for scheduling in systems with
long-running applications, such as the clusters running complex multitier services, like
Search or Webmail. We defer the study of these scenarios to future work.

Application behavior is rarely constant throughout their execution. Most workloads
go through multiple phases that affect their resource requirements and their sensi-
tivity to heterogeneity and interference. Paragon accounts for changes in application
behavior and adjusts the scheduling decisions to accommodate them. After the initial
application placement, the scheduler monitors application performance and detects
possible phase changes. Paragon supports two phase-detection modes: reactive, where
rescheduling is evaluated as a result of performance degradation due to a phase change,
and preemptive, where rescheduling is evaluated before phases reflect in performance
degradation. Both modes rely on lightweight reclassification that detects deviations
from the original workload profile.

In such cloud providers, a large fraction of workloads are very short, running batch
applications such as short-term analytics. While the scheduling overheads are gen-
erally low, they can become noticeable for applications with completion times on the
order of a few seconds. For such workloads, Paragon includes an optimization that by-
passes the training step of classification and approaches these short jobs as completely
unknown input loads (cold-start problem). This significantly reduces the scheduling
overheads while still providing decisions of reasonable quality.

Finally, apart from fast execution time, DC users are interested in how fast an ap-
plication gets scheduled (low waiting time). In the case of oversubscribed scenarios,

ACM Transactions on Computer Systems, Vol. 31, No. 4, Article 12, Publication date: December 2013.

QoS-Aware Scheduling in Heterogeneous Datacenters with Paragon 12:5

applications with few resource requirements can get trapped behind demanding work-
loads. To avoid head-of-line-blocking with long queueing delays, we design ARQ,
a multiclass admission control protocol, that identifies classes of applications and
queues workloads based on the type of resources they need. This way nondemand-
ing workloads can get scheduled quickly, while the system still preserves QoS for all
submitted applications, by bounding queueing time and diverging workloads to free
queues.

We implemented Paragon and evaluated its efficiency using a wide spectrum of
workload scenarios (light, high, and oversubscribed). We used Paragon to schedule
applications on a private cluster with 40 servers of 10 different configurations and on
1000 exclusive servers on Amazon EC2 with 14 configurations. We compare Paragon
to a heterogeneity-oblivious, an interference-oblivious, and a state-of-the-art least-
loaded scheduler. For the 1000-server experiments and a scenario with 2500 workloads,
Paragon maintains QoS for 91% of workloads (within 5% of their performance running
alone on the best server). The heterogeneity-oblivious, interference-oblivious, and least-
loaded schedulers offer such QoS guarantees for only 14%, 11%, and 3% of applications,
respectively. The results are more striking in the case of an oversubscribed workload,
scenario, where efficient resource use is even more critical. Paragon provides QoS
guarantees for 52% of workloads, and bounds the performance degradation to less
than 10% for an additional 33% of workloads. In contrast, the least-loaded scheduler
dramatically degrades performance for 99.9% of applications. We also evaluate Paragon
on a Windows Azure and a Google Compute Engine cluster and show similar gains.
Finally, we validate that Paragon’s classification engine achieves the accuracy and
bounds predicted by the analytical methods and evaluate various parameters of the
system.

The rest of the article is organized as follows. Section 2 describes the analytical
methods that drive Paragon. Section 3 presents the scheduler’s implementation and
Paragon’s phase-detection schemes, and Section 4 discusses the multiclass queueing
network. Section 5 presents the experimental methodology and Section 6 the evaluation
of Paragon. Finally, Section 7 discusses related work and Section 8 concludes the paper.

2. FAST AND ACCURATE CLASSIFICATION
The key requirement for heterogeneity- and interference-aware scheduling is to quickly
and accurately classify incoming applications. First, we need to know how fast an ap-
plication will run on each of the tens of server configurations available. Second, we
need to know how much interference it can tolerate from other workloads in each of
several shared resources without significant performance loss, and how much interfer-
ence it will generate itself. Our goal is to perform online scheduling for large-scale DCs
without any a priori knowledge about incoming applications. Most previous schemes
address this issue with detailed but offline application characterization or long-term
monitoring and modeling approaches [Mars et al. 2011, 2013; Nathuji et al. 2007, 2010;
Vasić et al. 2012]. Instead, Paragon takes a different perspective. Its core idea is that,
instead of learning each new workload in detail, the system can leverage information
it already has about applications it has previously seen to express the new workload
as a combination of known applications. For this purpose we use collaborative filtering
techniques that combine a minimal profiling signal about the new application (e.g., a
minute’s worth of profiling data on two servers) with the large amount of data available
from previously-scheduled workloads. The result is fast and highly accurate classifi-
cation of incoming applications with respect to both heterogeneity and interference.
Within a minute of its arrival, an incoming workload can be scheduled efficiently on a
large-scale cluster.

ACM Transactions on Computer Systems, Vol. 31, No. 4, Article 12, Publication date: December 2013.

12:6 C. Delimitrou and C. Kozyrakis

2.1. Collaborative Filtering Background
Collaborative filtering techniques are frequently used in recommendation systems.
We will use one of their most publicized applications, the Netflix Challenge [Bell et al.
2007], to provide a quick overview of the two analytical methods we rely upon, Singular
Value Decomposition (SVD) and PQ-reconstruction (PQ) [Rajaraman and Ullman 2011;
Bottou 2010; Kiwiel 2001; Witten et al. 2011]. In this case, the goal is to provide valid
movie recommendations for Netflix users, given the ratings they have provided for
various other movies.

The input to the analytical framework is a sparse matrix A, the utility matrix, with
one row per user and one column per movie. The elements of A are the ratings that
users have assigned to movies. Each user has rated only a small subset of movies;
this is especially true for new users, who may only have a handful of ratings or even
none. While there are techniques that address the cold start problem, that is, providing
recommendations to a completely fresh user with no ratings, here we focus on users
for which the system has some minimal input. If we can estimate the values of the
missing ratings in the sparse matrix A, we can make movie recommendations: suggest
that users watch the movies for which the recommendation system estimates that they
will give high ratings with high confidence.

The first step is to apply singular value decomposition (SVD), a matrix factorization
method used for dimensionality reduction and similarity identification. Factoring A
produces the decomposition to matrices U , V , and !.

Am,n =

a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n
...

...
. . .

...
am,1 am,2 · · · am,n

= U · ! · V T

where

Um×r =

u11 · · · u1r

u21 · · · u2r
...

. . .
...

um1 · · · umr

, Vn×r =

v11 v12 · · · v1n
...

...
. . .

...
vr1 vr2 · · · vrn

!r×r =

σ1 · · · 0
...

. . .
...

0 · · · σr

are the matrices of left and right singular vectors and the diagonal matrix of singular
values, respectively.

Dimension r is the rank of matrix A, and it represents the number of similarity
concepts identified by SVD. For instance, one similarity concept may be that certain
movies belong to the drama category, while another may be that most users that liked
the movie “Lord of the Rings 1” also liked “Lord of the Rings 2”. Similarity concepts
are represented by singular values (σi) in matrix ! and the confidence in a similarity
concept by the magnitude of the corresponding singular value. Singular values in ! are
ordered by decreasing magnitude. Matrix U captures the strength of the correlation
between a row of A and a similarity concept. In other words, it expresses how users
relate to similarity concepts such as the one about liking drama movies. Matrix V
captures the strength of the correlation of a column of A to a similarity concept. In

ACM Transactions on Computer Systems, Vol. 31, No. 4, Article 12, Publication date: December 2013.

QoS-Aware Scheduling in Heterogeneous Datacenters with Paragon 12:7

other words, to what extend does a movie fall in the drama category. The complexity of
performing SVD on a m× n matrix is min(n2m, m2n). SVD is robust to missing entries
and imposes relaxed sparsity constraints to provide accuracy guarantees. Density less
than 1% does not reduce the accuracy of the eventual recommendations [Sun et al.
2008].

However, before we can make accurate score estimations using SVD, we need the full
utility matrix A. To recover the missing entries in A, we use PQ-reconstruction. Building
from the decomposition of the initial sparse A matrix, we have Qm×r = U and PT

r×n =
! · V T . The product of Q and PT gives matrix R, which is an approximation of A
with the missing entries. To improve R, we use Stochastic Gradient Descent (SGD), a
scalable and lightweight latent factor model [Bottou 2010; Kiwiel 2001; Lin and Kolcz
2012; Witten et al. 2011] that iteratively recreates

A: ∀rui, where rui an element of the reconstructed matrix R
εui = rui − qi · pu

T

qi ← qi + η(εui pu − λqi)
pu ← pu + η(εuiqi − λpu)

until |ε|L2 =
√∑

u,i |εui|2 becomes marginal.

In the process above, η is the learning rate and λ is the regularization factor. The
complexity of PQ is linear with the number of rui, and in practice takes up to a few
ms for matrices with m, n ∼ 1,000. Once the dense utility matrix R is recovered, we
can make movie recommendations. This involves applying SVD to R to identify which
of the reconstructed entries reflect strong similarities that enable making accurate
recommendations with high confidence.

2.2. Classification for Heterogeneity
Overview. We use collaborative filtering to identify how well an incoming application

will run on the different hardware platforms available. In this case, the rows in matrix
A represent applications, the columns represent server configurations (SC), and the
ratings represent normalized application performance on each server configuration.

As part of an offline step, we select a small number of applications, a few tens,
and profile them on all different server configurations. We normalize the performance
results and fully populate the corresponding rows of A. This only needs to happen once.
If a new configuration is added in the DC, we need to profile these applications on it
and add a column in A. In the online mode, when a new application arrives, we profile
it for a period of 1 minute on any two server configurations, insert it as a new row in
matrix A, and use the process described in Section 2.1 to derive the missing ratings for
the other server configurations.

In this case, ! represents similarity concepts such as the fact that applications
that benefit from SC1 will also benefit from SC3, or that applications that benefit
from platforms with high memory bandwidth do not benefit from platforms with high
storage capacity. U captures how an application correlates to the different similarity
concepts and V shows how an SC correlates to them. Collaborative filtering identifies
similarities between new and known applications. Two applications can be similar in
one characteristic (they both benefit from high clock frequency) but different in others
(only one benefits from a large L3 cache). This is especially common when scaling
to large application spaces and several hardware configurations. SVD addresses this
issue by uncovering hidden similarities and filtering out the ones less likely to have an
impact on the application’s behavior.

The size of the offline training set is important, as a certain number of ratings
is necessary to satisfy the sparsity constraints of SVD. However, over that number,

ACM Transactions on Computer Systems, Vol. 31, No. 4, Article 12, Publication date: December 2013.

12:8 C. Delimitrou and C. Kozyrakis

recommendation accuracy quickly levels off and scales well with the number of
applications thereafter (smaller fractions for training sets of larger application spaces).
For our experiments we use 20 and 30 offline workloads for a 40 and 1000-server cluster,
respectively. Additionally, as more incoming applications are added in A, the density
of the matrix increases and the recommendation accuracy improves further. Note that
online training is performed only on two SCs. This not only reduces the training over-
head compared to exhaustive search, but since training requires dedicated servers, it
also reduces the number of servers necessary for it. In contrast, if we attempted to
classify applications through exhaustive profiling, the number of profiling runs would
equal the number of SCs (e.g., 40). For a cloud service with high workload arrival rates,
this would be infeasible to support, underlining the importance of keeping training
overheads low, something that Paragon does.

Classification is very fast. On a production-class Xeon server, this takes 10 to 30 msec
for thousands of applications and tens of SCs. We can perform classification for one
application at a time or for small groups of incoming applications (batching) if the
arrival rate is high without impacting accuracy or speed.

Performance Scores. We populate A with normalized scores that represent how well
an application performs on a server configuration. We use the following performance
metrics based on application type.

(a) Single-threaded workloads. We use instructions committed per second (IPS) as
the initial performance metric. Using execution time would potentially be more
accurate—however, it would require running applications to completion in the pro-
filing servers, increasing the training overheads. We have verified that using IPS
leads to similar classification accuracy as using full execution time. For multipro-
grammed workloads we use aggregate IPS.

