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ABSTRACT

The energy constraints due to the end of Dennard scaling, the
popularity of in-memory analytics, and the advances in 3D
integration technology have led to renewed interest in near-
data processing (NDP) architectures that move processing
closer to main memory. Due to the limited power and area
budgets of the logic layer, the NDP compute units should be
area and energy efficient while providing sufficient compute
capability to match the high bandwidth of vertical memory
channels. They should also be flexible to accommodate a
wide range of applications. Towards this goal, NDP units
based on fine-grained (FPGA) and coarse-grained (CGRA)
reconfigurable logic have been proposed as a compromise
between the efficiency of custom engines and the flexibility
of programmable cores. Unfortunately, FPGAs incur sig-
nificant area overheads for bit-level reconfiguration, while
CGRAs consume significant power in the interconnect and
are inefficient for irregular data layouts and control flows.

This paper presents Heterogeneous Reconfigurable Logic
(HRL), a reconfigurable array for NDP systems that im-
proves on both FPGA and CGRA arrays. HRL combines
both coarse-grained and fine-grained logic blocks, separates
routing networks for data and control signals, and uses spe-
cialized units to effectively support branch operations and
irregular data layouts in analytics workloads. HRL has the
power efficiency of FPGA and the area efficiency of CGRA.
It improves performance per Watt by 2.2x over FPGA and
1.7x over CGRA. For NDP systems running MapReduce,
graph processing, and deep neural networks, HRL achieves
92% of the peak performance of an NDP system based on
custom accelerators for each application.

1. INTRODUCTION

The end of Dennard scaling has made all computing sys-
tems energy-bound [14]. This is particularly the case for the
emerging class of in-memory analytics workloads, such as
MapReduce and Spark, graph processing, and deep neural
networks [8], where the lack of temporal locality leads to
most energy spent on moving data to and from the memory
system, dwarfing the energy cost of computation [24].

The obvious way to save energy for workloads with lim-
ited temporal locality is to avoid data movement altogether
by executing computation closer to the data. Past efforts
for processing-in-memory (PIM) ran into the high overheads
of integrating processing units and main memory in a sin-
gle chip [13, 23, 32, 33, 39, 44, 45]. The recent advances
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in the 3D integration technology [9, 42] provide a practi-
cal implementation approach, where compute units are in-
troduced in the logic layer of a TSV-based memory stack.
This has created renewed interest in near-data processing
(NDP) [3], and several research efforts have recently demon-
strated high potential in performance and energy improve-
ments [1, 15,16,22,46,59].

A key decision for NDP systems is the type of processing
elements used in the logic layer. Past PIM and NDP efforts
have used a range of approaches, including general pro-
grammable cores with SIMD or multi-threading support [13,
16, 45, 46], throughput-oriented GPUs [59], reconfigurable
arrays [15, 44], and custom accelerators (ASICs) [22, 60].
Each option represents a different tradeoff point between
performance, area and power efficiency, and flexibility. Pro-
grammable cores and GPUs have the highest flexibility, but
their area and power overheads limit the number of elements
per chip, hence underutilizing the high memory bandwidth
available in 3D stacks. Custom units are highly efficient
but lack the flexibility to support a wide range of work-
loads. Reconfigurable units based on fine-grained (FPGA)
or coarse-grained (CGRA) arrays have sufficient flexibility
but introduce area and power overheads respectively. FPGA
arrays incur high area overheads for the bit-level config-
urable blocks and interconnects. CGRA arrays incur high
power overheads due to the powerful interconnect for com-
plicated data flow support [21], and are typically inefficient
for irregular data and control flow patterns.

This paper presents a reconfigurable logic architecture op-
timized for near-data processing, called Heterogeneous Re-
configurable Logic (HRL). The HRL array uses both coarse-
grained functional units with a static bus-based routing fab-
ric for data and fine-grained logic blocks with a bit-level
network for control, in order to achieve the area efficiency
of CGRA and the power efficiency of FPGA. It also fea-
tures specialized units that support control flow branches,
irregular data layouts, and the mismatch between compute
pipeline depth and memory access width in analytics work-
loads. Using HRL arrays as the processing elements, we
build near-data processing systems with support for efficient
communication and synchronization across multiple stacks
and memory channels [16]. Nevertheless, HRL arrays can
also be used as efficient and flexible compute units in other
scenarios as well.

We evaluate HRL for in-memory analytics frameworks in-
cluding MapReduce, graph processing, and deep neural net-



works. We show that HRL achieves the throughput and area
efficiency of CGRA and the power efficiency of FPGA. Per
unit of area, the HRL array achieves 1.7x higher power effi-
ciency (performance/Watt) than the CGRA and 2.2x higher
than the FPGA. For the overall NDP system with practi-
cal area and power constraints for the logic layer in the 3D
stacks, HRL has a 1.2x and a 2.6x performance advantage
over CGRA and FPGA respectively. Compared to NDP sys-
tems with custom accelerators for each workload we con-
sidered (the efficiency limit), the HRL-based NDP system
is the only one that comes within 92% of its performance,
while consuming 23% more power. Overall, HRL provides
high performance, high efficiency, and high flexibility for a
wide range of regular and irregular analytics workloads.

2. BACKGROUND AND MOTIVATION
2.1 Related Work on PIM/NDP

Research on computing close to data started in the 1990s
with Processing-in-Memory (PIM) projects. EXECUBE in-
tegrated multiple SIMD/MIMD cores with DRAM on a sin-
gle chip and scaled to distributed configurations [33]. IRAM
combined a vector processor with DRAM to achieve high
bandwidth at low power for media tasks [45]. Also based
on SIMD, Computational RAM added processing elements
to the DRAM sense amplifiers [13]. Smart Memories [39]
and DIVA [23] were tiled architectures that combined pro-
cessor and DRAM arrays. FlexRAM integrated arrays of
small SPMD engines interleaved with DRAM blocks and a
RISC processor on a single chip [32]. Active Pages used re-
configurable logic for the computation elements to achieve
both high flexibility and high efficiency [44].

