
Practical Near-Data Processing for 
In-Memory Analytics Frameworks

Mingyu Gao, Grant Ayers, Christos Kozyrakis

Stanford University

http://mast.stanford.edu

PACT – Oct 19, 2015



Motivating Trends

 End of Dennard scaling  systems are energy limited

 Emerging big data workloads

o Massive datasets, limited temporal locality, irregular access patterns

o They perform poorly on conventional cache hierarchies

 Need alternatives to improve energy efficiency

2
MapReduce Graphs

Deep Neural Networks

Figs: http://oceanaute.blogspot.com/2015/06/how-to-shuffle-sort-mapreduce.html



PIM & NDP

 Improve performance & energy by avoiding data movement

 Processing-In-Memory (1990’s – 2000’s)

o Same-die integration is too expensive

 Near-Data Processing

o Enabled by 3D integration

o Practical technology solution

o Processing on the logic die

3

Hybrid Memory Cube
(HMC)

High Bandwidth Memory
(HBM)

Figs: www.extremetech.com



Base NDP Hardware

Vault 
Logic

NoC

Logic Die

DRAM Die

 
...

Bank

Channel

Vault

 Stacks linked to host multi-core processor
o Code with temporal locality: runs on host

o Code without temporal locality: runs on NDP

 3D memory stack
o x10 bandwidth, x3-5 power improvement

o 8-16 vaults per stack
• Vertical channel

• Dedicated vault controller

o NDP cores
• General-purpose, in-order cores 

• FPU, L1 caches I/D, no L2

• Multithreaded for latency tolerance

4

Host 
Processor

Memory 
Stack

High-Speed 
Serial Link



Challenges and Contributions

 NDP for large-scale highly distributed analytics frameworks
? General coherence maintaining is expensive

Scalable and adaptive software-assisted coherence

? Inefficient communication and synchronization through host processor
Pull-based model to directly communicate, remote atomic operations

? Hardware/software interface
A lightweight runtime to hide low-level details to make program easier

? Processing capability and energy efficiency
Balanced and efficient hardware

 A general, efficient, balanced, practical-to-use NDP architecture

5



Example App: PageRank

 Edge-centric, scatter-gather, graph processing framework

 Other analytics frameworks have similar behaviors

6

edge_scatter(edge_t e)
src sends update over e

update_gather(update_t u)
apply u to dst

while not done
for e in all edges
edge_scatter(e)

for u in all updates
update_gather(u)

Edge-centric SG PageRank

u = src.rank / src.out_degree

sum += u
if all gathered
dst.rank = b * sum + (1-b)Sequential accesses (stream in/out)

Communication between graph partitions

Synchronization between iterations

Partitioned dataset, local processing



Architecture Design
Memory model, communication, coherence, …

Lightweight hardware structures and software runtime



Shared Memory Model

 Unified physical address space across stacks
o Direct access from any NDP/host core to memory in any vault/stack

 In PageRank
o One thread to access data in a remote graph partition

• For edges across two partitions

 Implementation
o Memory ctrl forwards local/remote accesses

o Shared router in each vault

8

Mem Ctrl

NDP
Core

……

Memory request

Router

Local Vault Memory

Local Remote

NDP
Core

NDP
Core



Virtual Memory Support 

 NDP threads access virtual address space
o Small TLB per core (32 entries)

o Large pages to minimize TLB misses (2 MB)

o Sufficient to cover local memory & remote buffers

 In PageRank
o Each core works on local data, much smaller than the entire dataset

o 0.25% miss rate for PageRank

 TLB misses served by OS in host
o Similar to IOMMU misses in conventional systems

9



Software-Assisted Coherence

 Maintaining general coherence is expensive in NDP systems
o Highly distributed, multiple stacks

 Analytics frameworks
o Little data sharing except for communication

o Data partitioning is coarse-grained

 Only allow data to be cached in one cache
o Owner cache

o No need to check other caches

 Page-level coarse-grained
o Owner cache configurable through PTE

10

NDP
Core

$

NDP
Core

$

Mem Ctrl

Vault Memory

NDP
Core

$

NDP
Core

$

Mem Ctrl

Vault Memory

Vault 0 Vault 1

Owner cache 
identified by TLB

Memory vault 
identified by 

physical address



Software-Assisted Coherence

 Scalable
o Avoids directory lookup and storage

 Adaptive
o Data may overflow to other vault

o Able to cache data from any vault in local cache

 Flush only when owner cache changes
o Rarely happen as dataset partitioning is fixed

11

NDP
Core

$

NDP
Core

$

Mem Ctrl

Vault Memory

NDP
Core

$

NDP
Core

$

Mem Ctrl

Vault Memory

Vault 0 Vault 1

Dataset



Communication

 Pull-based model
o Producer buffers intermediate/result data locally and separately

o Post small message (address, size) to consumer

o Consumer pulls data when it needs with load instructions

12

Task Task Task Task

Cores Cores Cores Cores Process

Buffer

Task Task Task Task
Pull



Communication

 Pull-based model is efficient and scalable
o Sequential accesses to data

o Asynchronous and highly parallel

o Avoids the overheads of extra copies

o Eliminates host processor bottleneck

 In PageRank
o Used to communicate the update lists across partitions

13



Communication

 HW optimization: remote load buffer (RLBs)
o A small buffer per NDP core (a few cachelines) 

o Prefetch and cache remote (sequential) load accesses
• Remote data are not cache-able in the local cache