(b) Multithreaded workloads In the presence of spin-locks or other synchronization
schemes that introduce active waiting, aggregate IPS can be deceiving [Alameldeen
and Wood 2006; Wenisch et al. 2006]. We address this by periodically polling low-
overhead performance counters to detect changes in the register file (read and
writes that would denote regular operations other than spinning) and weight-out
of the IPS computation such execution segments. We have verified that scheduling
with this “useful” IPS leads to similar classification accuracy as using full execution
time. When workloads are not known or multiple workload types are present,
“useful” IPS is used to drive the scheduling decisions.

The choice of IPS as the base of performance metrics has influenced our current
evaluation which focuses on single-node CPU, memory and I/O-intensive programs.
The same methodology holds with small changes for higher-level metrics, such as
queries per second (QPS), which cover complex multitier workloads as well.

Validation. We evaluate the accuracy of the heterogeneity classification on a 40-
server cluster with 10 SCs. We use a large set of single-threaded, multithreaded,
multi-programmed and I/O-bound workloads. For details on workloads and server con-
figurations, see Section 5. The offline training set includes 20 applications selected ran-
domly from all workload types. Scheduling applications to hardware platforms based
on the recommendation system improves performance by 24% for single-threaded, 20%
for multithreaded, 38% for multiprogrammed, and 40% for I/O workloads on average,
while some applications have a 2× performance difference. Table I summarizes key
statistics on classification quality. Our classifier correctly identifies the best SC for
84% of workloads and an SC within 5% of optimal for 90%. The predicted ranking
of SCs is exactly correct for 58% and almost correct (single reordering) for 65% of
workloads. In almost all cases, 50% of SCs are ranked correctly by the classification

ACM Transactions on Computer Systems, Vol. 31, No. 4, Article 12, Publication date: December 2013.

QoS-Aware Scheduling in Heterogeneous Datacenters with Paragon 12:9

Table I. Validation Metrics for Heterogeneity Classification

Applications (%)
Metric ST MT MP IO
Selected best SC 86% 86% 83% 89%
Selected SC within 5% of best 91% 90% 89% 92%
Correct SC ranking (best to worst) 67% 62% 59% 43%
90% correct SC ranking 78% 71% 63% 58%
50% correct SC ranking 93% 91% 89% 90%
Training & best SC match 28% 24% 18% 22%

Fig. 3. Sensitivity curves for memory capacity (Figure 3(a)) and network bandwidth (Figure 3(b)) for mcf.
As the intensity of the memory capacity SoI increases, mcf ’s performance degrades. On the other hand, mcf
is insensitive to network contention, so its tolerance is close to 100%.

scheme. Finally, it is important to note that the accuracy does not depend on the two
SCs selected for training. The training SC matched the top performing configuration
for only 20% of workloads.

We also validate the analytical methods. We compare performance predicted by the
recommendation system to performance obtained through experimentation. The devi-
ation is less than 3.8% on average.

2.3. Classification for Interference
Overview. There are two types of interference we are interested in: interference that

an application can tolerate from pre-existing load on a server and interference the ap-
plication will cause on that load. We detect interference due to contention on shared
resources and assign a score to the sensitivity of an application to a type of interference.
To derive sensitivity scores we develop several microbenchmarks, each stressing a spe-
cific shared resource with tunable intensity. We run an application concurrently with a
microbenchmark and progressively tune up its intensity until the application violates
its QoS, which is set at 95% of the performance achieved in isolation. The intensity of
the microbenchmark at that point is recorded as the sensitivity score of the workload to
the specific type of interference. Figure 3 shows an example of deriving the sensitivity
to tolerated interference in the memory capacity and network bandwidth for the mcf
benchmark of the SPECCPU2006 suite. mcf is very sensitive to memory capacity, with
performance quickly degrading as the intensity of the SoI increases. On the other hand,
given that it is a single-node workload with no network-related component, it is very
tolerant to contention in the network bandwidth. Applications with high tolerance to
interference (e.g., sensitivity score over 60%) are easier to coschedule than applica-
tions with low tolerance (low sensitivity score). Similarly, we detect the sensitivity of a
microbenchmark to the interference the application causes by tuning up its intensity
and recording when the performance of the microbenchmark degrades by 5% compared

ACM Transactions on Computer Systems, Vol. 31, No. 4, Article 12, Publication date: December 2013.

12:10 C. Delimitrou and C. Kozyrakis

Table II. Overview of Different Contentious Microbenchmarks and Their Corresponding
Access Patterns

Microbenchmark (SoI) Access Pattern

Memory capacity Random using SSA for ILP
Memory bandwidth Streaming at increasing rate

LLC capacity (similar for L2) Random with increasing footprint
LLC bandwidth (similar for L2) Streaming at increasing rate

L1 i-cache Random with increasing footprint
L1 d-cache Random with increasing footprint

Translation Lookahead Buffer (TLB) Page fetching at increasing rate
Core Integer, floating point (and vector if apl) instructions

Network bandwidth Streaming at increasing rate & request size
Storage bandwidth Streaming at increasing rate & request size

to its performance in isolation. In this case, high sensitivity scores, for example, over
60% correspond to applications that cause a lot of interference in the specific shared
resource.

Identifying Sources of Interference (SoI). Coscheduled applications may contend on
a large number of shared resources. We identified ten such sources of interference
(SoI) and designed a tunable microbenchmark for each one. SoIs span resources such
as memory (bandwidth and capacity), cache hierarchy (L1/L2/L3 and TLBs), core and
network and storage bandwidth. The same methodology can be expanded to any shared
resource. Table II provides an overview of the type and access pattern for each of the ten
microbenchmarks. In all cases the intensity of the kernel ranges from minimal to the
maximum achieved for a given platform and increases “almost” proportionately with
time. The contentious microbenchmarks are designed such that they put most of the
pressure in one shared resource at a time. This is easier for resources such as memory
bandwidth, where a streaming access pattern can stress bandwidth but not necessarily
capacity—but it becomes harder when stressing, for example, the L1 i-cache without
saturating the core. We have validated that the effect of the different microbenchmarks
does not overlap, or that any overlap is kept minimal. More details on this validation
and the design of each of the contentious kernels can be found in Delimitrou and
Kozyrakis [2013a].

Collaborative Filtering for Interference. We classify applications for interference, tol-
erated and caused, using the process described in Section 2.1 twice. The two utility
matrices have applications as rows and SoIs as columns. The elements of the matrices
are the sensitivity scores of an application to the corresponding microbenchmark (sen-
sitivity to tolerated and caused interference, respectively). Similarly to classification
for heterogeneity, we profile a few applications offline against all SoIs and insert them
as dense rows in the utility matrices. In the online mode, each new application is pro-
filed against two randomly chosen microbenchmarks for one minute and its sensitivity
scores are added in a new row in each of the matrices. Then, we use SVD and PQ
reconstruction to derive the missing entries and the confidence in each similarity con-
cept. This process performs accurate and fast application classification and provides
information to the scheduler on which applications should be assigned to the same
server (see Section 3.2).

Validation. We evaluated the accuracy of interference classification using the single-
threaded and multithreaded workloads and the same systems as for the heterogeneity
classification. Table III summarizes some key statistics on the classification quality.
Our classifier achieves an average error of 5.3% in estimating both tolerated and

ACM Transactions on Computer Systems, Vol. 31, No. 4, Article 12, Publication date: December 2013.

QoS-Aware Scheduling in Heterogeneous Datacenters with Paragon 12:11

Table III. Validation Metrics for Interference Classification

Metric Percentage (%)
Average sensitivity error across all SoIs 5.3%
90th percentile error across all SoIs 10.5%
99th percentile error across all SoIs 18.6%
Average error for sensitivities < 30% 7.1%
Average error for sensitivities < 60% 5.6%
Average error for sensitivities > 60% 3.4%
Apps with < 5% error ST: 65% MT: 58%
Apps with < 10% error ST: 81% MT: 63%
Apps with < 20% error ST: 90% MT: 89%
SoI with highest error

for ST: L1 i-cache 15.8%
for MT: LLC capacity 7.8%

Frequency L1 i-cache used as offline SoI 14.6%
Frequency LLC cap used as offline SoI 11.5%
SoI with lowest error

for ST: network bandwidth 1.8%
for MT: storage bandwidth 0.9%

caused interference across all SoIs. For high values of sensitivity, that is, applications
that tolerate and cause a lot of interference, the error is even lower (3.4%), while
for most applications (both single-threaded and multithreaded) the errors are lower
than 5%. The SoIs with the highest errors are the L1 instruction cache for single-
threaded workloads and the LLC capacity (L2 or L3) for multithreaded workloads.
The high errors are not a weakness of the classification, since both resources are
profiled adequately, but rather of the difficulty to consistently characterize contention
in certain shared resources [Mars et al. 2011]. On the other hand, network and storage
bandwidth have the lowest errors, primarily due to the fact that we used CPU and
memory-intensive workloads for this evaluation.

2.4. Putting It All Together
Overall, Paragon requires two short runs (∼1 minute) on two SCs to classify incoming
applications for heterogeneity. Another two short runs against two microbenchmarks
on a high-end SC are needed for interference classification. We use a high-end SC to
decouple server features from the interference analysis. Running for 1 minute provides
some signal on the new workload without introducing significant profiling overheads.
In Section 3.4 we discuss the issue of workload phases, that is, transient effects that do
not appear in the 1 minute profiling period. Next, we use collaborative filtering to clas-
sify the application in terms of heterogeneity and interference, tolerated and caused.
This cumulatively requires a few milliseconds, even when considering thousands of
applications and several tens of SCs or SoIs. The classification for heterogeneity and
interference is performed in parallel. For the applications we considered, the overall
profiling and classification overheads are 1.2% and 0.09% on average.

Using analytical methods for classification has two benefits. First, we have strong
analytical guarantees on the quality of the information used for scheduling, instead of
relying mainly on empirical observations. The analytical framework provides low and
tight error bounds on the accuracy of classification, statistical guarantees on the quality
of colocation candidates and detailed characterization of system behavior. Moreover,
the scheduler design is workload-independent, which means that the analytical or
statistical properties the scheme provides hold for any workload. Second, these methods
are computationally efficient, scale well with the number of applications and SCs, do

ACM Transactions on Computer Systems, Vol. 31, No. 4, Article 12, Publication date: December 2013.

12:12 C. Delimitrou and C. Kozyrakis

Fig. 4. The components of Paragon and the state maintained by each component. Overall, the state require-
ments are marginal and scale linearly or logarithmically with the number of applications (N), servers (M),
server configurations (SC), and sources of interference (SoI).

not introduce significant training and decision overheads, and enable exact complexity
evaluation.

3. PARAGON
3.1. Overview
Once an incoming application is classified with respect to heterogeneity and interfer-
ence, Paragon schedules it on one of the available servers. The scheduler attempts to
assign each workload to the server of the best SC and colocate it with applications so
that interference is minimized for workloads running on the same server. The scheduler
is online and greedy, so we cannot make holistic claims about optimality. Nevertheless,
the fact that we start with highly accurate classification helps achieve very efficient
schedules. The interference information allows Paragon to pack applications on a sub-
set of servers without significant performance loss.1 The heterogeneity information
allows Paragon to assign to each SC only those applications that will benefit from its
characteristics. Both these properties lead to faster execution, hence resources are freed
as soon as possible, making it easier to schedule future applications (more unloaded
servers) and perform power management (more idling servers that can be placed in
low-power modes).

Figure 4 presents an overview of Paragon and its components. The scheduler main-
tains a per-application and per-server state. The per-application state includes informa-
tion for the heterogeneity and interference classification of every submitted workload.
For a DC with 10 SCs and 10 SoIs, we store 64B per application. The per-server state
records the IDs of applications running on a server and the cumulative sensitivity to
interference (roughly 64B per server). The per-server state needs to be updated as ap-
plications are scheduled and, later on, complete. Paragon also needs some storage for
the intermediate and final utility matrices and temporary storage for ranking possible
candidate servers for an incoming application. Overall, state overheads are marginal
and scale logarithmically or linearly with the number of applications (N) and servers
(M). In our experiments with thousands of applications and servers, a single server
could handle all processing and storage requirements of scheduling.2

We present two methods for selecting candidate servers: a fast, greedy algorithm
that searches for the optimal candidate and a statistical scheme with constant
overheads that provides strong guarantees on the quality of candidates as a function
of examined servers.