Close coupling of processing and memory is now practi-
cal using 3D stacking with through-silicon vias (TSVs) [9,
42]. 3D stacking is already used to introduce large caches
on top of processor chips [30, 36, 37]. For main memory,
there are two prominent efforts, Micron’s Hybrid Memory
Cube (HMC) [27] and JEDEC High Bandwidth Memory
(HBM) [29], that provide a logic die at the bottom of mul-
tiple stacked DRAM chips. The common use of the logic
layer is to implement peripheral circuits, testing logic, in-
terface to processor chips, and/or memory controllers. The
logic layer can also accommodate different types of process-
ing units to enable near-data processing (NDP) [3].

There are several recent proposals for NDP architectures
focusing primarily on in-memory analytics. NDC connected
the host processor with multiple daisy chains of HMC stacks
augmented with simple, programmable cores [46]. The em-
barrassingly parallel phases of the application ran on the
NDP cores, while the host processor handled the commu-
nication. NDA used coarse-grained reconfigurable arrays
(CGRAs) [6, 21,40, 50] as its processing elements on top
of commodity DRAM devices with minimal change to the
data bus [15]. The host processor was used for data shuf-
fling and accelerator control. Both NDC and NDA showed
significant performance and energy benefits. Tesseract was
a near-data accelerator for large-scale graph processing [1].
It used simple programmable cores for processing and intro-
duced a low-cost message-passing mechanism with special-
ized prefetchers to support efficient communication between

struct vertex_t {
const uint32_t in_deg;
const uint32_t out_deg;
double rank;
double sum;
uint32_t collected;
I
struct edge_t {
9 vid_t src;
10 vid_t dst;
11 ;
12 struct update_t {
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13 vid_t dst;

14 double contribution;

15}

16

17 update_t pagerank_scatter(vertex_t sv, edge_t e) {
18 return { e.dst, sv.rank / sv.out_deg };

19 }

20

21 void pagerank_gather(

22 vertex_t& dv, update_t u, double beta) {
23 dv.sum += u.contribution;

24 dv.collected++;

25 if (dv.collected == dv.in_deg) {

26 dv.rank = beta * dv.sum + (1 - beta);

27 dv.sum = 0;

28 dv.collected = 0;

29 }

30 }

Figure 1: The PageRank scatter and gather kernels.

memory partitions. Practical near-data processing proposed
a more general solution for shared-memory NDP systems
running various in-memory analytics workloads [16]. It
also used general-purpose multi-threaded cores, and pre-
sented an efficient coherence and communication model for
balanced and scalable NDP systems. TOP-PIM stacked a
throughput-oriented GPU to exploit the increased memory
bandwidth [59], while other systems have used various cus-
tom hardware accelerators [22, 60].

2.2 Requirements for NDP Logic

3D stacking allows NDP systems to eliminate the energy
overheads of moving data over long board traces. It also pro-
vides an order of magnitude higher bandwidth between the
stacked memory banks and the compute units in the logic
layer. However, the actual performance depends on how
much processing capability one can fit within the area and
power constraints of the logic layer. The ideal compute tech-
nology for NDP should (1) be area-efficient in order to pro-
vide sufficient compute throughput to match the high band-
width available through 3D stacking; (2) be power-efficient
in order to reduce total energy consumption, and to avoid
causing thermal issues in the DRAM stacks; (3) provide high
Slexibility to allow for reuse across multiple applications and
application domains.

NDP systems are a natural fit for data-intensive analyt-
ics applications with large memory footprint, such as in-
memory MapReduce [11, 58], graph processing [17, 18],
and deep neural networks [5, 10]. While the computations
in these applications are mostly simple arithmetic opera-
tions, the data flows, data layouts, and control flows can
be quite different, irregular, and non-trivial. As an exam-
ple, Figure 1 shows the PageRank scatter and gather ker-
nels, following the edge-centric gather-scatter programming
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Figure 2: Computational throughput and power consump-
tion for different logic types implementing the PageRank
scatter kernel: multi-threaded (MT) cores, SIMD cores, FP-
GAs, CGRAs, and custom units (ASICs).

model [48]. First, data flow patterns in different kernels
can vary a lot. Some may be as simple as one operation
(pagerank_scatter), while others can be more compli-
cated and irregular (pagerank_gather). Second, wide
complex data types (such as vertex_t and update_t) are
commonly used as input/output for the processing kernels.
They often include multiple basic data types with various
lengths and irregular alignment, and the data layout can be
significantly reorganized with little computation in the ker-
nel (see pagerank_scatter). Simple IO schemes will not
work well with such complicated data layouts and imbal-
anced compute-to-10 ratios. Third, conditional branches are
frequently used to determine the final output values, requir-
ing efficient dynamic control flow support.

2.3 Comparison between Logic Alternatives

The previous NDP projects in Section 2.1 implemented
processing elements using simple cores, SIMD units, GPUs,
FPGA blocks, CGRA arrays, and custom accelerators. How-
ever, none of these approaches meets all the requirements
in Section 2.2. To illustrate the issues, Figure 2 compares
different logic options used in NDP systems for the PageR-
ank scatter kernel shown in Figure 1. One memory stack
has 8 channels and 128 GBps peak bandwidth in total, but,
once memory controllers and interfaces are accounted for,
only about 50 mm? of the logic layer can be used for com-
pute units [28]. To maximize performance, we put as many
logic units as the area and power budgets allow in the stack
(see Section 6.3 for detailed description). The computational
throughput is normalized to the maximum memory band-
width, indicated by the solid line. Matching this line implies
a balanced system with sufficient compute capability to take
full advantage of the high bandwidth through TSVs. Once
the memory bandwidth is saturated there is no point in scal-
ing the computational throughput any further.

While optimal for flexibility, programmable cores, either
multi-threaded or SIMD, fall short of utilizing all available
memory bandwidth due to their large area overheads, there-
fore suffering from low performance. On the opposite ex-
treme, custom accelerators (ASICs) can easily saturate the
memory channels but lack programmability. The extra com-
pute capability provides marginal benefits. It would be better
to trade the computational throughput for flexibility.

Reconfigurable units provide a good tradeoff between
performance and flexibility, but the two common config-

urable logic types, FPGA and CGRA, have shortcomings
as well [15,54]. FPGA achieves low power consumption
through customization, but suffers from low clock speed and
high area overheads due to the bit-level configurable blocks
and routing fabric, which are too fine grained for arithmetic
operations. The DSP blocks in modern FPGAs help, but
their number and width do not match emerging big data
applications. Hence, FPGA fails to saturate memory band-
width with high performance under the area constraints.

