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Neural Networks (NNs)

o Unprecedented accuracy for challenging applications

o System perspective: compute and memory intensive
o Many efforts to accelerate with specialized hardware

Multi- GPUs
cores




Neural Networks (NNs)
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foreach b in batch Nb

foreach ifmap u in Ni

O=IXW

foreach b in batch Nb
foreach neuron x in Nx
foreach neuron y in Ny

foreach ofmap v in No // Matrix multiply

N

// 2D conv

O(v,b) += I(u,b) * W(u,v) + BE!L// \\‘ O(y,b) += I(x,b) x W(x,y) + B(vlé/




Domain-Specific NN Accelerators

o Spatial architectures of PEs
o 100x performance and energy efficiency
o Low-precision arithmetic, dynamic pruning, static compression, ...

foreach b in batch Nb /

foreach ifmap u in Ni 7

foreach ofmap v in No 7| PE —| PE—| PE—| PE
// 2D conv > | | | |
O(v,b) += I(u,b) * W(u,v) + B(v) g E [ PE — PE | PE [ PE
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foreach b in batch Nb é S gl | | | |
foreach neuron x in Nx .% S 1 pe | pPE | PE | PE

foreach neuron y in Ny S
// Matrix multiply | | | |
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Memory Challenges for Large NNs

o Large footprints and bandwidth requirements
o Many and large layers, complex neuron structures
o Efficient computing requires higher bandwidth

o Limit scalability for future NNs ? Large on-chip buffers:
f area inefficiency
foreach b in batch Nb
foreach ifmap u in Ni S~
foreach ofmap v in No PE PE I PE I PE RN
// 2D conv > _ | | | | \ DR
O(v,b) += I(u,b) * W(u,v) + B(v) g % PE — PE [ PE — PE [\ L[NV
foreach b in batch Nb é S o | | | | \\ “
foreach neuron x in Nx £ -§ pe | pe | pe | pE | | ﬂ.’z o
foreach neuron y in Ny g S n N ) >
// Matrix multiply 1
O(y,b) += I(x,b) x W(x,y) + B(v) . ement
Multiple DRAM channels:

energy inefficiency 5




Memory Challenges for Large NNs

o State-of-the-art NN accelerator with 400 PEs
o 1.5 MB SRAM buffer =2 70% area
o 4 LPDDR3 x32 chips 2 45% power in DRAM & SRAM
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3D Memory + NN Acceleration

o Opportunities

o High bandwidth at low access energy

o Abundant parallelism (vaults, banks)

& j
o Key questions J|leniaE
o Hardware resource balance MHI/;DR A;{Die
I/ / / /

. i/ i Logic Die
o Software scheduling and workload Vault

partitioning (Channel)

Micron’s Hybrid Memory Cube



TETRIS

o NN acceleration with 3D memory
o Improves performance scalability by 4.1x over 2D
o Improves energy efficiency by 1.5x over 2D

o Hardware architecture
o Rebalance resources between PEs and buffers [High performance & low energy ]
> In-memory accumulation [Alleviate bandwidth pressure ]

o Software optimizations
o Analytical dataflow scheduling for memory hierarchy [Optimize buffer use ]

o Hybrid partitioning for parallelism across vaults [Efficient parallel processing ]
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TETRIS Hardware
Architecture
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TETRIS Architecture

o Associate one NN engine with each vault
o PE array, local register files, and a shared global buffer

a NoC + routers for accesses to remote vaults

o All vaults can process NN computations in parallel
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Resource Balancing

o Larger PE arrays with smaller SRAM buffers

o High memory bandwidth - more PEs
o Low access energy + sequential pattern - smaller buffers

196 PEs with 133 kB buffer (area 1:1)
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In-Memory Accumulation

o Move simple accumulation logic close to DRAM banks
o 2x bandwidth reduction for output data
o See paper for discussion of logic placement in DRAM

Memory Memory

PE array PE array




Scheduling and Partitioning
for TETRIS
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Dataflow Scheduling

a Critical for maximizing on-chip data reuse to save energy

foreach ifmap u in Ni » Locality in global buffer

foreach ofmap v in
// 2D conv
O(v,b) += I(u,b) * W(u,v) + B(v)

foreach b in batch Nb »\ Ordering: loop blocking and reordering
No

« Non-convex, exhaustive search

Mapping: execute 2D conv on PE array
« Regfiles and array interconnect
« Row stationary [Chen et al., ISCA’16]



TETRIS Bypass Ordering

o Limited reuse opportunities with small buffers

a IW bypass, OW bypass, 10 bypass
o Use buffer only for one stream for maximum benefit
o Bypass buffer for the other two to sacrifice their reuse

OW bypass ordering

ifmaps ofmaps filters

Off-chip

1. Read 1 ifmap chunk into gbuf

2, Stream ofmaps and filters to regf
3. Move ifmaps from gbuf to regf

4. Convolve

5.Jump to 2

Reg files




TETRIS Bypass Ordering

o Analytically derived

o Closed-form solution
o No need for exhaustive search

min ADRAM
=2 X NbNOSO X t; + NbNiSi + NONiSW X ty

S.t.