1Packing applications with minimal interference should be a property exhibited by any optimal schedule.
2Additional scheduling servers can be used for fault-tolerance.

ACM Transactions on Computer Systems, Vol. 31, No. 4, Article 12, Publication date: December 2013.

QoS-Aware Scheduling in Heterogeneous Datacenters with Paragon 12:13

3.2. Greedy Server Selection
In examining candidates, the scheduler considers two factors: first, which assignments
minimize negative interference between the new application and existing load, and
second, which servers have the best SC for this workload. Decisions are made in this
order: first identifying servers that do not violate QoS and then selecting the best SC
between them. This is based on the observation that interference typically leads to
higher performance loss than suboptimal SCs.

The greedy scheduler strives to minimize interference, while also increasing server
utilization. The scheduler searches for servers whose load can tolerate the interference
caused by the new workload and vice versa, the new workload can tolerate the interfer-
ence caused by the server load. Specifically, it evaluates two metrics, D1 = tserver−cnewapp
and D2 = tnewapp − cserver , where t is the sensitivity score for tolerated and c for caused
interference for a specific SoI. The cumulative sensitivity of a server to caused inter-
ference is the sum of sensitivities of individual applications running on it, while the
sensitivity to tolerated interference is the minimum of these values. The optimal can-
didate is a server for which D1 and D2 are exactly zero for all SoIs. This implies that
there is no negative impact from interference between new and existing applications
and that the server resources are perfectly utilized. In practice, a good selection is one
for which D1 and D2 are bounded by a positive and small ε for all SoIs. Large, positive
values for D1 and D2 indicate suboptimal resource utilization. Negative D1 and/or D2
imply violation of QoS and identify poor candidates that should be avoided.

We examine candidate servers for an application in the following way. The process
is explained for interference tolerated by the server and caused by the new workload
(D1) and is exactly the same for D2. Given the classification of an application, we start
from the resource that is most difficult to satisfy (highest sensitivity score to caused
interference). We query the server state and select the server set for which D1 is non-
negative for this SoI. Next, we examine the second SoI in order of decreasing sensitivity
scores, filtering out any servers for which D1 is negative. The process continues until
all SoIs have been examined. Then, we take the intersection of candidate server sets
for D1 and D2. We now consider heterogeneity. From the set of candidates, we select
servers that correspond to the best SC for the new workload, and from their subset we
select the server with min(||D1 + D2||L1).

As we filter out servers, it is possible that at some point the set of candidate servers
becomes empty. This implies that there is no single server for which D1 and D2 are
non-negative for some SoI. In practice this event is extremely unlikely, but is supported
for completeness. We handle this case with backtracking. When no candidates exist,
the algorithm reverts to the previous SoI and relaxes the QoS constraints until the
candidate set becomes nonempty, before it continues. If still no candidate is found,
backtracking is extended to more levels. Given M servers, the worst-case complexity of
the algorithm is O(M ·SoI2), since, theoretically, backtracking might extend all the way
to the first SoI. In practice, however, we observe that for a 1000-server system, 89% of
applications were scheduled without any backtracking. For 8% of these, backtracking
led to negative D1 or D2 for a single SoI and for 3% for multiple SoIs. Additionally, we
bound the runtime of the greedy search using a timeout mechanism, after which the
best server from the ones already examined is selected in the way previously described
(best SC and minimum interference deviation). In our experiments, timeouts occurred
in less than 0.1% of applications and resulted in a server within 10% of optimal.

3.3. Statistical Framework for Server Selection
The greedy algorithm selects the best server for an application—or a near-optimal
server. However, for very large DCs, for example, 10 to 100k servers, the overhead from

ACM Transactions on Computer Systems, Vol. 31, No. 4, Article 12, Publication date: December 2013.

12:14 C. Delimitrou and C. Kozyrakis

Fig. 5. Colocation quality distribution (F(x) = xR, where R = 16, 64 and 128). Figure 5(b) shows the
comparison between the greedy algorithm and the statistical scheme for three colocation candidates of
Q = 0.6, 0.7, and 0.9.

examining the server state in the first step of the search might become high. Addi-
tionally, the results depend on the active workloads and do not allow strict guarantees
on the server quality under any scenario. We now present an alternative, statistical
framework for server selection in very large DCs based on sampling, which has constant
runtime and enables such guarantees.

Instead of examining the entire server state, we sample a small number of servers.
We use cryptographic hash functions to introduce randomness in the server selection.
We hash the scores of tolerated interference of each server using variations of SHA-
1 [Katz and Lindell 2007] as different hash functions (hj) for each SoI to increase
entropy. The input to a hj is a sensitivity score for an SoI and the output a hashed
value of that score. Outputs have the same precision as inputs (14 bits). This process
is done once, unless the load of a server changes. When a new application arrives, we
obtain candidate servers by hashing its sensitivity scores to caused interference for
each SoI. For example, the input to h1 for SoI 1 is a. The output will be a new number,
b, which corresponds to server ID u. Rehashing b obtains additional IDs of candidate
servers. This produces a random subset of the system’s servers. After a number of re-
hashes the algorithm ranks the examined servers and selects the best one. Candidates
are ranked by colocation quality, which is a metric of how suitable a given server is for
a new workload. For candidate i, colocation quality is defined as

Qi =
[

sign

(SoIs∑
(t − c)i

)]

|1−||t−c||1| =
[

sign

(SoIs∑

k=1

(t(k) − c(k))i

)] ∣∣∣∣∣1 −
SoIs∑

k=1

|t(k) − c(k)|i

∣∣∣∣∣ .

t is the original unhashed sensitivity to tolerated interference for a server and c the
original sensitivity to caused interference for the new workload. The sign in Qi reflects
whether a server preserves (positive) or violates QoS (negative). The L1 norm of (t − c)
reflects how closely the server follows the application’s requirements and is normalized
to its maximum value, 10, which happens when for all ten SoIs t = 100% and c = 0.
High and positive Qi values reflect better candidates, as the deviation between t and c
is small for all SoIs. Poor candidates have small Qi or even negative when they violate
QoS in one or more SoIs. Quality is normalized to the range [0, 1]. For example, for
unnormalized qualities in the range [−1.2, 0.8] and a candidate with Q = −1.0, the
normalized quality will be (−1.0+|min|)

|max|+|min| = 0.2/2 = 0.1.
We now make an assumption on the distribution of quality values, which we verify

in practice. Because of the way candidate servers are selected and the independence
between initial workloads, Qi ’s approximate a uniform distribution, for problems with
tens of thousands of servers and applications. Figure 5(a) shows the CDF of measured

ACM Transactions on Computer Systems, Vol. 31, No. 4, Article 12, Publication date: December 2013.

QoS-Aware Scheduling in Heterogeneous Datacenters with Paragon 12:15

quality for 16, 64, and 128 candidates and the corresponding uniform distributions
(F(x) = xR, where R the number of candidates examined) in a system with 1000 servers.
In all cases, the assumption of uniformity holds in practice with small deviations. When
we exceed 128 candidates (1/8 of the cluster) the distribution starts deviating from
uniform. We have observed that for even larger systems, for example, a 5000-server
Windows Azure cluster, uniform distributions extend to larger numbers of candidates
(up to 512) as well. The probability of a candidate having quality a is Pr(a) = aR. For
example, for 128 candidates there is a 10−6 probability that no candidate will have
quality over 0.9.

We now compare the statistical scheme with the greedy algorithm (Figure 5(b)).
While the latter finds a server with quality Q after a random number of steps, the
statistical scheme provides strong guarantees on the number of candidates required
for the same quality. For example, for a candidate with Q = 0.9, the greedy algorithm
needs 87 steps, but cannot provide ad hoc guarantees on the quality of the result, while
the statistical scheme guarantees that for the same requirements, with 64 candidates,
there is a 10−3 chance that no server has Q ≥ 0.9. The guarantees become stricter
as the distribution gets skewed towards 1 (more candidates). Therefore, although the
statistical scheme cannot guarantee optimality, it shows that examining a small num-
ber of servers provides strict guarantees on the obtained quality and makes scheduling
efficiency workload independent.

In our 1000-server experiments, the overhead of the greedy algorithm is marginal
(less than 0.1% in most cases), while the statistical scheme induces 0.5–2% overheads
due to the computation required for hashing. Because at this scale the greedy
algorithm is faster, all results in this work are obtained using greedy search. However,
for problems of larger scale, the statistical scheme can be more efficient.

3.4. Reclassification: Adjusting to Workload Phases
The initial classification in Paragon is performed upon workload arrival, using the
information from its 1-minute profiling. Most workloads, however, go through multiple
phases throughout their execution. These phases are not captured in the initial profiling
and can reflect on changes in resource demands which result in poor performance.
Paragon has mechanisms to detect and react to workload phases in order to guarantee
QoS throughout a workload’s execution.

Section 6 includes a workload scenario where application behavior experiences dif-
ferent phases. The phase-detection mechanisms in Paragon are activated in this case,
and take action to address the changes in application behavior.

Workload phases can be detected either upon QoS degradation for a given application
(reactively), or preemptively, before the phase change impacts performance. Paragon
supports both detection modes. In reactive mode, the performance of each active ap-
plication in the cluster is monitored periodically. When performance degradation is
detected, either the application has entered a new execution phase, or the classifi-
cation engine classified it incorrectly. In both cases, the scheduler must take action
to avoid further performance degradation. This involves reclassification and potential
rescheduling.

Live (in vivo) Classification. Reclassification can happen online on the server where
the offending application is running. It follows the same steps as the original classifi-
cation process. Two microbenchmarks (SoIs) are injected in the system and measure
the new interference the application causes and tolerates. Then, the recommender
recovers the missing entries and provides the greedy scheduler with the new interfer-
ence profile. If the scheduler finds an available server that matches the application’s
requirements better, and the performance benefit amortizes the migration cost, the

ACM Transactions on Computer Systems, Vol. 31, No. 4, Article 12, Publication date: December 2013.

12:16 C. Delimitrou and C. Kozyrakis

workload is migrated to that server.3 Alternatively, if no suitable server is available,
any coscheduled applications are moved to another machine, such that the degraded
application runs in isolation. The advantages of in vivo reclassification is that migra-
tion is only performed when necessary. On the other hand, classification on a server
that hosts multiple workloads might be prone to errors due to coscheduled workloads
that share resources, such as the memory or cache hierarchy. To minimize classification
inaccuracies, the training SoIs in this case correspond to resources that are only shared
between the offending application and the microbenchmark, for example, L1 caches.
This still introduces some minor second-order effects, but we have found these to be
negligible in the majority of cases.

Isolated (in vitro) Classification. Alternatively, reclassification can happen in an iso-
lated environment. Upon detection of QoS violation, the workload is migrated to an
empty server and reclassified following the original process. The advantage in this case
is that classification is not affected by coscheduled applications, and workload perfor-
mance does not continue to degrade during classification, by remaining in a suboptimal
server. The disadvantage is that migration, especially for a stateful workload, may in-
cur significant overheads. Paragon decides between the two types of classification based
on the type and state maintained by a given application.

The second phase detection mode is pre-emptive. The scheduler periodically samples
a few applications, injects microbenchmarks in the corresponding servers and performs
live reclassification. If it detects significant deviations from the previous interference
profile of a workload, it considers whether migration or rescheduling is beneficial. Pre-
emptive detection prevents QoS violations in the cases where phase changes are not
instantaneous.