CGRA is based on a large number of coarse-grained func-
tional units which can significantly reduce the power and
area overheads for computation. Due to the limitation of
the simple interconnect, traditional CGRAs only target ap-
plications with regular computation patterns, such as ma-
trix multiplication or image processing [40, 50]. A recent
NDP system [15] used a new type of CGRA [21] with
circuit-switched routing network as a powerful intercon-
nect to support more complicated data and control flows,
but also introduced significant power consumption due to
the power-hungry pipelined registers and credit-based flow-
control logic (see Figure 2). Stringent power constraints also
limit the number of elements that can be used in the logic
layer. Moreover, CGRA still suffers from data layout issues
with simple IO alignment scheme, and it is not particularly
efficient when special functions are needed, such as sigmoid
and tanh functions for neural network processing.

3. HETEROGENEOUS RECONFIGURABLE
LOGIC (HRL)

HRL provides an efficient and flexible logic substrate for
NDP by combining coarse-grained and fine-grained logic
blocks and routing networks. It achieves the best of the two
configurable logic options: the area efficiency of the CGRA
and the power efficiency and flexible control of the FPGA.

3.1 HRL Array

Figure 3 shows the organization of the HRL array. It
consists of a number of heterogeneous components con-
nected with a statically reconfigurable routing fabric. HRL
uses CGRA-style, coarse-grained functional units (FUs) for
common arithmetic operations. It also uses FPGA-style,
fine-grained configurable logic blocks (CLBs) for irregular
control logic and special functions. The output multiplexer
blocks (OMBs) provide flexible support for branches. The
number of each block type in the array should be deter-
mined according to the application characteristics, as dis-
cussed in Section 6.1. To reduce power overheads, HRL
uses static reconfigurable interconnect, which consists of
a coarse-grained, bus-based data network [57] and a fine-
grained, bit-level control network. Finally, the array is sized
to match the shallow compute pipeline and the wide data
access width.

3.1.1 HRL Blocks

HRL includes a grid of functional units (FUs, Figure 4b),
similar to those in CGRA [21]. They are used as a power and
area efficient way for coarse-grained arithmetic and logic
operations, including addition, subtraction, comparison, or
multiplication, which would be expensive to construct with
FPGA lookup tables. The comparison output out is a sepa-
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Figure 3: The organization of the HRL array.
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rate single-bit port. There are also data registers at the input
and output of each FU to facilitate pipelining and retiming.
Compared with the DSP blocks in FPGAs, our FU blocks
support much wider arithmetic operations (e.g., 48-bit add
or multiply) that directly match the analytics applications.

The configurable logic blocks (CLBs) shown in Figure 4a
are similar to those in FPGAs [54]. CLBs use lookup tables
(LUTs) for arbitrary, bit-level logic. They are used primarily
to implement control units which are less regular. Having the
control logic directly embedded into the array allows it to run
independently, avoiding the overheads of feeding cycle-by-
cycle instructions or coordinating with programmable cores
as the case in many CGRA designs. CLBs are also useful for
special functions, such as the activation functions in neural
network processing (sigmoid or hyperbolic tangent). Tradi-
tional CGRAs use multi-cycle Taylor series [20]. A better
and widely used solution in machine learning accelerators
is piece-wise linear approximation [4], but it still requires
multiple comparators (FUs). On the other hand, a CLB has
sixteen 5-input LUTSs to realize a 5-to-16 function for a 32-
segment piece-wise linear function with 16-bit coefficients,
which has adequate accuracy for neural networks [34]. The
full activation function then requires only one CLB and two
FUs (the multiplier and the adder).

The output multiplexer blocks (OMBs) shown in Fig-
ure 4c are placed close to the output to support branches.
Each OMB includes multiple multiplexers that can be con-
figured in a tree, cascading, or parallel configuration. The
branch condition, usually the output of a comparison in an
FU, comes into the select bits sel to select the input data
between multiple sources (INA, INB, etc.). Compared with
dedicated FUs that support selection or predication opera-
tions in CGRA [19], OMBs are cheaper in power and area,
and more flexible as they support multiple branches in if-
elseif-else-like statements through tree or cascading config-
urations.

It is worth noting that HRL does not have distributed
block RAM (BRAM). In-memory analytics workloads have
little temporal locality to benefit from large caches. Never-
theless, we provide a centralized external scratchpad buffer
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Figure 4: Block diagrams of the HRL blocks.

for applications that requires explicit data buffering (see Sec-
tion 4).

3.1.2 HRL Routing Fabric

The HRL routing fabric provides flexible but low-cost in-
terconnect between logic blocks by decoupling the data path
and control path. It consists of two networks: the multi-bit
data net and the single-bit control net, both of which are
statically configurable similar to the routing fabric in FP-
GAs. The data net leverages datapath regularity by using
bus-based routing to achieve significant area and power sav-
ings [57]. We choose a 16-bit bus granularity as a good
tradeoff between efficiency and alignment flexibility (see
Section 3.1.3). This statically-configured routing fabric is
cheaper than the circuit-switched network used in previous
CGRA [21], and a small number of 16-bit bus tracks is suf-
ficient for the kernel circuits in memory-bound applications
given their simple computation patterns. The control net
routes control signals only, which need fewer tracks (20% to
30%) compared to the conventional FPGA fabric. Overall,
the two networks need a relatively narrow fabric to support
flexible routing at low power and area overheads.

Figure 5 shows the connections between the routing tracks
and different blocks. The data input/output ports (A, B, Y of
the FU, and INA, INB, OUT of the OMB) are connected to
the data net, while the FU comparison output out and the
OMB sel bits are routed to/from the control net. When wide
data types are processed at an FU, multiple 16-bit bus tracks
can be concatenated and connected to the FU ports. The in-
put/output ports of CLBs are mostly connected to the control
net, but some can also be grouped into a bus and routed to
the data net when used for a piece-wise linear function.