• Do not want owner cache change as it results in cache flush

 Coherence guarantee with RLBs
o Remote stores bypass RLB

• All writes go to the owner cache

• Owner cache always has the most up-to-date data

o Flush RLBs at synchronization point
• … at which time new data are guaranteed to be visible to others

• Cheap as each iteration is long and RLB is small
14



Synchronization

 Remote atomic operations
o Fetch-and-add, compare-and-swap, etc.

o HW support at memory controllers [Ahn et al. HPCA’05]

 Higher-level synchronization primitives
o Build by remote atomic operations

o E.g., hierarchical, tree-style barrier implementation
• Core  vault  stack  global

 In PageRank
o Build barrier between iterations

15



Software Runtime

 Hide low-level coherence/communication features
o Expose simple set of API

 Data partitioning and program launch
o Optionally specify running core and owner cache close to dataset

o No need to be perfect, correctness is guaranteed by remote access

 Hybrid workloads
o Coarsely divide work between host and NDP by programmers

• Based on temporal locality and parallelism

o Guarantee no concurrent accesses from host and NDP cores

16



Evaluation
Three analytics framework: MapReduce, Graph, DNN



Methodology

 Infrastructure
o zsim

o McPAT + CACTI + Micron’s DRAM power calculator

 Calibrate with public HMC literatures

 Applications
o MapReduce: Hist, LinReg, grep

o Graph: PageRank, SSSP, ALS

o DNN: ConvNet, MLP, dA



Porting Frameworks

 MapReduce

o In map phase, input data streamed in

o Shuffle phase handled by pull-based communication

 Graph

o Edge-centric

o Pull remote update lists when gathering

 Deep Neural Networks

o Convolution/pooling layers handled similar to Graph

o Fully-connected layers use local combiner before communication

 Once the framework is ported, no changes to the user-level apps

19



Graph: Edge- vs. Vertex-Centric

 2.9x performance and energy improvement
o Edge-centric version optimize for spatial locality

o Higher utilization for cachelines and DRAM rows
20

0

0.2

0.4

0.6

0.8

1

1.2

SSSP ALSN
o

rm
al

iz
ed

 P
er

fo
rm

an
ce

Performance

Vertex-Centric Edge-Centric

0

0.2

0.4

0.6

0.8

1

1.2

SSSP ALS

N
o

rm
al

iz
ed

 E
n

er
gy

Energy

Vertex-Centric Edge-Centric



Balance: PageRank

 Performance scales 
to 4-8 cores per vault
o Bandwidth saturates

 Final design
o 4 cores per vault

o 1.0 GHz

o 2-threaded

o Area constrained

21

0

5

10

15

20

0 2 4 6 8 10 12 14 16

N
o

rm
al

iz
ed

 
Pe

rf
o

rm
an

ce

0%

20%

40%

60%

80%

100%

0 2 4 6 8 10 12 14 16B
an

d
w

id
th

 U
ti

liz
at

io
n

Number of Cores per Vault

1.0GHz 1T 1.0GHz 2T 1.0GHz 4T 0.5GHz 1T 0.5GHz 2T 0.5GHz 4T

Saturate after 8 cores



Scalability

0
2
4
6
8

10
12
14
16

Hist PageRank ConvNet

N
o

rm
al

iz
ed

 S
p

ee
d

u
p

Performance Scaling vs. # Stacks

1 stack 2 stacks 4 stacks 8 stacks 16 stacks

22

 Performance scales well up to 16 stacks (256 vaults, 1024 threads)

 Inter-stack links are not heavily used



Final Comparison

 Four systems
o Conv-DDR3

• Host processor + 4 DDR3 channels

o Conv-3D
• Host processor + 8 HMC stacks

o Base-NDP
• Host processor + 8 HMC stacks with NDP cores

• Communication coordinated by host

o NDP
• Similar to Base-NDP

• With our coherence and communication

23



Final Comparison

 Conv-3D: improve 20% for Graph (bandwidth-bound), more energy

 Base-NDP: 3.5x faster and 3.4x less energy than Conv-DDR3

 NDP: up to 16x improvement than Conv-DDR3, 2.5x over Base-NDP24

0

0.5

1

1.5

Execution Time

Conv-DDR3 Conv-3D Base-NDP NDP

0

0.5

1

1.5

Energy

Conv-DDR3 Conv-3D Base-NDP NDP



Hybrid Workloads

 Use both host processor and 
NDP cores for processing

 NDP portion: similar speedup

 Host portion: slight slowdown
o Due to coarse-grained address 

interleaving

25

0

0.2

0.4

0.6

0.8

1

1.2

Execution Time Breakdown

Host Time NDP Time
FisherScoring K-Core



Conclusion

 Lightweight hardware structures and software runtime
o Hides hardware details

o Scalable and adaptive software-assisted coherence model

o Efficient communication and synchronization

 Balanced and efficient hardware

 Up to 16x improvement over DDR3 baseline
o 2.5x improvement over previous NDP systems

 Software optimization
o 3x improvement from spatial locality

26



Thanks!
Questions?