Reclassification could theoretically hurt application performance, especially when a
workload is already under stress. To ensure that no additional degradation occurs due
to reclassification, the performance of the reclassified workload is constantly monitored
as the intensity of the microbenchmark increases and the latter is immediately removed
once the performance of the workload starts to degrade (and before it violates its QoS).
This trades-off some accuracy in sensitivity estimation to avoid degradations from an
overly aggressive microbenchmark.

In future work, we will consider how resource partitioning techniques can im-
prove live classification accuracy by eliminating interference between coscheduled
workloads.

Both in the reactive and pre-emptive modes, workload migration following the de-
tection of a change in behavior can be avoided if the performance degradation is due
to a transient spike in load. In that case the application will briefly suffer until the
load surge subsides, but can remain in its current assignment, avoiding data move-
ment. This trade-off becomes more complicated for latency-critical applications where
even transient drops in performance can violate tail latency guarantees. Currently,
Paragon decides only between migration and execution in isolation, based on the state
maintained by a given workload.

Table IV shows a short validation of the accuracy of phase detection across the
full SPECCPU2006 suite. Applications are scheduled using Paragon on a 6-machine
cluster (8 cores, 24GB RAM per machine) that supports VM migration. “Applications
with phases” correspond to workloads that experienced degraded performance (lower
IPS than when running in isolation) at some point during their execution. In reactive

3The exact mechanics of migration depend on the underlying system, for example, process or VM migration.
In all experiments there is an underlying mechanism, such as vSphere [VMWare vSphere] that performs
the live migration.

ACM Transactions on Computer Systems, Vol. 31, No. 4, Article 12, Publication date: December 2013.

QoS-Aware Scheduling in Heterogeneous Datacenters with Paragon 12:17

Table IV. Validation of the Phase Detection Mechanism

Reactive detection
Applications with phases 11
Phases detected 96%
Time until detection 8.5sec
Applications migrated 8
Performance degradation hmean:3.4% 90th pctl:5.6%

Preemptive detection
Applications sampled 6 (20%)
Sampled applications with phases 4
Phases detected 3
Applications migrated 2
Performance degradation hmean:1.8% 90th pctl:3.5%

mode, Paragon detects the majority of phases and adapts application placement
quickly to constrain performance losses. In pre-emptive mode, Paragon samples 20%
of workloads at a time, and detects upcoming phase changes in 75% of cases where
an actual change happened. It also constrains false positives to 5.1%, and therefore
avoids unnecessary migrations. The table shows a snapshot from one application
sampling.

3.5. Short-Running Jobs
A large fraction of the jobs submitted to public and private clouds are short, batch
jobs that complete within a few seconds from their initiation. Introducing a 1-minute
training overhead in this case would cause a significant performance penalty for these
workloads. Instead, we can skip the training phase and proceed directly to the schedul-
ing decisions. The disadvantage here is that the system now suffers from the “cold-
start” problem, which means that no ratings exist for a new “user” (application). This
is similar to the event where a new, unknown server configuration is added in the DC.
Due to the rarity of that event, the solution in that case is exhaustive profiling of a few
applications against the new platform. This solution would not be feasible for the large
numbers of such short jobs. Collaborative filtering-based recommender systems often
resolve the cold start problem by adopting a hybrid content-based and collaborative
filtering approach [Schein et al. 2002], where new users (or items) are assigned ratings
automatically, such that the recommender can start finding similarities between them
and known users. These automatic ratings can be determined probabilistically or based
on popularity, age, or overall quality of the rated item. For example, in the context of a
movie recommendation system, entirely unknown users will be recommended some of
the most popular, newest, or most highly rated movies, until they provide some ratings
of their own as a signal to the collaborative filtering system [Zhang et al. 2010; Weng
et al. 2008].

In Paragon, these jobs are scheduled on a randomly-selected server from the ma-
chines that have the most available resources and the least caused interference. Note
that the information on caused interference is already available from the training
phase of the workloads scheduled on those machines. This way the total scheduling
overheads of short-running jobs are a few milliseconds, while the jobs are still assigned
to appropriate servers. The difference in post-training execution time between selecting
a machine using the training runs as input, and with the random selection described
above is on average 15% for a set of 100 Hadoop analytics jobs with ideal completion
time of 10–30sec. While the difference is negligible for the specific tasks, it becomes
considerable for more complex, long-running applications, justifying the need for the
training runs in Paragon. Also note that sending the short jobs to the servers with

ACM Transactions on Computer Systems, Vol. 31, No. 4, Article 12, Publication date: December 2013.

12:18 C. Delimitrou and C. Kozyrakis

the least interference is not necessarily the most resource-efficient decision, but it is
adopted to preserve the per-application QoS guarantees.

3.6. Discussion
Resource Partitioning and Performance Isolation. Paragon does not explicitly par-

tition resources, therefore it does not enforce strict performance isolation between
coscheduled workloads. Instead, it reduces interference by coscheduling applications
that do not contend on the same shared resources. Resource partitioning is orthogonal
to Paragon. Once interference is reduced, hardware or software isolation techniques
can be deployed to eliminate any existing contention. Our EC2 experiments already
benefit from existing isolation schemes, for example, the Xen hypervisor deployed in
the cluster. We will consider how partitioning interacts with the cluster manager in
future work.

Suboptimal Scheduling. A second concern apart from performance isolation is sub-
optimal scheduling, either due to the greedy selection algorithm which assigns appli-
cations to servers in a per-workload fashion, or due to pathological behavior in applica-
tion arrival patterns. Suboptimal scheduling can be detected exactly as the problem of
workload phases and can potentially be resolved by rescheduling several active appli-
cations. Although rescheduling was not needed for the examined applications, Paragon
provides a general methodology to detect such deviations and leverage mechanisms
like VM migration to reschedule the suboptimally scheduled workloads.

Latency-Critical Applications and Workload Dependencies. Finally, Paragon does not
explicitly consider latency-critical applications or dependencies between application
components, for example, a multitier service, such as search or webmail, where tiers
communicate and share data. One differentiation in this case comes from the metrics
the scheduler must consider. It is possible that the interference classification needs
to use microbenchmarks that aim to degrade the per-query latency as opposed to the
workload’s throughput. Another differentiation comes from the possible workload sce-
narios. One scenario can involve a latency-critical application running as the primary
process, for example, memcached, and the remaining server capacity being allocated
to best-effort applications, such as analytics or background processes using Paragon.
A different scenario is one where a throughput-bound distributed workload, for exam-
ple, MapReduce runs with high priority and the remaining server capacity is used by
instances of a latency-critical or batch application. Paragon does not currently enforce
fine-grain priorities between application components or user requests, or optimize for
shared data placement, which might be beneficial for these scenarios. There is related
work on this topic [Hindman et al. 2011; Ghodsi et al. 2011], and we will consider how
it interacts with Paragon in future work.

4. APPLICATION-AWARE ADMISSION CONTROL
Large cloud providers, such as Amazon EC2 and Windows Azure, typically deploy some
admission control protocol. This prevents machine oversubscription, that is, the same
core servicing more than one applications, which can induce interference, resulting in
serious performance losses.

4.1. Resource Quality-Aware Queueing
We design Admission Control with Resource Quality Awareness (ARQ), a QoS-aware
admission control protocol that queues and schedules applications based on the quality
of resources they need. This solves two problems: First, applications that demand
few, easy-to-satisfy resources are not blocked behind demanding workloads. Second, in
the case where no suitable servers are available for a given application, the system

ACM Transactions on Computer Systems, Vol. 31, No. 4, Article 12, Publication date: December 2013.

QoS-Aware Scheduling in Heterogeneous Datacenters with Paragon 12:19

Fig. 6. ARQ design. Each queue corresponds to applications with different resource quality requirements.
Servers are also partitioned in pools based on the quality of their resources.

waits for a server of appropriate quality to be freed before it schedules that workload.
Alternatively, the application would be directed to the first free server to avoid queueing
delays, with the risk of performance losses. In the discussion of ARQ’s design we
assume single-node applications for simplicity. With some changes the design can hold
for multinode workloads as well.

Resource Quality. The resource demands of a workload reflect the load a server
should support such that the application can meet its QoS constraints. This is a func-
tion of the interference the server can tolerate from the new application, and the
interference the new workload can tolerate from applications already running in the
same machine. These values are obviously affected by server configuration as well.
We use the classification engine in Paragon to derive the sensitivity to tolerated (ti)
and caused (ci) interference of each server in the cluster. The interference profile for a
server is updated upon initiation or completion of an application’s execution. Similarly,
upon application arrival, Paragon has obtained the interference profile of the incoming
workload, as described in Section 2.3. This information guides the scheduling decisions
by assigning applications to appropriate servers. Given the interference profile of a
server or application, we define resource quality as:

Qi =
∑

i

ci, (1)

where ci is summed over all shared resources for which interference is accounted for.
Conceptually, higher Qi reflects applications with high demands (high caused and low
tolerated interference) that need high-quality system resources. Low Qi on the other
hand, corresponds to workloads that are insensitive to interference, and can satisfy
their QoS even when assigned to servers with poor resource quality, for example,
highly-loaded machines, or machines with few cores.

Multiclass Admission Control. We design ARQ as an admission control protocol with
multiple classes of “customers” [Bertsimas et al. 2001; Miller 1969], where customers
in this case correspond to applications. The class an application belongs to is deter-
mined by its Qi value. Applications with Qi values that fall in the same range are
assigned to the same class. Qis range from 0 to 100%. We assume ten classes of ap-
plications for now. We have performed a sensitivity study with different numbers of
queues that justifies this selection. Figure 6 shows an overview of ARQ. Each queue
corresponds to applications of a specific class. From top to bottom we move from more to
less demanding applications. Upon workload arrival, Paragon determines the class it
belongs to based on its interference profile and queues it appropriately. Each class has

ACM Transactions on Computer Systems, Vol. 31, No. 4, Article 12, Publication date: December 2013.

12:20 C. Delimitrou and C. Kozyrakis

Fig. 7. CDF of server busy times (Figure 7(a)) and CDF of the probability that there will be at least one free
server within a specific time window from an application’s arrival (Figure 7(b)).

a respective pool of servers of the corresponding resource quality that are most suitable
to service the queue’s applications. By separating applications based on their resource
quality requirements, ARQ avoids bottlenecks where applications that are sensitive to
interference block workloads that are not. However, limiting the resources an appli-
cation can access to the subset of servers of the corresponding pool can also result in
performance violations. DC workloads are driven by strict QoS and SLA guarantees
and cannot be queued indefinitely waiting for a suitable server to be freed. We address
this issue by diverging workloads to queues with better or worse resource qualities.

4.2. Waiting Time vs. Quality of Resources
Diverging an application to a different queue creates a trade-off between the time an
application is waiting in a queue and the quality of resources it is allocated. The more
time it waits, the higher the chance it will be scheduled to a preferred server. At the
same time, as waiting time increases, there is a higher chance the application will
violate its QoS requirements. We approach this trade-off as an optimization problem.

Queue Bypassing. When there is no available machine in the server pool of a specific
class, queued workloads should be diverged to other queues. There are two possible op-
tions for where a workload can be redirected. First, it can be diverged to a higher queue.
If the queue directly above the queue the workload was originally placed in is empty,
then the workload is assigned to one of that queue’s available servers. This hurts uti-
lization, since resources of higher quality than necessary are allocated, but preserves
the workload’s QoS requirements. In the opposite case, the workload is diverged to
a queue of lower resource quality. In this case, performance may degrade, since the
application receives resources of lower quality than required. Nonetheless, ARQ guar-
antees that the application will be assigned to the best available server within the time
window dictated by its QoS constraints. Partitioning servers in pools also simplifies the
role of the greedy scheduler, which now only has to traverse the corresponding subset
of servers, unless the application gets diverged to a different queue.

Free-Server Probability Distributions. ARQ needs to know the likelihood that a server
of a specific class will become available within the time an application can be queued for,
to decide whether/when it should be diverged to the next queue. We statistically analyze
the per-server busy-time periods for each pool to obtain these probability distributions.
Busy periods are defined as the per-server intervals from the moment a server is
assigned a workload, until that workload completes.