Note that the data net and control net are separate, mean-
ing there are no configurable switches connecting the two
in the fabric. The only interaction between them is through
array blocks. This limitation reduces the switch box size
in each network to save area and power, while still providing
enough flexibility in control flow. For example, if we need to
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Figure 6: Configurable IO in the HRL array, shown with a
data mapping example. Configured connections are shown
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evaluate a branch condition containing a comparisona < b,
the two operands from the data net are connected to the in-
put ports of an FU, and the compare output out becomes a
control signal on the control net, which can be further routed
to the sel port of an OMB or an input of a CLB.

3.1.3 HRL Input/Output

To support wide and irregular data layouts with mixed
data types, HRL uses the configurable IO blocks shown in
Figure 6. The control signals are connected to the control
net in the same way as in an FPGA. The data signals are
split into 16-bit chunks, each of which is mapped to one of
the data IO buffers. These 10 buffers can be connected to
one or more 16-bit tracks in the data net. Figure 6 shows
an example, where one 48-bit fixed-point number, one 16-
bit short, and one 32-bit int are connected to the 10, and
further routed to other blocks through the data net.

Another issue is the ratio between the pipeline depth
and the data access width in NDP logic. Conventional
compute-bound applications typically need many FUs and
deep pipelines to map the data-flow graph of a large compu-
tation region onto accelerators [20]. In contrast, the memory-
bound applications targeted by NDP typically involve fairly
simple computations on fairly wide data delivered from
DRAM accesses (see Figure 1). Therefore, we size the HRL
array to support shallow pipelines (no more than 4 FUs)
with wide IO (up to 60 bytes) in order to avoid performance
bottlenecks while maintaining high efficiency.

3.1.4 Array Summary

By combining both coarse-grained (CGRA-style) and
fine-grained (FPGA-style) components, HRL meets all the
requirements for NDP logic as summarized in Section 2.
The key aspects that enable both high efficiency and high
flexibility in HRL arrays include: (1) coarse-grained func-
tional units provide power- and area-efficient implementa-
tion to evaluate computation; (2) embedded bit-level config-
urable logic blocks avoid control overheads in conventional
CGRAs; (3) decoupled data and control networks simplify
the routing fabric while maintaining sufficient flexibility for
complicated data flows; (4) new output multiplexer blocks
support efficient and flexible control flows; and (5) config-
urable 10 blocks ensure flexible alignment and wide data
access width.

3.2 CAD Toolchain

While an HRL array uses coarse-grained FUs similar to
CGRA, all its components, blocks and routing tracks, are
statically configured. No runtime instructions are required to
drive the logic and there is no need for instruction compiler
support, which has been a challenging aspect for CGRA
projects. The application mapping for HRL is similar to the
FPGA design flow, which includes logic synthesis, pack-
ing, placement and routing. Since the control part includes
general bit-level logic, it can utilize the same CAD tools.
Moreover, current FPGA CAD tools already support coarse-
grained DSP block extraction and mapping and it is straight-
forward to generalize them to support HRL FUs for the dat-
apath. Thus, users can write conventional Verilog code or
leverage high-level synthesis environments [2, 56], and a
modified FPGA CAD flow will map the design on HRL. For
this work, we rely on several modified open-source CAD
tools [38, 53] to map Verilog designs onto the HRL arrays
(see Section 5).

However, there are still several challenges to address.
First, existing FPGAs do not have bus-based routing sup-
port, nor do they have the notion of separate control and
data networks. Second, the packing and placement algo-
rithms need to balance the routability and critical path la-
tency between the two networks to achieve the overall best
performance. Finally, the routing algorithm needs to take the
bus structures into account. Recent advances in bus-based
routing and coarse-grained FPGAs will help address these
issues and further improve the HRL performance [25, 57].
We leave a detailed exploration to future work.

4. NEAR-DATA PROCESSING WITH HRL

We construct a scalable NDP system with multiple mem-
ory stacks and HRL-based processing units for analytics
workloads. The key challenges are how to efficiently han-
dle communication between HRL arrays within and across
stacks and how to accommodate varying applications access
patterns. Note that these problems are not specific to HRL.
Other types of NDP logic (FPGA, CGRA, ASIC, and cores)
must also address these issues. This section describes a sim-
ple and general hardware/software communication model
that works well for the applications of interest and can be
used with multiple types of NDP logic.
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Figure 7: The NDP system architecture.

4.1 NDP System Overview

Figure 7a shows the NDP architecture. The host processor
is a conventional out-of-order (O0Q), multi-core chip, which
connects to multiple chains of memory stacks through high-
speed serial links. The memory stack integrates multiple
DRAM dies on top of a logic die using TSVs, as shown in
Figure 7b. The stack organization follows the HMC technol-
ogy [27]. It presents several independent high-bandwidth,
low-power channels (typically 8 to 16) to the logic die,
where the memory controllers as well as off-stack SerDes
links are implemented. A vertical channel together with its
separate memory controller is usually called a vault. In this
paper, we assume 8 vaults per stack and a 128-bit data bus
within each vault. Although slightly different from HMC
stack, this organization uses wider data bus that is optimized
for streaming accesses presented in most applications (see
Section 4.2).

Figure 9 shows that each vault in the memory stacks con-
tains multiple processing elements (PEs)! to take advan-
tage of the large bandwidth and high parallelism through 3D
stacking. The PEs use physical address to directly access
the local or remote vault memory, which is memory-mapped
by the host processor to a non-cacheable region. This avoids
the virtual memory translation and cache coherence problem
between the NDP logic and host processors.

The host processor handles task initialization and coordi-
nation for the NDP logic. Before starting the PEs, the host
processor partitions the input dataset and allocates the input
data for each PE into the corresponding vault using special
memory allocation routines. During the execution, the host
processor has no access to the data. It only coordinates the
communication by collecting and dispatching small task in-
formation messages (see Section 4.2). The host processor
also handles necessary synchronization between PEs, which
is not frequent in the following communication model.

4.2 Data Communication

The analytics domains we target—MapReduce, graph,
and deep neural networks—process data in an iterative man-
ner with separate parallel phase and communication phase.
While it is easy to map the parallel processing phase onto
any type of NDP logic, the communication phase is chal-
lenging. We leverage a previously proposed, pull based
communication model to implement communication and

! A processing element can be an FPGA/CGRA/HRL array, a cus-
tom unit, or even a core.

