

TETRIS: Scalable and Efficient Neural Network Acceleration with 3D Memory

Mingyu Gao, Jing Pu, Xuan Yang, Mark Horowitz, Christos Kozyrakis

Stanford University

Neural Networks (NNs)

- Unprecedented accuracy for challenging applications
- System perspective: compute <u>and</u> memory intensive
 - Many efforts to accelerate with specialized hardware

Neural Networks (NNs)

Domain-Specific NN Accelerators

- Spatial architectures of PEs
 - 100x performance and energy efficiency
 - Low-precision arithmetic, dynamic pruning, static compression, ...

Memory Challenges for Large NNs

- Large footprints and bandwidth requirements
 - Many and large layers, complex neuron structures
 - Efficient computing requires higher bandwidth

Memory Challenges for Large NNs

- State-of-the-art NN accelerator with 400 PEs
 - o 1.5 MB SRAM buffer → 70% area
 - 4 LPDDR3 x32 chips → 45% power in DRAM & SRAM

3D Memory + NN Acceleration

- Opportunities
 - High bandwidth at low access energy
 - Abundant parallelism (vaults, banks)

- Key questions
 - o *Hardware* resource balance
 - Software scheduling and workload partitioning

Micron's Hybrid Memory Cube

TETRIS

- NN acceleration with 3D memory
 - Improves *performance scalability* by 4.1x over 2D
 - o Improves *energy efficiency* by 1.5x over 2D

- Hardware architecture
 - Rebalance resources between PEs and buffers
 - In-memory accumulation
- Software optimizations
 - Analytical dataflow scheduling for memory hierarchy
 - Hybrid partitioning for parallelism across vaults

High performance & low energy

Alleviate bandwidth pressure

Optimize buffer use

Efficient parallel processing

TETRIS Hardware Architecture

TETRIS Architecture

- Associate one NN engine with each vault
 - PE array, local register files, and a shared global buffer
- NoC + routers for accesses to remote vaults
- All vaults can process NN computations in parallel

Resource Balancing

- Larger PE arrays with smaller SRAM buffers
 - o High memory bandwidth → more PEs
 - Low access energy + sequential pattern → smaller buffers

In-Memory Accumulation

- Move simple accumulation logic close to DRAM banks
 - 2x bandwidth reduction for output data
 - See paper for discussion of logic placement in DRAM

Scheduling and Partitioning for TETRIS

Dataflow Scheduling

Critical for maximizing on-chip data reuse to save energy

```
foreach b in batch Nb
  foreach ifmap u in Ni
  foreach ofmap v in No
    // 2D conv
    O(v,b) += I(u,b) * W(u,v) + B(v)
Ordering: loop blocking and reordering
    Locality in global buffer
    Non-convex, exhaustive search
```

Mapping: execute 2D conv on PE array

- Regfiles and array interconnect
- Row stationary [Chen et al., ISCA'16]

TETRIS Bypass Ordering

- Limited reuse opportunities with small buffers
- IW bypass, OW bypass, IO bypass
 - Use buffer only for one stream for maximum benefit
 - Bypass buffer for the other two to sacrifice their reuse

Off-chip On-chip I. Read 1 ifmap chunk into gbuf 2. Stream ofmaps and filters to regf 4. Convolve 5. Jump to 2

TETRIS Bypass Ordering

- Analytically derived
 - Closed-form solution
 - No need for exhaustive search

- Near-optimal schedules
 - With 2% from schedules derived with exhaustive search

$$\min A_{\text{DRAM}}$$
= 2 × N_bN_oS_o × t_i + N_bN_iS_i + N_oN_iS_w × t_b

s.t.
$$\begin{cases} \frac{N_{b}}{t_{b}} \times \frac{N_{i}}{t_{i}} \times S_{i} \leq S_{buf} \\ 1 \leq t_{b} \leq N_{b}, \quad 1 \leq t_{i} \leq N_{i} \end{cases}$$

NN	Runtime Gap (w.r.t. optimal)	Energy Gap (w.r.t. optimal)
AlexNet	1.48 %	1.86 %
ZFNet	1.55 %	1.83 %
VGG16	0.16 %	0.20 %
VGG19	0.13 %	0.16 %
ResNet	2.91 %	0.78 %

NN Partitioning

Process NN computations in parallel in all vaults

- Option 1: fmap partitioning
 - Divide a fmap into tiles
 - Each vault processes one tile
 - o Minimum *remote accesses*

NN Partitioning

Process NN computations in parallel in all vaults

- Option 2: output partitioning
 - Partition all ofmaps into groups
 - Each vault processes one group
 - Better filter weight reuse
 - Fewer total memory accesses

TETRIS Hybrid Partitioning

- Combine fmap partitioning and output partitioning
 - Balance between minimizing <u>remote accesses</u> and <u>total DRAM accesses</u>
 - Total energy = NoC energy + DRAM energy

Difficulties

- Design space exponential to # layers
 - → Greedy algorithm reduces to be linear to # layers
- Complex dataflow scheduling to determine total DRAM accesses
 - → <u>Bypass ordering to quickly estimate total DRAM accesses</u>

TETRIS Evaluation

Methodology

- State-of-the-art NNs
 - o AlexNet, ZFNet, VGG16, VGG19, ResNet
 - 100—300 MB total memory footprint for each NN
 - Up to 152 layers in ResNet
- □ 2D and 3D accelerators with ≥1 NN engines
 - o 2D engine: 16 x 16 PEs, 576 kB buffer, 1 LPDDR3 channel
 - 8.5 mm², 51.2 Gops/sec
 - Bandwidth-constrained
 - o 3D engine: 14 x 14 PEs, 133 kB buffer, 1 HMC vault
 - 3.5 mm², 39.2 Gops/sec
 - Area-constrained

Single-engine Comparison

- Up to 37% performance improvement with TETRIS
 - Due to higher bandwidth despite smaller PE array

Single-engine Comparison

- □ 35–40% energy reduction with TETRIS
 - Smaller on-chip buffer, better scheduling

Multi-engine Comparison

- □ 4 2D engines: 34 mm², pin constrained (4 LPDDR3 channels)
- □ 16 3D engines: 56 mm², area constrained (16 HMC vaults)
- □ 4.1x performance gain \rightarrow 2x compute density

Multi-Engine Comparison

- □ 1.5x lower energy
 - 1.2x from better scheduling and partitioning
- □ 4x computation only costs 2.7x power

TETRIS Summary

- A scalable and efficient NN accelerator using 3D memory
 - 4.1x performance and 1.5x energy benefits over 2D baseline
- Hardware features
 - PE/buffer area rebalancing
 - In-memory accumulation
- Software features
 - Analytical dataflow scheduling
 - Hybrid partitioning
- Scheduling exploration tool
 - https://github.com/stanford-mast/nn_dataflow

Thanks!

Questions?