We first use distribution-fitting to represent the server busy-time in a closed form
using known distributions. Figure 7(a) shows the CDF of server busy-time for the
first server pool (highest quality servers) in a 1000 server experiment on EC2. More

ACM Transactions on Computer Systems, Vol. 31, No. 4, Article 12, Publication date: December 2013.

QoS-Aware Scheduling in Heterogeneous Datacenters with Paragon 12:21

details on the methodology can be found in Section 5. We show the experimental data
(dots) and the closed form representation, derived from distribution-fitting. In this case,
the data is fitted to a curve resembling a normal distribution. The CDF reflects the
fraction of servers that are freed within an interval after they have been allocated to an
application. For example, 60% of servers in that server pool are freed within 2700 sec
from the time an application is scheduled to them.

Using this closed form CDF we easily derive the free-server CDF, which reflects
the probability that within a time interval from an application’s arrival, at least one
server of the corresponding pool will be available. Figure 7(b) shows the free-server
probability CDF for the first server pool. The highlighted point shows that there is a
60% probability that within 56 sec from an application’s arrival to that queue, there
will be at least one free server.

Switching between Queues. ARQ determines the switching point between queues to
maximize the probability that a server will be available within a specific time window
from an application’s arrival. Let’s assume for simplicity that the QoS constraint of an
application is defined at 95% of the application’s optimal performance. This means that
the workload can tolerate at most a 5% performance degradation. Given the free-server
probability CDFs for each server pool, ARQ solves the following optimization problem
for an application a, switching between queues i and j:

max {(Sa − wti(t)) · Qi · Pri[t], (Sa − wtj(t)) · Qj · Prj[t]}
s.t. (wti(t) + wtj(t) + Pa) < 0.05 · CTa, (2)

where Pri[t] is the probability that there is a free server in queue i; Qi is the resource
quality of queue i; CTa is the optimal computation time for application a; Pa is the
classification overheads of Paragon; and Sa = 1.05 · CTa − Pa is the available “slack”
that can be used for queueing, before the application violates its QoS constraints. ARQ
finds the switching time that maximizes the probability that a server of either queue i
or j will become available such that the application will preserve its QoS guarantees. It
also promotes waiting longer for a server of the appropriate class rather than switching
eagerly to the next queue (Qi > Qj).

4.3. Stability Analysis
A queueing network is stable if the total expected number of jobs in the network
remains bounded as a function of time. Stability of multiclass queueing networks has
been studied extensively [Dai 1995, 1996; Gamarnik 2000; Hasenbein 1998] both in
the context of deterministic and stochastic arrival processes, using fluid limit models
or Lyapunov functions. Here we briefly outline the conditions that guarantee stability
in ARQ. Since each future state in the network depends only on the current, and not
on past states, the system can be modeled as a Markov chain (MC). Suppose λi is the
external arrival rate for application class i and µi is the corresponding service rate.
P is the routing matrix, where Pij is the traffic diverged from class i to class j. Then
the traffic equation is λ̄ = λ + PT λ̄, with the explicit solution λ̄ = [I − PT]−1λ. In this
formulation we assume for simplicity that diverged jobs are placed in the tail of the new
queue, as opposed to the head. This assumption does not affect the stability conditions
of the network. Also, ρS ! ∑

i∈S λ̄i/µi is the load factor of server S. For Poisson arrival
and service processes, the stability of the Markov process is equated with positive
(Harris) recurrence for the corresponding queue length process Q(s) = (Qi(s), s ≥ 0).
Assuming no jobs are dropped from the network, this reduces to the simple traffic
condition: ρS < 1 ∀S to guarantee stability.

ACM Transactions on Computer Systems, Vol. 31, No. 4, Article 12, Publication date: December 2013.

12:22 C. Delimitrou and C. Kozyrakis

Table V. Main Characteristics of Servers of the Local Cluster. (The total core
count is 178 for 40 servers of 10 different SCs.)

Server Type GHz/sockets/cores/ L1(KB)/LLC(MB)/mem(GB) #
Xeon L5609 1.87 2 8 32/32 12 24 DDR3 1
Xeon X5650 2.67 2 12 32/32 12 24 DDR3 2
Xeon X5670 2.93 2 12 32/32 12 48 DDR3 2
Xeon L5640 2.27 2 12 32/32 12 48 DDR3 1

Xeon MP 3.16 4 4 16/16 1 8 DDR2 5
Xeon E5345 2.33 1 4 32/32 8 32 FB-DIMM 8
Xeon E5335 2.00 1 4 32/32 8 16 FB-DIMM 8
Opteron 240 1.80 2 2 64/64 2 4 DDR2 7

Atom 330 1.60 1 2 32/24 1 4 DDR2 5
Atom D510 1.66 1 2 32/24 1 8 DDR2 1

4.4. Additional Policies
ARQ can incorporate additional optimizations to prioritize application scheduling
based on, for example, their expected computation time or their priorities. These opti-
mizations are orthogonal to the principal design of the admission control protocol and
may require additional information about the scheduled workloads.

Computation Time. Shortest Job First (SJF) is a well-known algorithm [Tanenbaum
2007] that prioritizes the execution of short over long-running tasks. It improves the
system’s throughput by completing more tasks in a shorter time while preserving their
corresponding QoS requirements. SJF can be implemented in ARQ. Jobs with short
expected computation times are scheduled before long-running jobs in each queue.
However, given that the QoS requirements of every application must be preserved,
SJF is applied with the additional constraint that scheduling of long-running jobs can
only be delayed for as long as their QoS guarantees allow.

Priorities. ARQ can incorporate the concept of priorities by scheduling more critical
applications first. Although the scheduler attempts to preserve QoS for all submit-
ted workloads, in the event where only some workloads can meet their performance,
requirements the scheduler will prioritize the critical over noncritical applications.

5. METHODOLOGY

Server Systems. We evaluated Paragon on a small local cluster and three major cloud
computing services. Our local cluster includes servers of ten different configurations
shown in Table V. We also show how many servers of each type we use. Note that these
configurations range from high-end Xeon systems to low-power Atom-based boards.
There is a wide range of core counts, clock frequencies, and memory capacities and
speeds in the cluster.

For the cloud-based clusters we used exclusive (reserved) server instances, that is,
no other users had access to these servers. We verified that no external scheduling de-
cisions or actions such as auto-scaling or workload migration are performed during the
course of the experiments. We used 1000 instances on Amazon EC2 [Amazon EC2] with
14 different SCs, ranging from small, single-core instances to high-end, quad-socket,
multicore machines with hundreds of GBs of memory. All 1000 machines are private,
that is, there is no interference in the experiments from external workloads. We also
conducted experiments with 500 servers on Windows Azure [Windows Azure] with 8
different SCs and 100 servers on Google Compute Engine [GCE] with 4 SCs.

Schedulers. We compared Paragon to three alternative schedulers. First, a baseline
scheduler, that preserves an application’s core and memory requirements, but ignores

ACM Transactions on Computer Systems, Vol. 31, No. 4, Article 12, Publication date: December 2013.

QoS-Aware Scheduling in Heterogeneous Datacenters with Paragon 12:23

Table VI. Main Characteristics of Instances of the EC2 Cluster. (The total
core count is 7339 for 1000 instances of 14 different SCs.)

Instance Type Processor Arch vCPUs Memory (GB) #
m1.small 64-bit 1 1.7 78

m1.medium 64-bit 1 3.75 69
m1.large 64-bit 2 7.5 82

m1.xlarge 64-bit 4 15 81
m3.xlarge 64-bit 4 15 82

m3.2xlarge 64-bit 8 30 68
c1.medium 64-bit 2 1.7 67

c1.xlarge 64-bit 8 7 65
m2.xlarge 64-bit 2 17.1 73

m2.2xlarge 64-bit 4 34.2 70
m2.4xlarge 64-bit 8 68.4 58
cr1.8xlarge 64-bit 32 244 62
hi1.4xlarge 64-bit 16 60.5 72
hs1.8xlarge 64-bit 16 117 73

both its heterogeneity and interference profiles. In this case, applications are assigned
to the least-loaded (LL) machine. Second, a heterogeneity-oblivious (NH) scheme that
uses the interference classification in Paragon to assign applications to servers with-
out visibility in their SCs. Finally, an interference-oblivious (NI) scheme that uses the
heterogeneity classification in Paragon but has no insight on workload interference.
The overheads for the heterogeneity and interference-oblivious schemes are the corre-
sponding classification and server selection overheads.

Workloads. We used 29 single-threaded (ST), 22 multithreaded (MT), and 350 multi-
programmed (MP) workloads and 25 I/O-bound workloads. We use the full SPEC
CPU2006 suite and workloads from PARSEC [Bienia et al. 2008] (blackscholes, body-
track, facesim, ferret, fluidanimate, raytrace, swaptions, canneal); SPLASH-2 [Woo et al.
1995] (barnes, fft, lu, ocean, radix, water); BioParallel [Jaleel et al. 2006] (genenet,
svm); Minebench [Narayanan et al. 2006] (semphy, plsa, kmeans); and SPECjbb (2,
4 and 8-warehouse instances). For multiprogrammed workloads, we use 350 mixes of
4 applications, based on the methodology in Sanchez and Kozyrakis [2011]. The I/O-
bound workloads are data mining applications, such as clustering and recommender
systems [Rajaraman and Ullman 2011], in Hadoop and Matlab running on a single-
node. Workload durations range from minutes to hours. For workload scenarios with
more than 426 applications, we replicated these workloads with equal likelihood (1/4
ST, 1/4 MT, 1/4 MP, 1/4 I/O) and randomized their interleaving.

Workload Scenarios. To explore a wide range of behaviors, we used the applications
listed above to create multiple workload scenarios. Scenarios vary in the number,
type, and interarrival times of submitted applications. The load is classified based
on its relation to available resources; low: the required core count is significantly
lower than the available processor resources; high: the required core count approaches
the load the system can support but does not surpass it; and oversubscribed: the
required core count often exceeds the system’s capabilities, that is, certain machines are
oversubscribed.

For the small-scale experiments on the local cluster, we examine four workload
scenarios. First, a low-load scenario with 178 applications, selected randomly from
the pool of workloads, which are submitted with 10 sec interarrival times. Second,
a medium-load scenario with 178 applications, randomly selected as before and sub-
mitted with interarrival times that follow a Gaussian distribution with µ = 10 sec

ACM Transactions on Computer Systems, Vol. 31, No. 4, Article 12, Publication date: December 2013.

12:24 C. Delimitrou and C. Kozyrakis

and σ 2 = 1.0. Third, a high-load scenario with 178 workloads, each corresponding
to a sequence of three applications with varying memory loads. Each application goes
through three phases; first medium, then high, and again medium memory load. Work-
loads are submitted with 10 sec intervals. Finally, we examine a scenario, where 178
randomly-chosen applications arrive with 1 sec intervals. Note that the last scenario
is an oversubscribed one. After a few seconds, there are not enough resources in the
system to execute all applications concurrently, and subsequent submitted applications
are queued.

For the large-scale experiments on EC2, we examine three workload scenarios; a low-
load scenario with 2500 randomly-chosen applications submitted with 1 sec intervals;
a high-load scenario with 5000 applications submitted with 1 sec intervals; and an
oversubscribed scenario where 7500 workloads are submitted with 1 sec intervals and
an additional 1000 applications arrive in burst (less than 0.1 sec intervals) after the
first 3750 workloads.