Process

Buffer separately
and locally

Pull remotely

Figure 8: Communication model for the NDP system.
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synchronization while minimizing data copying [16]. Fig-
ure 8 summaries the execution flow. The PEs in each vault
start with processing their assigned data in parallel. The out-
put or intermediate data are buffered locally and separately
in the local vault memory. After all input data are processed,
the PEs notify the host processor about the completion. The
host processor then groups the data assigned for each PE in
the next iteration into fasks, mainly comprising the data ad-
dress and size, and dispatches each task to the corresponding
PE. Each PE will then process all the tasks assigned to it, by
pulling the input data from local or remote vaults.

This generic model allows us to implement communica-
tion logic in a manner that is decoupled from the type of
logic used for NDP computations. We add a network-on-
chip (NoC) to each stack to support communication between
vaults and stacks (see Figure 7b) [1, 16]. Figure 9 shows
the vault hardware organization. The PEs are one or more
units of any type (FPGA, CGRA, custom, or HRL). The
other parts are generic hardware for communication. The
load/store unit is essentially a DMA unit that accepts tasks
from the global controller, and loads input data from local
or remote vault memory for the PEs. Normally the input
data will be streamed from/to DRAM, but we also support
transfers to a 128 kByte scratchpad buffer shared between
all PEs in a vault. The scratchpad is large enough to support
long processing without frequent data transfers. Sharing the
scratchpad is power- and area-efficient, and does not intro-
duce performance bottleneck as the PEs are bounded by the
streaming accesses directly to DRAM. Section 4.3 describes
how graph applications can utilize the scratchpad. As we
need to buffer the output data separately for each consumer,
an output queue unit with a fixed number of physical queues
is used (e.g., 64). We use longer queues (128 to 256 Bytes)



to amortize the latency and energy cost to store back to mem-
ory. The queues support a few simple, in-place combine op-
erations, such as sum, max and min. Queues can be shared
between consumers, and the load/store unit at the consumer
will filter out extraneous data while pulling.

4.3 Application Mapping

Table 1 summarizes the mapping methodology for all
the three frameworks. Given the communication model,
MapReduce [11] workloads can be trivially mapped to our
NDP system. User-defined map and reduce phases execute
on the configurable PEs by streaming input data from the lo-
cal vaults, while the shuffle phase is handled by the commu-
nication model and the output queues. The in-place combine
functions can also be used when combiners are provided in
the programs.

For graph workloads, we leverage the streaming, edge-
centric X-Stream system [48], which follows the gather-
scatter processing pattern [17]. In the scatter phase, the
edges are sequentially streamed in to generate the updates
for destination vertices. The output queues allow these up-
dates to be buffered separately according to the destination
graph tile. Later, each PE will gather (pull) and apply the up-
dates to the vertices in its graph tile. As the PEs need to ran-
domly access the vertex data and to stream the edge/update
lists simultaneously, we divide each graph tile into subpar-
titions that fit in the scratchpad buffer, and pre-load vertex
data before processing each subpartition. The update lists
are also pre-partitioned into sublists that match the vertex
subpartitions. This method has been showed to be efficient
as it leads to sequential DRAM accesses [7].

The neural network workloads work similarly to the graph
processing, as the neurons can be treated as vertices and the
synapses as edges between them. Besides that, we apply
two additional optimizations. For fully connected networks,
many synapses connect to the same destination neuron in a
remote partition. We use local combiners to reduce commu-
nication cost. Convolutional and pooling layers use a few
shared weights for all synapses, which can be cached in the
scratchpad buffers.

4.4 Runtime Reconfiguration

As applications involve multiple parallel phases that run
iteratively, the reconfigurable PE arrays need to support fast
reconfiguration between phases. However, this is not a crit-
ical issue for our NDP systems. The configuration streams
can be stored in local vault memory, which can be accessed
quickly. Since all the arrays will implement the same logic,
a single copy of configuration stream can be shared within
each vault or stack, and the configuration can happen in par-
allel. Furthermore, the data communication between PEs
and task assembling and dispatching at the host processor
can take place in parallel with the reconfiguration.

The configuration cost for HRL is low. HRL has simi-
lar functional unit arrays as DySER [20], which requires 64
cycles to configure an 8 x 8 array. With the addition of the
routing configuration, it takes less than 100 cycles to config-
ure an HRL array, which is far less than the execution period
of each phase, typically in the millions of cycles.

I Power
= Area

Absolute
Error

4
Absolute Error

*—e

Normalized Power/Area
N
o

32 48 64
Fix-Point Data Width

Figure 10: Cost and accuracy comparison between func-
tional units with different data width. Errors are calculated
against 64-bit floating-point numbers.

5. METHODOLOGY
5.1 Applications

We use a set of representative analytics workloads, namely
GroupBy, Histogram (Hist), Linear Regression (LinReg)
from in-memory MapReduce [11, 51], PageRank, Single
Source Shortest Path (SSSP), Connected Component (CC)
from graph processing [17, 18,48], and Convolutional Neu-
ral Network (ConvNet), Multi-Layer Perceptron (MLP), De-
noising Auto-Encoder (dA) from deep neural network pro-
cessing [5, 10]. These workloads are known to be memory-
intensive and can benefit from near-data processing [1, 16,
46]. We follow the methodology in Section 4.3 to divide
these applications into coarse-grained phases called kernels,
which are implemented in kernel circuits (KCs) and exe-
cuted on the memory-side PEs. The communication be-
tween PEs and the host processor is handled the same way
for all logic options as explained in Section 4.2.

The applications and their kernel circuits are summarized
in Table 1. GroupBy involves no computation and utilizes
the communication model to cluster the data with same keys.
Hist and LinReg have simple summation reducers and use
the in-place combine functionality of the output queues (no
KCs). Each graph application has two KCs for scatter and
gather. The gather KCs have branches to update the vertex
data if all updates are collected (see Figure 1). Neural net-
work applications share similar KCs but differ in the network
connection structures. We evaluate two parameter propaga-
tion schemes: embedded (i.e., no-sharing) and shared [4].
The neuron_update KC uses piece-wise linear approxi-
mation to evaluate the sigmoid activation function.

