Dye-sensitized solar cells (DSCs) based on nanocrystalline semiconductors have been intensively studied because of their potential low cost, easy processing, and high performance.[1] Besides broadening light absorption into the near-infrared domain, enhancing the open-circuit potential is a key pathway to further increase the power-conversion efficiency. In a typical liquid-electrolyte cell the maximum open-circuit potential is around 800 mV, which is significantly less than those of solid-state dye-sensitized solar cells (SSDSCs) composed of organic hole-transporting materials (HTMs).[2] By minimizing the energy difference between the HOMO of the sensitizing dye and the work function of the organic hole conductor, it is possible to develop DSCs with higher power-conversion efficiency. Recently, we demonstrated SSDSCs with open-circuit voltage greater than 1000 mV with the promise of high power-conversion efficiency. However, SSDSCs suffer from significantly higher recombination rates and are limited to optimized thicknesses of about 2 µm (versus 10 µm for liquid DSCs),[4] which limits light absorption. Hence, the primary challenge with SSDSCs is to absorb all the light inside a relatively thin film.

Schemes developed to increase light absorption in liquid DSCs include co-sensitization[5] and the use of intramolecular energy transfer between energy-donor molecules covalently attached to the sensitizing dye.[6] Although these architectures can broaden light absorption, they require that the dyes attach to the titania surface, which does not allow for increased dye loading. We recently demonstrated a new DSC architecture in which highly luminescent energy-relay dyes (ERDs) placed inside the electrolyte absorb higher energy photons and transfer their energy to the sensitizing dye by Förster resonant energy transfer (FRET).[7] A DSC architecture with an ERD allows separation of light-absorption and charge-transfer processes. Herein, an ERD was introduced at high concentrations inside the HTM to increase the light harvesting yield of SSDSCs, as shown in Figure 1 (see Supporting Information, Scheme S1 for energy diagram).

Sensitization of the SSDSC is shown in Figure 1. Absorption of lower energy (red) photons by the sensitizing dye (SQ1) transfers an electron into the TiO₂ and a hole into the electrolyte. Higher energy (blue) photons are absorbed by the energy-relay dye (N877) and transferred by FRET to the sensitizing dye. Figure is not drawn to scale.

The ERDs used in SSDSCs should be soluble in polar solvents (e.g., chlorobenzene), mix well, and not undergo photoreactions with the HTM. In SSDSCs, hole injection from the sensitizing dye to the Spiro-OMeTAD hole transporter occurs within 1 ps to 4 ns (Spiro-OMeTAD: 2,2',7,7'-tetrakis-(N,N-di-p-methoxyphenylamine)-9,9'-spirobifluorene).[9] We used a highly phosphorescent phenanthroline ruthenium(II) sensitizer (hereafter denoted N877) as energy-
relay dye, and an efficient near-infrared sensitizer (SQ1)\(^\text{[9]}\) (for molecular structures, see Figure S1 of the Supporting Information) in SSDSCs based on Spiro-OMeTAD. The ERDs absorb higher energy photons and transfer the energy to SQ1 without contribution of direct charge injection to TiO\(_2\), as shown in Scheme S1 (Supporting Information). To the best of our knowledge, this is the first time ERDs have been incorporated in SSDSCs.

Förster resonant energy transfer involves dipole–dipole coupling of the ERD and sensitizing dye through the electric dipole field.\(^\text{[10]}\) A good measure of the field strength is the FRET radius \(R_o\), which is defined as the distance at which the probability of FRET between donor (i.e., N877) and acceptor (i.e., SQ1) is 50%. The \(R_o\) value is dependent on the photoluminescence (PL) efficiency of the ERD and the overlap between ERD emission (phosphorescence) and the molar extinction coefficient of the sensitizing dye (see Supporting Information). The UV/Vis absorption spectrum (Figure 2) of SQ1 in ethanol shows a maximum at 636 nm with high molar extinction coefficient \((\varepsilon = 158,500 \, \text{M}^{-1} \cdot \text{cm}^{-1})\) due to strong \(\pi–\pi^*\) charge-transfer (CT) transitions.\(^\text{[9]}\) The absorption maximum of N877 occurs at 460 nm \((29,000 \, \text{M}^{-1} \cdot \text{cm}^{-1})\), and the emission maximum at 612 nm. As shown in Figure 2, the emission range of N877 matches well with the absorption range of SQ1, and the phosphorescence quantum yield of N877 in solution is 37% at room temperature\(^\text{[11]}\) and 68% at 77 K.\(^\text{[12]}\) The calculated \(R_o\) is about 5.0 nm based on 37% quantum yield for the N877/SQ1 system and was experimentally verified by time-resolved PL spectroscopy (Figures S2 and S3 in the Supporting Information). For a quantum yield of 68% the Förster radius increases to 6.3 nm.

One of the biggest challenges in using ERDs in SSDSCs that must be overcome is quenching of the excited ERD by the hole conductor. High quenching rates compete with FRET and reduce the excitation transfer efficiency.\(^\text{[13]}\) To determine the degree of PL quenching, the photoluminescence of N877 inside Spiro-OMeTAD was compared to that of N877 in an inert polystyrene matrix. Films were spun-cast at 1000 rpm onto a glass substrate from a solution of 1.5 wt% N877 in 27 mgmL\(^{-1}\) of polystyrene or Spiro-OMeTAD in chloroform inside a glove box. The sensitizer N877 tends to form aggregates in chlorobenzene, but completely dissolves in chloroform. Figure S5 (Supporting Information) compares the photoluminescence of N877/Spiro-OMeTAD and N877/ polystyrene films, corrected for differences in absorption. The peak PL is 69 times lower in Spiro-OMeTAD than in polystyrene. Cyclic voltammetry indicates that the first oxidation potential of Spiro-OMeTAD is about 0.81 V versus the normal hydrogen electrode,\(^\text{[13]}\) while the potential of N877 HOMO is about 1.46 V.\(^\text{[14]}\) There are several possible reasons for the relatively ineffective quenching, which is assigned to hole injection from the excited sensitizer into Spiro-OMeTAD. The N877 sensitizer does not contain NCS ligands, which are typically introduced into sensitizing dyes and are known to increase hole transfer,\(^\text{[15]}\) and the large difference between the energy levels may retard charge injection from Spiro-OMeTAD (see Scheme S1, Supporting Information). A full description of the relationship between ERD HOMO level and charge injection is beyond the scope of this paper and will be discussed in a future study.

