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Neural Networks (NNs)

 Unprecedented accuracy for challenging applications

 System perspective: compute and memory intensive

o Many efforts to accelerate with specialized hardware
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Neural Networks (NNs)
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foreach b in batch Nb
foreach ifmap u in Ni
foreach ofmap v in No
// 2D conv
O(v,b) += I(u,b) * W(u,v) + B(v)

CONV

foreach b in batch Nb
foreach neuron x in Nx
foreach neuron y in Ny
// Matrix multiply
O(y,b) += I(x,b) x W(x,y) + B(v)

𝑂 = 𝐼 ×𝑊
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Domain-Specific NN Accelerators

 Spatial architectures of PEs

o 100x performance and energy efficiency

o Low-precision arithmetic, dynamic pruning, static compression, …
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foreach b in batch Nb
foreach ifmap u in Ni

foreach ofmap v in No
// 2D conv
O(v,b) += I(u,b) * W(u,v) + B(v)

foreach b in batch Nb
foreach neuron x in Nx

foreach neuron y in Ny
// Matrix multiply
O(y,b) += I(x,b) x W(x,y) + B(v)
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Memory Challenges for Large NNs

 Large footprints and bandwidth requirements

o Many and large layers, complex neuron structures

o Efficient computing requires higher bandwidth

 Limit scalability for future NNs
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foreach b in batch Nb
foreach ifmap u in Ni

foreach ofmap v in No
// 2D conv
O(v,b) += I(u,b) * W(u,v) + B(v)

foreach b in batch Nb
foreach neuron x in Nx

foreach neuron y in Ny
// Matrix multiply
O(y,b) += I(x,b) x W(x,y) + B(v)
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?
Large on-chip buffers: 

area inefficiency

Multiple DRAM channels: 
energy inefficiency



Memory Challenges for Large NNs

 State-of-the-art NN accelerator with 400 PEs

o 1.5 MB SRAM buffer  70% area 

o 4 LPDDR3 x32 chips  45% power in DRAM & SRAM
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3D Memory + NN Acceleration

 Opportunities

o High bandwidth at low access energy

o Abundant parallelism (vaults, banks)

 Key questions

o Hardware resource balance

o Software scheduling and workload 
partitioning
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TETRIS

 NN acceleration with 3D memory

o Improves performance scalability by 4.1x over 2D

o Improves energy efficiency by 1.5x over 2D

 Hardware architecture

o Rebalance resources between PEs and buffers

o In-memory accumulation

 Software optimizations

o Analytical dataflow scheduling for memory hierarchy

o Hybrid partitioning for parallelism across vaults
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High performance & low energy

Alleviate bandwidth pressure

Optimize buffer use

Efficient parallel processing



TETRIS Hardware 
Architecture



TETRIS Architecture

 Associate one NN engine with each vault

o PE array, local register files, and a shared global buffer

 NoC + routers for accesses to remote vaults

 All vaults can process NN computations in parallel
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Resource Balancing

 Larger PE arrays with smaller SRAM buffers

o High memory bandwidth more PEs

o Low access energy + sequential pattern  smaller buffers
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In-Memory Accumulation

 Move simple accumulation logic close to DRAM banks

o 2x bandwidth reduction for output data

o See paper for discussion of logic placement in DRAM
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Scheduling and Partitioning 
for TETRIS



Dataflow Scheduling

 Critical for maximizing on-chip data reuse to save energy
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foreach b in batch Nb
foreach ifmap u in Ni
foreach ofmap v in No

// 2D conv
O(v,b) += I(u,b) * W(u,v) + B(v)

Mapping: execute 2D conv on PE array

• Regfiles and array interconnect

• Row stationary [Chen et al., ISCA’16]

Ordering: loop blocking and reordering

• Locality in global buffer 

• Non-convex, exhaustive search



TETRIS Bypass Ordering

 Limited reuse opportunities with small buffers

 IW bypass, OW bypass, IO bypass

o Use buffer only for one stream for maximum benefit

o Bypass buffer for the other two to sacrifice their reuse
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TETRIS Bypass Ordering

 Analytically derived

o Closed-form solution

o No need for exhaustive search

 Near-optimal schedules

o With 2% from schedules 
derived with exhaustive search 
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min𝐴DRAM
= 2 × 𝑁b𝑁o𝑆o × 𝑡i + 𝑁b𝑁i𝑆i + 𝑁o𝑁i𝑆w × 𝑡b

s.t. ൞

𝑁b
𝑡b

×
𝑁i
𝑡i
× 𝑆i ≤ 𝑆buf

1 ≤ 𝑡b ≤ 𝑁b, 1 ≤ 𝑡i ≤ 𝑁i

NN
Runtime Gap

(w.r.t. optimal)
Energy Gap

(w.r.t. optimal)

AlexNet 1.48 % 1.86 %

ZFNet 1.55 % 1.83 %

VGG16 0.16 % 0.20 %

VGG19 0.13 % 0.16 %

ResNet 2.91 % 0.78 %



NN Partitioning

 Option 1: fmap partitioning

o Divide a fmap into tiles

o Each vault processes one tile

o Minimum remote accesses
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Layer i Layer i+1

Vault 0 Vault 1

Vault 2 Vault 3

 Process NN computations in parallel in all vaults



NN Partitioning

 Option 2: output partitioning

o Partition all ofmaps into groups

o Each vault processes one group

o Better filter weight reuse

o Fewer total memory accesses
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Layer i Layer i+1

Vault 0
Vault 1

Vault 2
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 Process NN computations in parallel in all vaults



TETRIS Hybrid Partitioning

 Combine fmap partitioning and output partitioning

o Balance between minimizing remote accesses and total DRAM accesses

o Total energy = NoC energy + DRAM energy

 Difficulties

o Design space exponential to # layers

 Greedy algorithm reduces to be linear to # layers

o Complex dataflow scheduling to determine total DRAM accesses

 Bypass ordering to quickly estimate total DRAM accesses
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TETRIS Evaluation



Methodology

 State-of-the-art NNs

o AlexNet, ZFNet, VGG16, VGG19, ResNet

o 100—300 MB total memory footprint for each NN

o Up to 152 layers in ResNet

 2D and 3D accelerators with ≥1 NN engines

o 2D engine: 16 x 16 PEs, 576 kB buffer, 1 LPDDR3 channel

• 8.5 mm2, 51.2 Gops/sec

• Bandwidth-constrained

o 3D engine: 14 x 14 PEs, 133 kB buffer, 1 HMC vault

• 3.5 mm2, 39.2 Gops/sec

• Area-constrained
21



Single-engine Comparison

 Up to 37% performance improvement with TETRIS

o Due to higher bandwidth despite smaller PE array
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 35–40% energy reduction with TETRIS

o Smaller on-chip buffer, better scheduling
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From SRAM & DRAM, and static
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Multi-engine Comparison

 4 2D engines: 34 mm2, pin constrained (4 LPDDR3 channels)

 16 3D engines: 56 mm2, area constrained (16 HMC vaults)

 4.1x performance gain  2x compute density
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Multi-Engine Comparison

 1.5x lower energy

o 1.2x from better scheduling and partitioning

 4x computation only costs 2.7x power
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TETRIS Summary

 A scalable and efficient NN accelerator using 3D memory
o 4.1x performance and 1.5x energy benefits over 2D baseline

 Hardware features
o PE/buffer area rebalancing

o In-memory accumulation

 Software features
o Analytical dataflow scheduling

o Hybrid partitioning

 Scheduling exploration tool
o https://github.com/stanford-mast/nn_dataflow
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https://github.com/stanford-mast/nn_dataflow


Thanks!
Questions?