For efficiency, we use 48-bit fixed-point arithmetics in-
stead of floating-point operations. Figure 10 shows the com-
parison between different fixed-point data widths. 48-bit
FU achieves sufficient accuracy (< 1073) while keeping the
power and area costs low. The use of fixed-point operations
biases results in favor of FPGA-based logic. For CGRA
and HRL, it is straightforward to introduce wider FUs or
floating-point units in the arrays if necessary.

5.2 CAD Flow

The applications are written in shared-memory, multi-
threaded C/C++ code. We extract and convert the kernels
into Verilog code using Vivado HLS [56]. While the com-
plete programs contain complicated control and communica-
tion models, the kernels are fairly simple and the generated



Framework MapReduce [11,51] Graph [17,48] Deep Neural Networks [5, 10]
Communication Shuffle phase Vertex messages to other graph tiles Synapses to other network partitions
Stream Data All input data Edge list, message list Synapses
Scratchpad Data - Vertex Data Neurons
Example G.roupBy, ngeRank, Convplutional Neural Network,
Applications H}stogram, ) Single Source Shortest Path, Muln.—]fayer Perceptron,
Linear Regression Connected Component Denoising Auto-Encoder

s KC3:pr_scat, KC4:pr_gath, KC9:shared_param_prop,
g:::;lts Eg;?is;;r;ap, KC5:sssp_scat, KC6:sssp_gath, KC10:embedded_param_prop,

T KC7:cc_scat, KC8:cc_gath KCl11:neuron_update

Table 1: Framework applications.

Verilog code is nearly optimal.

We use VTR 7.0 to synthesize, pack, place, and route the
kernel circuits on FPGA [38], as commercial tools do not al-
low necessary tuning and resizing for our FPGA array (see
Section 6.2). For HRL, we use Yosys for coarse-grained
block extraction, synthesis, and mapping [53]. Yosys also
separates the control network apart from the data network.
The routing for the two networks is done with VTR. We fol-
low the 2-phase routing method used in [25] for bus-based
routing, i.e., presenting the buses as 1-bit tracks to VTR and
applying the same routine to other bits after routing. The
power and area are scaled based on [57].

For traditional CGRA, we use a DySER-like array [20,21]
that has been efficiently used in previous NDP studies [15].
Although DySER is designed to work within a general-
purpose processor and relies heavily on the processor’s con-
trol and load/store unit, in our evaluation it is controlled by
the generic vault structures discussed in Section 4.2 and no
additional control is necessary. We apply an optimistic esti-
mation on how many resources each KC occupies in DySER.
We first count the minimum number of FUs needed for the
computation. Based on the number of FUs and input/output
ports, we estimate the minimum number of switches when
these blocks are mapped to the smallest bounding box. This
method estimates the best possible mapping results, as in
practice this minimum mapping may be unroutable, or need
time-sharing the switches which increases the latency. Thus,
we are underestimating the potential benefits of HRL over
CGRA.

5.3 System Models

We use zsim [49], a fast and accurate simulator supporting
up to thousands of threads, to simulate the performance of
the NDP systems with different PE types. Memory-side pro-
grammable cores use single-issue, in-order, multi-threaded
cores at 1 GHz [16,46]. Other PEs are modeled as stream-
ing processors, with the throughput and latency numbers ob-
tained from post-synthesis results for each logic type as de-
scribed below. We extend zsim with a detailed DDRx mem-
ory model, which has been validated with DRAMSim?2 [47]
and against a real system. The timing parameters of the 3D
memory stacks are conservatively inferred from publicly-
available information [27,52]. We also model the on-chip
and inter-stack interconnect in zsim. The key system param-
eters are summarized in Table 2.

Power and area: We assume 45 nm technology process
for any logic in the logic layer of the stack, including cores,
FPGA, CGRA, HRL, custom units, vault controllers and in-

Host Processor
Cores | 8 x86-64 00O cores, 2 GHz
L1I cache | 32 kB, 4-way, 3-cycle latency
L1D cache | 32 kB, 8-way, 4-cycle latency
L2 cache | 256 kB private, 8-way, 12-cycle latency
L3 cache | 20 MB shared, 20-way, 28-cycle latency
Cacheline | 64 Bytes

3D Memory Stack

Organization | 16 GB, 8 layers x 8 vaults x 8 stacks
Bus Width | 128 bits

tck = 2.0 ns, tgas = 28.0 ns,

trep = 14.0 ns, tcas = 7.0 ns,

twr = 9.0 ns, trp = 14.0 ns

Serial links | 160 GBps bidirectional, 8-cycle latency

Timing
Parameters

Vault Hardware
Scratchpad | 128 kB, 64-Byte block
Output Queues | 64 queues, 128-Byte each
On-chip links | 16 Bytes/cycle, 4-cycle zero-load delay

Table 2: The key parameters of the NDP system.

terface circuits. The area budget for the logic die in the 3D
stack is set to 70 mm? [28]. These technology and area num-
bers are close to the HMC prototype device. The peak power
consumption of the stack is assumed to be 8§ W based on
an NDP system thermal study [12]. Excluding the mem-
ory components and SerDes interfaces leaves about 5 W
for the PEs. This budget is moderate compared to previous
work [16,46].

We model the FPGA arrays based on the Xilinx Virtex-
6 device [26, 54]. The power numbers are extracted from
Xilinx Power Estimator (XPE) [55], and are consistent with
VTR’s internal power model. The blocks used in CGRA and
HRL, including the FUs, the CGRA switches, and the HRL
OMBs, are synthesized using Synopsys Design Compiler
2014 on TSMC 45 nm technology. We optimize them for
a 3 ns clock period, which provides reasonable performance
without significantly increasing power and area. Higher fre-
quencies lead to limited benefits as shown in Section 6.3.
These area and power numbers are then used in VTR to es-
timate the total area and power. To assure model accuracy,
we also compare the synthesized numbers for CGRA with
DySER results [19, 20] scaled by size and technology, and
they match very well.