( NbeixS <3S
) tb ti i = Ybuf
1<t <Ny, 1S4 SN

o Near-optimal schedules

o With 2% from schedules
derived with exhaustive search

Runtime Gap Energy Gap

NN (w.r.t. optimal) (w.r.t. optimal)
AlexNet 1.48 % 1.86 %
ZFNet 1.55 % 1.83 %
VGG16 0.16 % 0.20 %
VGG19 0.13 % 0.16 %
ResNet 2.01 % 0.78 %



NN Partitioning

o Process NN computations in parallel in all vaults

. el Vault o Vault 1
o Option 1: fmap partitioning /\
L

o Divide a fmap into tiles

Layer 1+1

o Each vault processes one tile ¥

o Minimum remote accesses = |be=b___

Vault 2 Vault 3
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NN Partitioning

o Process NN computations in parallel in all vaults

. o Vault 2
o Option 2: output partitioning - Vault 3

o Partition all ofmaps into groups Layer i / Layer i+1

o Each vault processes one group |

o Better filter weight reuse

o Fewer total memory accesses

Vault 1

Vault o
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TETRIS Hybrid Partitioning

o Combine fmap partitioning and output partitioning
o Balance between minimizing remote accesses and total DRAM accesses

o Total energy = NoC energy + DRAM energy

o Difficulties

o Design space exponential to # layers
- Greedy algorithm reduces to be linear to # layers

o Complex datatlow scheduling to determine total DRAM accesses
- Bypass ordering to quickly estimate total DRAM accesses




TETRIS Evaluation
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Methodology

o State-of-the-art NNs
o AlexNet, ZFNet, VGG16, VGG19, ResNet
o 100—300 MB total memory footprint for each NN
o Up to 152 layers in ResNet

o 2D and 3D accelerators with >1 NN engines

o 2D engine: 16 x 16 PEs, 576 kB buffer, 1 LPDDR3 channel
« 8.5 mm?2, 51.2 Gops/sec
- Bandwidth-constrained
o 3D engine: 14 x 14 PEs, 133 kB buffer, 1 HMC vault
* 3.5 mm?2, 39.2 Gops/sec
 Area-constrained



Single-engine Comparison

a Up to 37% performance improvement with TETRIS
o Due to higher bandwidth despite smaller PE array

Large NNs benefit more!
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Single-engine Comparison

0 35—40% energy reduction with TETRIS
o Smaller on-chip buffer, better scheduling

From SRAM & DRAM, and static ]
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Multi-engine Comparison

a 4 2D engines: 34 mm?2, pin constrained (4 LPDDR3 channels)
o 16 3D engines: 56 mm?2, area constrained (16 HMC vaults)

o 4.1X performance gain = 2x compute density

2D-4 3D-16 2D-4 3D-16 2D-4 3D-16 2D-4 3D-16 2D-4 3D-16
AlexNet ZFNet VGG16 VGG19 ResNet

0.3

o
N
n

ot
N

o
=

Normalized Runtime
=) =]
() =
(9] (0]

0



Multi-Engine Comparison

o 1.5% lower energy
o 1.2x from better scheduling and partitioning

o 4x computation only costs 2.7x power

1.2
a0 1
g Total static
5 0.8 .
- B NoC dynamic
Q 0.6 .
A ® DRAM dynamic
©
£ 0.4 m Reg/buf dynamic
2 0.2 B PE dynamic
0
2D-4 3D-16 2D-4 3D-16 2D-4 3D-16 2D-4 3D-16 2D-4 3D-16
AlexNet ZFNet VGG16 VGG19 ResNet
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TETRIS Summary

o A scalable and efficient NN accelerator using 3D memory
o 4.1x performance and 1.5x energy benefits over 2D baseline

o Hardware features
o PE/buffer area rebalancing
o In-memory accumulation

a Software features

o Analytical dataflow scheduling
o Hybrid partitioning

o Scheduling exploration tool
o https://github.com/stanford-mast/nn dataflow
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https://github.com/stanford-mast/nn_dataflow
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