6. EVALUATION
6.1. Comparison of Schedulers: Small Scale

QoS Guarantees. Figure 8 summarizes the performance results across the 178 work-
loads on the 40-server cluster for the medium-load scenario where application arrivals
follow a Gaussian distribution. Applications are ordered in the x-axis from worst to
best-performing workload. The y-axis shows the performance (execution time) normal-
ized to the performance of an application when it is running in the best platform in iso-
lation (without interference). Each line corresponds to the performance achieved with
a different scheduler. Overall, Paragon (P) outperforms the other schedulers, in terms
of preserving QoS (95% of optimal performance), and bounding performance degra-
dation when QoS requirements cannot be met. The 79% of workloads maintain their
QoS with Paragon, while the heterogeneity-oblivious (NH), interference-oblivious (NI),
and least-loaded (LL) schedulers provide similar guarantees for only 23%, 19%, and
7% of applications, respectively. Even more, for the case of the least-loaded scheduler,
some applications failed to complete due to memory exhaustion on the server. Similarly,
while the performance degradation with Paragon is smooth (95% of workloads have less
than 10% degradation), the other three schedulers dramatically degrade performance
for most applications, in almost linear fashion with the number of workloads. For this
scenario, the heterogeneity and interference-oblivious schedulers perform almost iden-
tically, although ignoring interference degrades performance slightly more. This is due
to workloads that arrive at the peak of the Gaussian distribution, when the cluster’s
resources are heavily utilized. For the same workloads, Paragon limits performance
degradation to less than 10% in most cases. This figure also shows that few workloads
experience speedups compared to their execution in isolation. This is a result of cache
effects or instruction prefetching between similar coscheduled workloads. We expect
positive interference to be less prevalent for a more diverse application space.

Scheduling Decision Quality. Figure 9 explains why Paragon achieves better per-
formance. Each bar represents a percentage of applications based on the performance
degradation they experience due to the quality of decisions of each of the four sched-
ulers in terms of platform selection (left) and impact from interference. Blue bars
reflect good and red bars poor scheduling decisions. In terms of platform decisions,
the least-loaded scheduler (LL) maps applications to servers with no heterogeneity
considerations, thus it significantly degrades performance for most applications. The
heterogeneity-oblivious (NH) scheduler assigns many workloads to suboptimal SCs,
although fewer than LL, as it often steers workloads to high-end SCs that tend to
tolerate more interference. However, as these servers become saturated, applications

ACM Transactions on Computer Systems, Vol. 31, No. 4, Article 12, Publication date: December 2013.

QoS-Aware Scheduling in Heterogeneous Datacenters with Paragon 12:25

Fig. 8. Performance impact from scheduling with
Paragon for medium-load, compared to heterogene-
ity and/or interference-oblivious schedulers. Appli-
cation arrival times follow a Gaussian distribution.
Applications are ordered from worst to best.

Fig. 9. Breakdown of decision quality for het-
erogeneity (left) and interference (right) for the
medium-load on the local cluster. Applications are
divided based on performance degradation induced
by the decisions of each scheduler.

Fig. 10. Performance comparison between the four schedulers for three workload scenarios: low, oversub-
scribed, and workloads with phases (Figure 10 (a), (b), (c)) and performance over time for the scenario where
workloads experience phases (Figure 10(d)).

that would benefit from them are scheduled suboptimally and NH ends up making poor
quality assignments afterwards. On the other hand, the schedulers that account for
heterogeneity explicitly (interference-oblivious (NI) and Paragon (P)) have much better
decision quality. NI induces no degradation to 47% of workloads and less than 10% for
an additional 38%. The reason why NI does not behave better in terms of platform
selection is that it has no input on interference, therefore it assigns most workloads to
the best SCs. As these machines become saturated, destructive interference increases
and performance degrades, although, unlike NH, which selects a random SC next, NI
selects the SC that is ranked second for a workload. Finally, Paragon outperforms the
other schedulers and assigns 88% of applications to their optimal SC.

The right part in Figure 9 shows decision quality with respect to interference. LL
behaves the worst for similar reasons, while NI is slightly better than LL because it
assigns more applications to high-end SCs, that are more likely to tolerate interference.
NH outperforms NI as expected, since NI ignores interference altogether. Paragon
assigns 89% of applications to servers that induce no negative interference. Considering
both graphs establishes why Paragon significantly outperforms the other schedulers,
as it has better decision quality in terms of both heterogeneity and interference.

Other Workload Scenarios. Figure 10 compares Paragon to the three schedulers for
the other three scenarios; low-load, oversubscribed, and workloads with phases. For
low-load, performance degradation is small for all schedulers, although LL degrades

ACM Transactions on Computer Systems, Vol. 31, No. 4, Article 12, Publication date: December 2013.

12:26 C. Delimitrou and C. Kozyrakis

Fig. 11. Comparison of activity and utilization between Paragon, the interference-oblivious, and the least-
loaded scheduler. Plots show the required and allocated core count at each moment. We also show heat maps
of server utilization over time for Paragon and the interference-oblivious scheme.

performance by 46% on average. Since the cluster can easily accommodate the load of
most workloads, classifying incoming applications has a smaller performance impact.
Nevertheless, Paragon outperforms the other three schedulers and achieves 99% of
optimal performance on average. It also improves resource efficiency during low-load
by completing the schedule faster. For the oversubscribed scenario, Paragon guarantees
QoS for the largest workload fraction, 82.5% and bounds degradation to less than 10%
for 99% of workloads. In this case, accounting for interference is much more critical
than accounting for heterogeneity, as the system’s resources are fully utilized.

Finally, for the case where workloads experience phases, we want to validate two
expectations. First, Paragon should outperform the other schedulers, since it accounts
for heterogeneity and interference (66% of workloads preserve their QoS). Second,
Paragon should adapt to the changes in workload behavior, by detecting deviations
from the expected IPS, reclassifying the offending workloads and rescheduling them if
a more suitable server is available. To verify this, in Figure 10(d) we show the average
performance for each scheduler over time. The points where workloads start chang-
ing phases are denoted with vertical lines. First, at phase change, Paragon induces
much less degradation than the other schedulers, because applications are assigned
to appropriate servers to begin with. Second, Paragon recovers much faster and better
from the phase change. Performance bounces back to values close to 1, as the deviating
workloads are rescheduled to appropriate servers, while the other schedulers achieve
progressively worse average performance.

Resource Allocation. Ideally, the scheduler should closely follow application resource
requirements (cores, cache capacity, memory bandwidth, etc.) and provide them with
the minimum number of servers. This improves performance (applications execute as
fast as possible without interference) and reduces overprovisioning (number of servers
used, periods for which they are active). The latter particularly extends to the DC
operator, as it reduces both capital and operational expenses. A smaller number of
servers needs to be purchased to support a certain load (capital savings). During low-
load, many servers can be turned off to save energy (operational savings).

Figure 11(a) shows how Paragon follows the resource requirements for the medium
load scenario shown in Figure 8. The green line shows the required core count of ac-
tive applications based on arrival rate and ideal execution time, and the blue line
shows the allocated core count by Paragon. Because the scheduler tracks application
behavior in terms of heterogeneity and interference, it is able to follow their require-
ments with, minimal deviation (less than 3.5%), excluding periods when the system
is oversubscribed and the required cores exceed the total number of cores in the sys-
tem. In comparison, NI (Figure 11(b)) and similarly for NH, either overprovisions
or oversubscribes servers, resulting in increased execution time; per-application and
for the overall scenario. Finally, Figure 11(c) shows the resource allocation for the
least-loaded scheduler. There is significant deviation, since the scheduler ignores both

ACM Transactions on Computer Systems, Vol. 31, No. 4, Article 12, Publication date: December 2013.

QoS-Aware Scheduling in Heterogeneous Datacenters with Paragon 12:27

Fig. 12. Execution time breakdown for selected single-threaded and multithreaded applications in the
medium load scenario.

heterogeneity and interference. All cores are used but in a suboptimal manner. Hence,
execution times are increased for individual workloads and the overall scenario. Total
execution time increases by 28%, but more importantly per-application time degrades,
which is harmful both for users and DC operators.

Server Utilization. In Figure 11 we also plot heat maps of the server utilization over
time for Paragon and the interference-oblivious scheduler. Server utilization is defined
as average CPU utilization across the cores of a server. For Paragon, utilization is
high in the middle of the scenario when many applications are active (47% higher
than without colocation), and returns to zero when the scenario finishes. In this case,
resource usage improves without performance degradation due to interference. On the
other hand, NI keeps server utilization high in some servers and underutilizes others,
while violating per-application QoS and extending the scenario’s execution time. This
is undesirable for both the user who gets lower performance and for the DC operator,
since the high utilization in certain servers does not translate to faster execution time,
adhering scalability to servicing more workloads.

Scheduling Overheads. Finally, we evaluate the total scheduling overheads for the
various schemes. These include the overheads of offline training, classification, queue-
ing, and server selection using the greedy algorithm. Figure 12 shows the execution
time breakdown for selected single-threaded and multithreaded applications. These ap-
plications are representative of workloads submitted throughout the execution of the
medium-load scenario. All bars are normalized to the execution time of the application
in isolation in the best SC. Training and classification for heterogeneity and interfer-
ence are performed in parallel, so there is a single bar for each for every workload.
There is no bar for the least-loaded scheduler for mcf, since it was one of the bench-
marks that did not terminate successfully. Paragon achieves lower execution times for
the majority of applications and close to optimal. The overheads of the recommenda-
tion system are low: 1.2% for training and 0.09% for classification. The overheads from
queueing are less than 1.5% in all cases, while the overheads of the greedy algorithm
are less than 0.1% in most cases, with the exceptions of soplex and genenet that required
extensive backtracking, which was handled with a timeout. Overall, Paragon performs
accurate classification and efficient scheduling within 1 minute of the application’s
arrival, which is marginal for most workloads.

6.2. Comparison of Schedulers: Large Scale

Performance Impact. Figure 13 shows the performance for the three workload sce-
narios on the 1000-server EC2 cluster. Similar to the results on the local cluster, the
low-load scenario, in general, does not create significant performance challenges. Nev-
ertheless, Paragon outperforms the other three schemes: it maintains QoS for 91% of
workloads and achieves, on average, 0.96 of the performance of a workload running in
isolation in the best SC. When moving to the case of high-load, the difference between

ACM Transactions on Computer Systems, Vol. 31, No. 4, Article 12, Publication date: December 2013.

12:28 C. Delimitrou and C. Kozyrakis

Fig. 13. Performance comparison between the four schedulers, for three workload scenarios on 1,000 EC2
servers.

schedulers becomes more obvious. While the heterogeneity and interference-oblivious
schemes degrade performance by an average of 22% and 34%, and violate QoS for
96% and 97% of workload, respectively, Paragon degrades performance by only 4%
and guarantees QoS for 61% of workloads. The least-loaded scheduler degrades per-
formance by 48% on average, while some applications do not terminate (crash). The
differences in performance are larger for workloads submitted when the system is heav-
ily loaded and becomes oversubscribed. Although ARQ forces certain workloads to wait
until resources are made available, the total performance degradation is still bounded
and small (only 0.6% of workloads degrade more than 20%), since it coschedules work-
loads that minimize destructive interference. Without the use of the admission control
protocol, performance degradation is higher, with 56% of workloads maintaining their
QoS, which is still significantly higher than for the heterogeneity and/or interference-
oblivious schemes.

Finally, for the oversubscribed case, NH, NI, and LL dramatically degrade perfor-
mance for most workloads, while the number of applications that do not terminate
successfully increases to 10.4%. Paragon, on the other hand, provides strict QoS guar-
antees for 52% of workloads, while the other schedulers provide similar guarantees only
for 5%, 1%, and 0.09% of workloads respectively. Additionally, Paragon limits degrada-
tion to less than 10% for an additional 33% of applications and maintains performance
degradation moderate (no cliffs in performance such as for NH in applications [1 to
1000]).

Decision Quality. Figure 14 shows a breakdown in the decision quality of the differ-
ent schedulers for heterogeneity (left) and interference (right) across the three experi-
ments. LL induces more than 20% performance degradation to most applications, both
in terms of heterogeneity and interference. NH has low decision quality in terms of
platform selection, while NI causes performance degradation by colocating unsuitable
applications. The errors increase as we move to scenarios of higher load. Paragon de-
cides optimally for 65% of applications for heterogeneity and 75% for interference on
average, significantly higher than the other schedulers. It also constrains decisions that
lead to larger than 20% degradation due to interference to less than 8% of workloads.
The results are consistent with the findings for the small-scale experiments.