The memory power is calculated using Micron DRAM
power calculator [41]. We model the 3D memory by scal-
ing the 2D DRAM static and dynamic power with different
bank organization and the replicated peripheral circuits for
each vault. Overall, our 3D memory power model results in
roughly 10 to 20 pJ/bit, which is close to but more conserva-



[ KC [ FUWMULT) | OMB | CLB |

1 JO) 0 T
2 9(3) 5 1
3 702) 0 1
4 15 (3) 7 2
5 8(2) 0 1
6 9(12) 6 1
7 5(D) 0 1
8 6(2) 4 1
9 4(2) 0 1
10 852 0 T
11 18 (3) 6 1
[ max | 18 (3) [ 7 1 2 ]

Table 3: Block mapping results for all kernel circuits.

tive than the numbers reported in 3D memory literature [28].

For the other components in the system, the general pro-
grammable cores are modeled with McPAT 1.0 [35]; the
scratchpad buffers and output queues are modeled using
CACTI 6.5 [43]; the routers and interconnect are modeled
using Orion 2.0 [31]; and the DMA controllers and load/s-
tore units are modeled using Synopsys IP blocks.

6. EVALUATION

This section evaluates the HRL array and NDP systems
based on HRL. We first size the key parameters of HRL
based on the workload characteristics in Section 6.1. Then,
we compare the area and power of a single HRL array with
alternative reconfigurable logic options with equivalent logic
capacity in Section 6.2. In Section 6.3, we demonstrate
that HRL provides better performance and power efficiency
as an NDP logic option than the traditional reconfigurable
logic. Finally, in Section 6.4, we present the full system
comparison with all logic options—including general pro-
gramming cores, traditional FPGA and CGRA, HRL, and
custom units—for a practical NDP system with multiple
PEs per vault, multiple vaults per stack, and multiple stacks
and chains.

6.1 HRL Design Exploration

HRL is a heterogeneous configurable array with multi-
ple types of blocks. Table 3 shows the numbers of different
blocks used in the target kernel circuits. The numbers of FUs
with multipliers are showed in parenthesis. As we can see,
across all KCs the minimum array configuration is 18 FUs, 7
OMBs, and 2 CLBs. To provide some additional placement
flexibility, we use a 6 x 6 HRL array with 20 FUs, 10 OMBs,
and 6 CLBs with a layout similar to Figure 3.

Since the HRL FUs are more efficient than the LUT logic
in FPGAs, HRL generally has shorter critical path delays.
As the HRL critical path mainly consists of a 3 ns FU delay
and about 1 ns routing delay, we target 200 MHz clock fre-
quency for all KCs, by adding a few more routing tracks in
addition to the minimum number for better routing results.

The multiplier is an expensive component in the func-
tional units. As not all FUs need multiply operation, having
both FUs with and without multipliers is power- and area-
efficient. However, routing will become more difficult as it
limits the blocks to which the multipliers can be mapped,
so more routing tracks are needed. Figure 11 shows the
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Figure 11: HRL power and area for different number of
functional units with multipliers.
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Figure 12: Size and area comparison of logic arrays.

area and power breakdown for the HRL arrays with different
percentages of FUs with multipliers (FU/M’s). FU/M’s are
placed in one or more columns evenly across the array (e.g.,
60% means three of the five columns of FUs are FU/M’s).
Both the area and power of the logic blocks decrease sig-
nificantly when fewer FU/M’s are used, but the routing part
increases and offsets most of the benefits. Using only 20%
FU/M’s is slightly better than the other two cases. We use
this design for the rest of the evaluation. The resulting rout-
ing fabric contains 26 16-bit bus tracks and 66 single-bit con-
trol tracks.

6.2 Reconfigurable Array Comparison

We now compare HRL with the two common reconfig-
urable array types, FPGA and CGRA (DySER). We size
each array to have the same logic capacity. This means that
the array can implement approximately the same amount of
logic. To support the applications in Section 5, all arrays
must accommodate the largest kernel circuit. For FPGA, we
also increase the ratio of DSP blocks and remove BRAM
blocks. Based on the critical path analysis, we run all kernel
circuits at 100 MHz on FPGA and at 200 MHz on both HRL
and CGRA. Although CGRA can run at a higher frequency,
the frequency is kept low to avoid thermal problems within
the 3D stack. Section 6.3 shows that higher frequency pro-
vides little performance benefit anyway.

Area: Figure 12 summarizes the size and area of each ar-
ray. The FPGA array incurs large area overhead for its flex-
ible bit-level logic and routing resources. The CGRA and
HRL arrays, on the other hand, leverage the coarser gran-
ularity and only occupy about one third area of the FPGA
array. HRL’s data routing path is slightly smaller than that
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Figure 13: Power consumption for 11 kernel circuits on dif-
ferent arrays.

for CGRA, mainly because CGRA uses expensive switches
that contain data registers.

Power: Figure 13 shows the power breakdown of each
KC on the three configurable arrays. In general, the FPGA
array consumes the least power in logic due to its lower fre-
quency. The CGRA and HRL arrays have similar power con-
sumption for logic since they use similar functional units, but
sometimes HRL logic power is larger due to the inefficient
packing algorithm which doesn’t always achieve the best re-
sults and uses more blocks. However, for KC2, KC4, KC6,
K8 and KC11, CGRA consumes much more power than
HRL for logic. These kernel circuits involve branches, for
which HRL uses the OMBs (see Table 3) that consume less
power than CGRA’s select or ¢-function operations [19].

For routing power, CGRA’s circuit-switched routing is
very power-hungry. As we discussed, these switches have
multiple data registers for different routing directions that
consume high power [21]. KC4, KC6, KC8 and KC11 have
significantly higher routing power due to the complicated
data flows. On the other hand, HRL’s data and control rout-
ing are quite efficient as they use fewer and cheaper routing
tracks with fewer connections between coarse-grain blocks
and the routing fabric. The routing power consumption is
close to FPGA which runs at half speed. KC4 has com-
plicated branch at output, and KC11 requires data from the
CLB output for the piece-wise linear function coefficients.
Thus they consume high routing power on HRL.

On average, the HRL array consumes almost the same
power as the FPGA array while running at double frequency
and saves 47.5% power compared to the CGRA array at the
same frequency.

