DRAF: A Low-Power DRAM-based Reconfigurable Acceleration Fabric

Mingyu Gao, Christina Delimitrou, Dimin Niu, Krishna Malladi, Hongzhong Zheng, Bob Brennan, Christos Kozyrakis

FPGA-Based Accelerators

- Improve performance and energy efficiency
- Good balance between flexibility (CPUs) and efficiency (ASICs)

- Recently used for many datacenter apps
 - o Image/video processing, websearch, neural networks, ...

Motivation

Deploy FPGAs in cost & power constrained systems

Datacenter systems

- High-density FPGAs for large accelerators for multiple apps
- Low-power FPGAs to simplify integration in servers and racks

Mobile systems

- High-density FPGAs for accelerators for multiple apps
- Low-power FPGAs for low cost and long battery life

DRAF in a Nutshell

- A high-density & low-power FPGA
 - Bit-level reconfigurable, just like conventional FPGAs

- Uses dense *DRAM technology* for lookup tables
 - Replacing the SRAM technology in conventional FPGAs
- DRAF vs. FPGA
 - ∘ 10 − 100x logic density
 - 1/3 power consumption
 - Multi-context support with fast context switch

Challenges of Building DRAM-based FPGAs

DRAM Array Structure

A DRAM subarray is naturally a lookup-table

Challenges

Destructive Access

- Explicit activation, restoration, and precharge operations
 - Longer access delay due to serialization

DRAF Architecture

Basic Logic Element
Multi-Context Support
Timing

DRAF Overview

Same island layout and configurable interconnect as FPGA

Basic Logic Element

Multi-Context Support

- DRAF supports 8-16 contexts per chip
 - Context: one MAT per BLE
 - Efficient use of MATs with little area and power overhead
- Instant switch between active contexts
 - Similar to context-switch between processes on CPU
- Context uses
 - One context per accelerator design or application
 - One context per part of a very large accelerator design

Timing – Destructive Access

- Issue of LUT chaining: order of LUT access
- Solution: *phase* similar to critical path finding

Timing – Latency Optimization

- Issue: precharge and restore delays
- Solution: 3-way delay overlapping
 - Hide PRE/RST delays with wire propagation delay
- □ Performance gap between DRAF and FPGA reduces from >10x to 2-4x

Summary

- □ Challenges → solutions
 - \circ Mismatch LUT size \rightarrow multi-context BLE
 - Destructive access → phase-based timing
 - ∘ Slow speed → 3-way delay overlapping

- Other design features (see paper)
 - Sense-amp as register
 - Time-multiplexed routing
 - Handling DRAM Refresh

Evaluation

Area, power, performance against FPGA and CPU

Methodology

- Synthesize, place & route with Yosys + VTR
- CACTI-3DD with 45 nm power and area models
- Comparisons
 - o 70 mm² FPGA based on Xilinx Virtex-6
 - o 70 mm² DRAF device, 8-context
 - Intel Xeon E5-2630 multi-core processor (2.3 GHz)
- 18 accelerator designs
 - MachSuite, Sirius, Vivado HLS Video Library, VTR benchsuite
 - Web service, image processing, analytics, neural networks, ...

DRAF Chip Area & Power

FPGA vs. DRAF (Area)

- 8-context DRAF occupies 19% less area than 1-context FPGA
 - o 10x area efficiency: 8 designs in less silicon area than 1 design before

FPGA vs. DRAF (Power)

- Use one context in DRAF
- □ DRAF consumes 1/3 power of FPGA and 15% less energy
 - Note: current CAD tools are less efficient with DRAF

Performance

- DRAF is 2.7x slower than FPGA
- □ DRAF is 13.5x faster than CPU, 3.4x faster than ideal 4-core

Conclusions

- DRAF: high-density and low-power reconfigurable fabric
 - Based on dense DRAM technology
 - Optimized timing + multi-context support
- DRAF targets cost and power constrained applications
 - E.g., datacenters and mobile systems
- DRAF trades off some performance for area & power efficiency
 - o 10x smaller area, 3x less power, and 2.7x slower than FPGA
 - Still 13x speedup over Xeon cores

Thanks!

Questions?