Resource Allocation. Figure 15 shows why this deviation exists. We omit the graph for
low-load where deviations are small and show the high and oversubscribed scenarios.
The yellow line represents the required core count based on the applications running
at a snapshot of the system, while the other four lines show the allocated core count by
each of the schedulers. Since Paragon optimizes for increased utilization within QoS

ACM Transactions on Computer Systems, Vol. 31, No. 4, Article 12, Publication date: December 2013.

QoS-Aware Scheduling in Heterogeneous Datacenters with Paragon 12:29

Fig. 14. Breakdown of decision quality in terms of heterogeneity (left) and interference for the three EC2
scenarios.

Fig. 15. Comparison of required and performed core allocation between Paragon and the other three sched-
ulers for the three workload scenarios on EC2. The total number of cores in the system is 4960.

constraints, it follows the application requirements closely. It only deviates when the
required core count exceeds the resources available in the system. NH has mediocre
accuracy, while NI and LL either significantly overprovision the number of allocated
cores, or oversubscribe certain servers. There are two important points in these graphs:
first, as the load increases the difference in execution time exceeds the optimal one,
which Paragon approximates with minimal deviation. Second, for higher loads, the
errors in core allocation increase dramatically for the other three schedulers, while for
Paragon the average deviation remains constant, excluding the part where the system
is oversubscribed.

Windows Azure and Google Compute Engine. We validate our results on a 500-server
Azure and a 100-server Compute Engine (GCE) cluster. We run a scenario with 2500
and 500 workloads, respectively. For space reasons we omit the performance figures
for these experiments; however, in both cases the results are consistent with what
was noted for EC2. In Azure, Paragon achieves 94.3% of the performance in isolation
and maintains QoS for 61% of workloads, while the other three schedulers provide the
same guarantees for 1%, 2%, and 0.7% of workloads. Additionally, this was the only
time where NI outperformed NH, most likely due to the wide variation between SCs,
which increases the importance of accounting for heterogeneity. In the GCE cluster,
which has only 4 SCs, workloads exhibit mediocre benefits from heterogeneity-aware
scheduling (7% over random), while the majority of gains comes from accounting for in-
terference. Overall, Paragon achieves 96.8% of optimal performance and NH 90%. The

ACM Transactions on Computer Systems, Vol. 31, No. 4, Article 12, Publication date: December 2013.

12:30 C. Delimitrou and C. Kozyrakis

Fig. 16. Performance comparison between the schedulers on the Windows Azure and Google Compute
Engine (GCE) clusters.

consistency between experiments, despite the different cluster configurations and un-
derlying hardware, shows the robustness of the analytical methods that drive Paragon.

7. RELATED WORK
We discuss work relevant to Paragon in the areas of DC scheduling, VM management,
and workload rightsizing. We also present related work from scheduling for heteroge-
neous multicore chips.

Datacenter Scheduling. Recent work on DC scheduling has highlighted the impor-
tance of platform heterogeneity and workload interference. Mars et al. [2013, 2011]
showed that the performance of Google workloads can vary by up to 40% due to hetero-
geneity even when considering only two SCs and up to 2× due to interference even when
considering only two colocated applications. In Mars and Tang [2013], they present a
system that uses combinatorial optimization to select the proper server configuration
for a given workload. Mars et al. [2011] present a two-step method to characterize
the sensitivity of workloads to memory pressure and the stress each application exer-
cises to the memory subsystem. In the same spirit, Yang et al. [2013] apply a dynamic
interference sensitivity detection scheme to preserve the performance of batch and
latency-critical applications under colocation scenarios. Govindan et al. [2011] also
present a scheme to quantify the effects of cache interference between consolidated
workloads, although they require access to physical memory addresses. Zhang et al.
[2013] use cycles-per-instruction (CPI) as a proxy for interference between workloads
and throttle the offending corunners such that the applications return to their ex-
pected behavior. Finally, Nathuji et al. [2010] present a control-based resource allo-
cation scheme that mitigates the effects of cache, memory, and hardware prefetching
interference between coscheduled workloads. In Paragon, we extend the concepts of
heterogeneity and interference-aware DC scheduling in several ways. We provide an on-
line, highly-accurate and low-overhead methodology that classifies applications for both
heterogeneity and interference across multiple resources. We also show that our clas-
sification engine allows for efficient, online scheduling without using computationally-
intensive techniques which require exhaustive search between colocation candidates.

VM Management. VM management systems such as vSphere [VMWare vSphere],
XenServer [Xenserver], or the VM platforms on EC2 [Amazon EC2], and Windows
Azure [Windows Azure] can schedule diverse workloads submitted by a large number
of users on the available servers. In general, these platforms account for application

ACM Transactions on Computer Systems, Vol. 31, No. 4, Article 12, Publication date: December 2013.

QoS-Aware Scheduling in Heterogeneous Datacenters with Paragon 12:31

resource requirements, which they learn over time by monitoring workload execution.
VMWare’s Distributed Resources Scheduler (DRS) [VMWare-DRS 2012], for example,
accounts for CPU and memory requirements when scheduling applications. Recently,
DeepDive [Novakovic̀ et al. 2013] proposed a black-box system for management of
virtual machines, which accounts for interference while keeping any migrations over-
heads minimal. Paragon can complement such systems by making efficient scheduling
decisions based on heterogeneity and interference and detecting when an application
should be considered for migration (rescheduling).

Resource Management and Rightsizing. There has been significant work on re-
source allocation in virtualized and nonvirtualized large-scale DCs, including Mesos
[Hindman et al. 2011], Rightscale [Rightscale], CloudScale [Shen et al. 2011],
Omega [Schwarzkopf et al. 2013]; resource containers [Banga et al. 1999], Dejavu [Vasić
et al. 2012]; and the work by Chase et al. [2001]. Mesos performs resource allocation be-
tween distributed computing frameworks like Hadoop or Spark [Hindman et al. 2011;
Zaharia et al. 2012]. Rightscale automatically scales out three-tier applications to react
to changes in the load in Amazon’s cloud service [Amazon EC2]. CloudScale identifies
application resource requirements using online demand prediction and prediction er-
ror handling, without a priori assumptions on application behavior [Shen et al. 2011].
Omega is a shared-state two-level scheduler that exposes the full cluster state to each
scheduler of individual frameworks, improving utilization [Schwarzkopf et al. 2013].
Dejavu serves a similar goal by identifying a few workload classes, and, based on them,
reuses previous resource allocations to minimize reallocation overheads [Vasić et al.
2012]. Zhu et al. [2009] present a resource management scheme for virtualized DCs
that preserves SLAs, and Gmach et al. [2007] provides a resource allocation scheme for
DC applications that relies on the ability to predict their behavior a priori. In general,
Paragon is complementary to resource allocation and rightsizing systems. Once such
a system determines the amount of resources needed by an application (e.g., number
of servers, memory capacity, etc.), Paragon can classify and schedule it on the proper
hardware platform in a way that minimizes interference. Currently, Paragon focuses on
online scheduling of previously unknown workloads. We will consider how to integrate
Paragon with a rightsizing system for scheduling of long running, three-tier services
in future work.

Scheduling for Heterogeneous Multicore Chips. Finally, scheduling in heterogeneous
CMPs shares some concepts and challenges with scheduling in heterogeneous DCs,
therefore some of the ideas in Paragon can be applied in heterogeneous CMP scheduling
as well. Fedorova et al. [2007] discuss OS-level scheduling for heterogeneous multicores
as having the following three objectives: optimal performance, core assignment balance,
and response time fairness. Shelepov et al. [2009] present a scheduler that exhibits
some of these features and is simple and scalable, while Craeynest et al. [2012] use
performance statistics to estimate which workload-to-core mapping is likely to provide
the best performance. DC scheduling also has similar requirements, as applications
should observe their QoS, resource allocation should follow application requirements
closely, and fairness between coscheduled workloads should be preserved. Given the
increasing number of cores per chip and of coscheduled tasks, techniques such as those
used for the classification engine of Paragon can be applicable when deciding how to
schedule applications to heterogeneous cores as well.

8. CONCLUSIONS
We have presented Paragon, a scalable scheduler for DCs that is both heterogeneity
and interference-aware. Paragon uses validated analytical methods, such as collabo-
rative filtering to quickly and accurately classify incoming applications with respect

ACM Transactions on Computer Systems, Vol. 31, No. 4, Article 12, Publication date: December 2013.

12:32 C. Delimitrou and C. Kozyrakis

to platform heterogeneity and workload interference. Classification uses minimal in-
formation about the new application and relies mostly on information from previously
scheduled workloads. The output of classification is used by a greedy scheduler to
assign workloads to servers in a manner that maximizes application performance
and optimizes resource usage. Paragon also tracks workload changes and adjusts
scheduling decisions at runtime to avoid performance degradations. We have evaluated
Paragon with both small and large-scale systems. Even for very demanding scenarios,
where heterogeneity and interference-agnostic schedulers degrade performance for up
to 99.9% of workloads, Paragon maintains QoS guarantees for 52% of applications
and bounds degradation to less than 10% for an additional 33% out of 8500 appli-
cations on a 1000-server cluster. Paragon preserves QoS guarantees while improving
server utilization, hence it benefits both the DC operator, who achieves better resource
use, and the user, who gets the best performance. In future work we will consider
how to couple Paragon with VM management and rightsizing systems for large-scale
datacenters.

ACKNOWLEDGMENTS

We sincerely thank John Ousterhout, Mendel Rosenblum, Byung-Gon Chun, Daniel Sanchez, Jacob Leverich,
David Lo, and the anonymous reviewers for their feedback on earlier versions of this manuscript.

REFERENCES
ALAMELDEEN, A. R. AND WOOD, D. A. 2006. IPC considered harmful for multiprocessor workloads. IEEE Micro

(Special Issue on Computer Architecture Simulation and Modeling).
AMAZON EC2. http://aws.amazon.com/ec2/.
BANGA, G., DRUSCHEL, P., AND MOGUL, J. C. 1999. Resource containers: A new facility for resource manage-

ment in server systems. In Proceedings of the Third Symposium on Operating Systems Design and
Implementation (OSDI).

BARROSO, L. 2011. Warehouse-scale computing: entering the teenage decade. In Proceedings of ISCA.
BARROSO, L. AND HOELZLE, U. 2009. The Datacenter as a Computer: An Introduction to the Design of Warehouse-

Scale Machines. Morgan and Claypool.
BELL, R. M., KOREN, Y., AND VOLINSKY, C. 2007. The BellKor 2008 solution to the Netflix Prize. Tech. rep.,

AT&T Labs.
BERTSIMAS, D., GAMARNIK, D., AND TSITSIKLIS, J. N. 2001. Performance of multiclass Markovian queueing net-

works via piecewise linear Lyapunov functions. Ann. Appl. Probab. 11, 1384–1428.
BIENIA, C., KUMAR, S., SINGH, J. P., AND LI, K. 2008. The PARSEC benchmark suite: Characterization and

architectural implications. In Proceedings of the 17th International Conference on Parallel Architectures
and Compilation Techniques (PACT).

BOTTOU, L. 2010. Large-scale machine learning with stochastic gradient descent. In Proceedings of the Inter-
national Conference on Computational Statistics (COMPSTAT).

CALDER, B., WANG, J., OGUS, A., NILAKANTAN, N., SKJOLSVOLD, A., MCKELVIE, S., XU, Y., SRIVASTAV, S., WU, J., SIMITCI,
H., HARIDAS, J., UDDARAJU, C., KHATRI, H., EDWARDS, A., BEDEKAR, V., MAINALI, S., ABBASI, R., AGARWAL, A.,
UL HAQ, M. F., UL HAQ, M. I., BHARDWAJ, D., DAYANAND, S., ADUSUMILLI, A., MCNETT, M., SANKARAN, S.,
MANIVANNAN, K., AND RIGAS, L. 2011. Windows Azure storage: A highly available cloud storage service
with strong consistency. In Proceedings of the 23rd ACM Symposium on Operating Systems Principles
(SOSP).