6.3 HRL Vault Analysis

We now compare the three reconfigurable logic options in
a single vault in an NDP system. As we described in Sec-
tion 4, each vault contains multiple PEs of any type. Based
on the 70 mm? overall area constraint for the logic layer,
we assume 6 mm? per vault can be used for the PEs, which
leaves about 3 mm? for the other components in each vault.
The scratchpad buffer is the largest one and takes 1.2 mm?;
others are less than 1 mm? in total. Similarly, the PE power
budget of each vault is about 625 mW according to the over-
all power constraints for the stack. The peak PE power is es-
timated as 1.5 times of the largest power consumption over
all considered KCs. Within these practical area and power
constraints, we fit as many PEs of each type as possible, to
exploit the high memory bandwidth. According to Figure 12
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Figure 14: The total throughput of PEs in one vault. Nor-
malize with the peak vault memory bandwidth.
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Figure 15: Power efficiency comparison for three PE types.

and 13, we can have 5 FPGA arrays, 11 CGRA arrays, or 16
HRL arrays for each vault. FPGA is limited by area and
CGRA is limited by power.

Figure 14 shows the total computational throughput in one
vault, normalized to the peak vault memory bandwidth. The
solid line (1.0) indicates a balanced design, i.e., computa-
tional throughput matches memory bandwidth. Above the
line implies the system is memory-bound and there is waste
in the compute capability; below the line means that mem-
ory bandwidth is underutilized. FPGA cannot provide suffi-
cient processing throughput. Both CGRA and HRL are able
to exploit the abundant bandwidth in most cases, but only
HRL achieves balance in KC1 and KC6. Also, our CGRA
mapping is optimistic; realistic CGRAs will have smaller
throughput if the design is hard to route. KC2, KC4, and
KC11 have lower computational throughput in all cases be-
cause they are not fully pipelined by HLS tool and have high
initialization intervals (IIs, the number of cycles between
two data inputs). It is also obvious that optimizing CGRA
and HRL to run at higher clock frequencies is not particu-
larly useful as they already hit the power constraint or match
the memory bandwidth.

Figure 15 compares power efficiency as in throughput per
Watt. Both the computational throughput and power con-
sumption of CGRA are higher than those of FPGA, which
results in slightly better efficiency. HRL is 2.15x more
power efficient than FPGA and 1.68x than CGRA on av-
erage, and outperforms the alternatives for all considered
kernel circuits. This allows HRL to provide more process-
ing capability without increasing the power, which results in
higher performance with similar power consumption for the
full NDP systems (see Section 6.4).

6.4 HRL System Analysis
We now look at the performance of the full NDP systems



Normalized Performance

GroupBy Hist LinRegPageRank SSSP CC ConvNet MLP dA
[ CPU ®E FPGA [0 CGRA B HRL [@ ASIC

Figure 16: Application execution performance on all PE
types.

Memory Stack
Power Breakdown (W)

CPU FPGACGRA HRL ASIC
ist PageRank ConvNet

B PEs
3 Buffers and queues EEE Memory dynamic

CPU FPGACGRA HRL ASIC CPU FPGACGRA HRL ASIC

[ Mem ctrls and routers

B DMAs and LSUs [ Memory background

Figure 17: Average power breakdown for one memory stack.

including all phases of each application, most of which ex-
ecute on the memory-side PEs, while some execute on the
host processor. The overall NDP system includes 8 stacks
with 8 vaults each. We compare all PE options, includ-
ing in-order multi-threaded cores, FPGA, CGRA, HRL, and
custom circuits (ASIC). The number of PEs per vault for
each logic type is determined as explained in Section 6.3.
In all cases, the system with custom engines can easily sat-
urate the memory bandwidth in each vault, thus serves as a
upper bound of efficiency. Figure 16 shows that the NDP
systems based on multi-threaded cores, FPGAs, or CGRAs
can only achieve about 30% to 80% of the custom-based
system performance due to the limited number of PEs that
can fit within the available area and power budgets. In con-
trast, HRL comes within 92% of the performance limits and
has no more than 20% slowdown at the worst case. Com-
pared with the other alternatives, HRL provides 1.2x to 2.6x
speedup. This is a direct result from Figure 14: HRL has
sufficient PEs to saturate DRAM bandwidth, while others
are limited by area and/or power.

Figure 17 shows the power breakdown of one memory
stack for three representative applications, one per applica-
tion domain. We ignore the host processor power here. The
memory components consume more than half the power.
DRAM dynamic power is proportional to the bandwidth
utilization, thus it is higher in the systems with HRL and
custom units. The power for scratchpad buffers and output
queues is not significant. The PE power matches the results
in Figure 13. Multi-threaded core is not power-efficient due
to its general structure and high clock frequency (1 GHz). It
consumes small amount of power in memory since the band-
width is seriously underutilized. Custom circuit is the op-
posite, which has very low power in the PEs while the high

bandwidth results in high memory dynamic power. FPGA
consumes low power but the performance is also bad. HRL
uses more PEs than CGRA to achieve better performance,
while the power consumption is slightly lower. Overall, with
near-peak performance, HRL-based systems consume only
23% more power than the ideal custom-based systems.

Figure 17 also shows the power overhead of placing pro-
cessing near data compared to a baseline 3D memory system
without compute capability. The cost is roughly 1 W to 2 W
per stack for HRL, which is acceptable for thermal consid-
eration as discussed in [46].

7. CONCLUSION

This paper focuses on compute logic options for near-data
processing systems, which provide significant performance
and energy improvements for in-memory analytics applica-
tions. Conventional options, including programmable cores,
reconfigurable logic, and custom engines, are limited either
in their power and area efficiency or in their flexibility. We
propose a novel reconfigurable array called Heterogeneous
Reconfigurable Logic (HRL), that combines the advantages
of FPGA and CGRA designs to provide a logic substrate
with high performance, high efficiency and high flexibility
for NDP systems. We use HRL to build a scalable multi-
vault, multi-stack NDP system with efficient communication
for MapReduce, graph processing, and deep neural networks
workloads. HRL improves performance per Watt by 2.15x
over FPGA and 1.68x over previously-proposed CGRA. For
NDP systems with practical constraints, HRL achieves 92%
of the peak performance of an NDP system based on custom
units on average for all evaluated applications.
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