Figure 3 shows the incident monochromatic photon-to-current conversion efficiency (IPCE) of SSDSCs sensitized by SQ1 with and without N877. At the peak absorption wave-length, IPCE exceeds 47% in SQ1-sensitized solid-state solar cells, but only 76% of the light is absorbed, giving an internal quantum efficiency (IQE) of 62%. When 10 mM of N877 is added, the IPCE increases to 8% at 460 nm and 21% at 400 nm, resulting in 30% increase in current density and 29% increase in power-conversion efficiency (Table 1). The observed increase in photogenerated current could be caused by direct injection from N877 to TiO\(_2\). To see whether this process occurs, we made an SSDSC containing no sensitizer while keeping all other conditions unchanged. The data clearly show no injection of electrons in the visible region between 400 and 500 nm (Figure 3, gray line) and corroborate the hypothesis that the new IPCE from 400 to 530 nm is caused by energy transfer from N877 to SQ1.

![Normalized UV/Vis absorption (solid line)/emission (dashed line) spectra of SQ1 (blue) and N877 (red) in ethanol.](image1)

![IPCE spectrum of SQ1 SSDSCs with and without N877 ERD.](image2)
Table 1: J–V characteristics of SQ1 SSDSCs without and with N877.

<table>
<thead>
<tr>
<th>[N877]</th>
<th>Jsc</th>
<th>Voc</th>
<th>Fill factor</th>
<th>(\eta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[mm]</td>
<td>[mA cm(^{-2})]</td>
<td>[mV]</td>
<td>(FF)</td>
<td>[%]</td>
</tr>
<tr>
<td>0(^{a})</td>
<td>2.98</td>
<td>807</td>
<td>0.58</td>
<td>1.40</td>
</tr>
<tr>
<td>10(^{b})</td>
<td>3.87</td>
<td>786</td>
<td>0.59</td>
<td>1.80</td>
</tr>
</tbody>
</table>

\(\eta \) is derived from \(Jsc \times Voc \times FF \) / light intensity.
\(\eta \) Active area: 0.35 cm\(^2\).
\(\eta \) Active area: 0.36 cm\(^2\).

The excitation transfer efficiency (ETE) is the fraction of excited unattached chromophores (i.e., N877 dyes) that transfer their energy to the sensitizing dye (i.e., SQ1).[7] The ETE [Eq. (1)] can be determined from the ERD light absorption, device IQE, and change in IPCE. Figure 3 shows a \(\Delta \text{IPCE} \) of 8% and IQE of 62%. For a film thickness of 2 \(\mu \)m and porosity of 0.60, the measured \(\eta_{abs, donor} \) is 41% and an ETE of 32% can be estimated.

\[
\eta_{ETE} = \frac{\Delta \text{IPCE}}{\text{IQE} - \eta_{abs, donor}}
\]

Solar-cell fabrication: For solid-state solar cells, fluorine-doped SnO\(_2\) glass (15 \(\Omega \)square, Pilkington) substrates were cleaned first with Helmanex solution and rinsed with acetone and then ethanol. Next, a 100 nm compact layer of TiO\(_2\) was deposited by spray pyrolysis.[8] A porous layer of 30 nm TiO\(_2\) particles (ca. 2 \(\mu \)m thick) was coated on the glass substrate by the doctor-blade technique, followed by sintering at 500 °C under an oxygen flow. After cooling, the thin TiO\(_2\) films were impregnated in a 0.02 M aqueous TiCl\(_4\) solution for 15 h, and then rinsed with deionized water. The TiCl\(_4\)-treated TiO\(_2\) films were annealed at 450°C for 30 min and then cooled to about 80°C before plunging into the dye solution for 3 h. After soaking in dye solution, the substrates were rinsed in acetonitrile, and then a solution of Spiro-OMeTAD (180 mg mL\(^{-1}\)) attached to a monochromator and processed by a PicocHar 300 correlating system.

Solar-cell characterization: For photovoltaic measurements on the DSCs, the irradiation source was a 450 W xenon light source (Osrham XBO 450, USA) with a filter (Schott KG-1), the power of which was regulated to the AM 1.5G standard by using a reference Si photodiode equipped with a color-matched filter (KG-3, Schott) to reduce the mismatch in the region of 350–750 nm between the simulated light and AM 1.5G to less than 4%. The measurement delay time of photo- \(J-V \) characteristics of DSCs was fixed to 40 and 100 ms for liquid solar cells and solid solar cells, respectively. The incident photon-to-current conversion efficiency (IPCE) was plotted as a function of excitation wavelength by using the incident light from a 300 W xenon lamp (ILC Technology, USA), which was focused through a Gemini-180 double monochromator (Jobin Yvon Ltd.).

Received: August 25, 2009
Published online: November 7, 2009

Keywords: dyes/pigments · energy conversion · energy transfer · FRET · solar cells