CHASE, J., ANDERSON, D., THAKAR, P., VAHDAT, A., AND DOYLE, R. 2001. Managing energy and server resources in
hosting centers. In Proceedings of the 18th ACM Symposium on Operating Systems Principles (SOSP).

CRAEYNEST, K. V., JALEEL, A., EECKHOUT, L., NARVAEZ, P., AND EMER, J. 2012. Scheduling heterogeneous multi-
cores through performance impact estimation (PIE). In Proceedings of the International Symposium on
Computer Architecture (ISCA).

DAI, J. G. 1995. On positive Harris recurrence of multiclass queueing networks: A unified approach via fluid
limit models. Ann. Appl. Probab. 5, 49–77.

DAI, J. G. 1996. A fluid-limit model criterion for instability of multiclass queueing networks. Ann. Appl.
Probab. 6, 751–757.

ACM Transactions on Computer Systems, Vol. 31, No. 4, Article 12, Publication date: December 2013.

QoS-Aware Scheduling in Heterogeneous Datacenters with Paragon 12:33

DELIMITROU, C. AND KOZYRAKIS, C. 2013a. iBench: Quantifying interference for datacenter applications. In
Proceedings of the IEEE International Symposium on Workload Characterization (IISWC).

DELIMITROU, C. AND KOZYRAKIS, C. 2013b. Paragon: QoS-aware scheduling for heterogeneous datacenters. In
Proceedings of the 18th International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS).

DELIMITROU, C. AND KOZYRAKIS, C. 2013c. The Netflix challenge: Datacenter edition. IEEE Comput. Archit.
Lett. (June).

FEDOROVA, A., SELTZER, M., AND SMITH, M. D. 2007. Improving performance isolation on chip multiprocessors
via an operating system scheduler. In Proceedings of the 16th International Conference on Parallel
Architecture and Compilation Techniques (PACT).

GAMARNIK, D. 2000. On deciding stability of scheduling policies in queuing systems. In Proceedings of the
11th Annual ACM-SIAM Symposium on Discrete Algorithms. 467–476.

GOOGLE COMPUTE ENGINE GCE. http://cloud.google.com/products/compute-engine.html.
GHODSI, A., ZAHARIA, M., HINDMAN, B., KONWINSKI, A., SHENKER, S., AND STOICA, I. 2011. Dominant resource

fairness: Fair allocation of multiple resource types. In Proceedings of the 8th USENIX Conference on
Networked Systems Design and Implementation (NSDI).

GMACH, D., ROLIA, J., CHERKASOVA, L., AND KEMPER, A. 2007. Workload analysis and demand prediction of enter-
prise data center applications. In Proceedings of the 10th IEEE International Symposium on Workload
Characterization (IISWC).

GOVINDAN, S., LIU, J., KANSAL, A., AND SIVASUBRAMANIAM, A. 2011. Cuanta: Quantifying effects of shared on-chip
resource interference for consolidated virtual machines. In Proceedings of the 2nd ACM Symposium on
Cloud Computing (SOCC).

HAMILTON, J. 2009. Internet-scale service infrastructure efficiency. In Proceedings of the 37th International
Symposium on Computer Architecture (ISCA).

HAMILTON, J. 2010. Cost of power in large-scale data centers. http://perspectives.mvdirona.com.
HASENBEIN, J. J. 1998. Stability, capacity, and scheduling of multiclass queuing networks. Ph.D. dissertation,

Georgia Institute of Technology.
HINDMAN, B., KONWINSKI, A., ZAHARIA, M., GHODSI, A., JOSEPH, A. D., KATZ, R., SHENKER, S., AND STOICA, I. 2011.

Mesos: A platform for fine-grained resource sharing in the data center. In Proceedings of the 8th USENIX
Symposium on Networked Systems Design and Implementation (NSDI).

JALEEL, A., MATTINA, M., AND JACOB, B. L. 2006. Last level cache (LLC) performance of data mining workloads
on a CMP—A case study of parallel bioinformatics workloads. In Proceedings of the 12th International
Symposium on High-Performance Computer Architecture (HPCA-12).

KATZ, J. AND LINDELL, Y. 2007. Introduction to Modern Cryptography. Chapman & Hall/CRC Press.
KIWIEL, K. C. 2001. Convergence and efficiency of subgradient methods for quasiconvex minimization. Math.

Program. (Series A), 90, 1, 1–25.
KOZYRAKIS, C., KANSAL, A., SANKAR, S., AND VAID, K. 2010. Server engineering insights for large-scale online

services. IEEE Micro 30, 4, 8–19. DOI:http://dx.doi.org/10.1109/MM.2010.73.
LEVERICH, J. AND KOZYRAKIS, C. 2010. On the energy (in)efficiency of Hadoop clusters. SIGOPS Oper. Syst. Rev.

44, 1, 61–65.
LIN, J. AND KOLCZ, A. 2012. Large-scale machine learning at Twitter. In Proceedings of the ACM SIGMOD

Conference.
MARS, J. AND TANG, L. 2013. Whare-map: heterogeneity in “homogeneous” warehouse-scale computers. In

Proceedings of the 40th Annual International Symposium on Computer Architecture (ISCA).
MARS, J., TANG, L., AND HUNDT, R. 2011. Heterogeneity in “homogeneous”; warehouse-scale computers: A

performance opportunity. IEEE Comput. Archit. Lett. 10, 2, 29–32. DOI:http://dx.doi.org/10.1109/L-
CA.2011.14.

MEISNER, D., SADLER, C. M., BARROSO, L. A., WEBER, W.-D., AND WENISCH, T. F. 2011. Power management of
online data-intensive services. In Proceedings of the 38th Annual International Symposium on Computer
Architecture (ISCA).

MILLER, B. L. 1969. A queuing reward system with several customer classes. Manage. Sci. 16, 3, 234–245.
NARAYANAN, R., OZISIKYILMAZ, B., ZAMBRENO, J., MEMIK, G., AND CHOUDHARY, A. N. 2006. MineBench: A benchmark

suite for data mining workloads. In Proceedings of the 9th IEEE International Symposium on Workload
Characterization (IISWC).

NATHUJI, R., ISCI, C., AND GORBATOV, E. 2007. Exploiting platform heterogeneity for power efficient data centers.
In Proceedings of the International Conference on Autonomic Computing (ICAC).

NATHUJI, R., KANSAL, A., AND GHAFFARKHAH, A. 2010. Q-Clouds: Managing performance interference effects for
QoS-aware clouds. In Proceedings of the European Conference on Computer Systems (EuroSys’10).

ACM Transactions on Computer Systems, Vol. 31, No. 4, Article 12, Publication date: December 2013.

12:34 C. Delimitrou and C. Kozyrakis

NOVAKOVIC̀, D., VASIC̀, N., NOVAKOVIC̀, S., KOSTIC̀, D., AND BIANCHINI, R. 2013. DeepDive: Transparently identify-
ing and managing performance interference in virtualized environments. In Proceedings of the USENIX
Annual Technical Conference (ATC).

RACKSPACE. Open Cloud. http://www.rackspace.com/.
RAJARAMAN, A. AND ULLMAN, J. 2011. Textbook on Mining of Massive Datasets. Rightscale. https://aws.amazon.

com/solution-providers/isv/rightscale.
SANCHEZ, D. AND KOZYRAKIS, C. 2011. Vantage: Scalable and efficient fine-grain cache partitioning. In Proceed-

ings of the 38th Annual International Symposium in Computer Architecture (ISCA-38).
SCHEIN, A., POPESCUL, A., UNGAR, L., AND PENNOCK, D. 2002. Methods and metrics for cold-start recommen-

dations. In Proceedings of the 25th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR).

SCHWARZKOPF, M., KONWINSKI, A., ABD-EL-MALEK, M., AND WILKES, J. 2013. Omega: Flexible, scalable schedulers
for large compute clusters. In Proceedings of the 8th ACM European Conference on Computer Systems
(EuroSys’13).

SHELEPOV, D., ALCAIDE, J. C. S., JEFFERY, S., FEDOROVA, A., PEREZ, N., HUANG, Z. F., BLAGODUROV, S., AND KUMAR,
V. 2009. HASS: A scheduler for heterogeneous multicore systems. SIGOPS Oper. Syst. Rev. 43, 2.

SHEN, Z., SUBBIAH, S., GU, X., AND WILKES, J. 2011. CloudScale: elastic resource scaling for multi-tenant cloud
systems. In Proceedings of the 2nd ACM Symposium on Cloud Computing (SOCC).

SUN, J., XIE, Y., ZHANG, H., AND FALOUTSOS, C. 2008. Less is more: Compact matrix decomposition for large
sparse graphs. J. Stat. Anal. Data Mining 1, 1.

TANENBAUM, A. S. 2007. Modern Operating Systems. 3rd Ed. Peason Education, Inc.
VASIĆ, N., NOVAKOVIĆ, D., MIUČIN, S., KOSTIĆ, D., AND BIANCHINI, R. 2012. Deja vu: accelerating resource alloca-

tion in virtualized environments. In Proceedings of the 17th International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS).

VMOTION. Migrate VMs with Zero Downtime. http//www.vmware.com/products/vmotion.
VMWARE-DRS. 2012. Distributed resource scheduler: design, implementation and lessons learned. VMware

Tech. J. 1, 1.
VMWARE VSPHERE. http://www.vmware.com/products/vsphere/.
WENG, L.-T., YUE, X., YUEFENG, L., AND NAYAK, R. 2008. Exploiting item taxonomy for solving cold-start

problem in recommendation making. In Proceedings of the 20th IEEE International Conference on Tools
with Artificial Intelligence (ICTAI).

WENISCH, T. F., WUNDERLICH, R. E., FERDMAN, M., AILAMAKI, A., FALSAFI, B., AND HOE, J. C. 2006. SimFlex:
Statistical sampling of computer system simulation. IEEE MICRO 26, 4.

WINDOWS AZURE. http://www.windowsazure.com/.
WITTEN, I. H., FRANK, E., AND HOLMES, G. 2011. Data Mining: Practical Machine Learning Tools and Techniques.

3rd Ed.
WOO, S. C., OHARA, M., TORRIE, E., SINGH, J. P., AND GUPTA, A. 1995. The SPLASH-2 programs: Characterization

and methodological considerations. In Proceedings of the 22nd International Symposium on Computer
Architecture (ISCA).

XENSERVER. 6.1. http://www.citrix.com/xenserver/.
YANG, H., BRESLOW, A., MARS, J., AND TANG, L. 2013. Bubble-flux: Precise online QoS management for increased

utilization in warehouse scale computers. In Proceedings of the 40th Annual International Symposium
on Computer Architecture (ISCA).

ZAHARIA, M., CHOWDHURY, M., DAS, T., DAVE, A., MA, J., MCCAULEY, M., FRANKLIN, M. J., SHENKER, S., AND STOICA,
I. 2012. Spark: Cluster computing with working sets. In Proceedings of the 9th USENIX Symposium on
Networked Systems Design and Implementation (NSDI).

ZHANG, X., TUNE, E., HAGMANN, R., JNAGAL, R., GOKHALE, V., AND WILKES, J. 2013. CPI2: CPU performance
isolation for shared compute clusters. In Proceedings of the 8th ACM European Conference on Computer
Systems (EuroSys’13).

ZHANG, Z.-K., LIU, C., ZHANG, Y.-C., AND ZHOU, T. 2010. Solving the cold-start problem in recommender systems
with social tags. arXiv:1004.3732v2.

ZHU, X., YOUNG, D., WATSON, B. J., WANG, Z., ROLIA, J., SINGHAL, S., MCKEE, B., HYSER, C., GMACH, D., GARDNER, R.,
CHRISTIAN, T., AND CHERKASOVA, L. 2009. 1000 Islands: An integrated approach to resource management
for virtualized datacenters. J. Cluster Comput. 12, 1.

Received May 2013; revised September 2013; accepted September 2013

ACM Transactions on Computer Systems, Vol. 31, No. 4, Article 12, Publication date: December 2013.

