Multilinear Algebra for Analyzing Data with Multiple Linkages

Tamara G. Kolda

In collaboration with:
Brett Bader, Danny Dunlavy, Philip Kegelmeyer
Sandia National Labs

MMDS, Stanford, CA, June 21-24, 2006
Linear Algebra plays an important role in Graph Analysis

- **PageRank**
 - Page, Brin, Motwani, Winograd (1999)
- **HITS (hubs and authorities)**
 - Kleinberg (1998/99)
- **Latent Semantic Indexing (LSI)**
 - Dumais, Furnas, Landauer, Deerwester, and Harshman (1988)
 - Deerwester, Dumais, Landauer, Furnas, and Harshman (1990)

One Use of LSI: Maps terms and documents to the “same” k-dimensional space.
Multi-Linear Algebra can be used in more complex graph analyses

- Nodes (one type) connected by multiple types of links
 - Node x Node x Connection
- Two types of nodes connected by multiple types of links
 - Node A x Node B x Connection
- Multiple types of nodes connected by a single link
 - Node A x Node B x Node C
- Multiple types of nodes connected by multiple types of links
 - Node A x Node B x Node C x Connection
- Etc…
Analyzing Publication Data: Term x Doc x Author

1999-2004 SIAM Journal Data (except SIREV)

6928 terms 4411 documents 6099 authors 464645 nonzeros

\[
A = \text{term-document matrix} \\
a_{ij} = \frac{(1 + \log_2 f_{ij}) \log_2(N/n_i)}{d_j} \\
B = \text{author-document matrix} \\
b_{kj} = \begin{cases}
1/\sqrt{m_j} & \text{if author } k \text{ wrote document } j \\
0 & \text{otherwise}
\end{cases}
\]

Form tensor \(\mathbf{X} \) as: \[x_{ijk} = a_{ij} b_{jk} \]

Element \((i,j,k)\) is nonzero only if author \(k\) wrote document \(j\) using term \(i\).

\[
\mathbf{X} \approx \sum_r \lambda_r \mathbf{t}_r \circ \mathbf{d}_r \circ \mathbf{a}_r
\]
A tensor is a multidimensional array

- Other names for tensors…
 - Multi-way array
 - N-way array
- The “order” of a tensor is the number of dimensions
- Other names for dimension…
 - Mode
 - Way
- Example
 - The matrix A (at left) has order 2.
 - The tensor X (at left) has order 3 and its 3rd mode is of size K.

\[
\begin{align*}
\text{An } I \times J \text{ matrix} & \quad \begin{pmatrix}
 a_{ij}
\end{pmatrix} \\
\text{An } I \times J \times K \text{ tensor} & \quad X_{ijk}
\end{align*}
\]
Tensor “fibers” generalize the concept of rows and columns.

No "Slice"

There’s no naming scheme past 3 dimensions; instead, we just say, e.g., the 4th-mode fibers.

Column Fibers x_{jk}

Row Fibers x_{ik}

Tube Fibers x_{ij}

NOTE
Tucker Decomposition

\[\mathbf{X} = \sum_{r=1}^{R} \sum_{s=1}^{S} \sum_{t=1}^{T} g_{rst} \mathbf{a}_r \mathbf{b}_s \mathbf{c}_t \]

\[\mathbf{X} = [\mathbf{G} ; \mathbf{A}^\dagger, \mathbf{B}^\dagger, \mathbf{C}^\dagger] \]

- Proposed by Tucker (1966)
- Also known as: Three-mode factor analysis, three-mode PCA, orthogonal array decomposition
- \(\mathbf{A}, \mathbf{B}, \) and \(\mathbf{C} \) may be orthonormal (generally assume they have full column rank)
- \(\mathbf{G} \) is not diagonal
- Not unique
CANDECOMP/PARAFAC

- CANDECOMP = Canonical Decomposition (Carroll and Chang, 1970)
- PARAFAC = Parallel Factors (Harshman, 1970)
- Columns of A, B, and C are not orthonormal
- If R is minimal, then R is called the rank of the tensor (Kruskal 1977)
- Can have rank(\mathcal{X}) > $\min\{I, J, K\}$

$$\mathcal{X} = \sum_{r=1}^{R} a_r \otimes b_r \otimes c_r$$

$$\mathcal{X} = [A, B, C]$$
Combining Tucker and PARAFAC

Have: Tensor \mathbf{X} of size $M \times N \times P$
Want: $\mathbf{X} \approx \lambda [\mathbf{T}, \mathbf{D}, \mathbf{A}]$

Step 1: Choose orthonormal compression matrices for each dimension:

- \mathbf{U} of size $M \times I$
- \mathbf{V} of size $N \times J$
- \mathbf{W} of size $P \times K$

Step 2: Form reduced tensor (implicitly)

$$\hat{\mathbf{X}} = [\mathbf{X} ; \mathbf{U}^T, \mathbf{V}^T, \mathbf{W}^T] \Rightarrow \mathbf{X} \approx [\hat{\mathbf{X}} ; \mathbf{U}, \mathbf{V}, \mathbf{W}]$$

Step 3: Compute PARAFAC on reduced tensor

$$\hat{\mathbf{X}} \approx \hat{\lambda} [\hat{\mathbf{T}}, \hat{\mathbf{D}}, \hat{\mathbf{A}}]$$

Step 4: Convert to PARAFAC of full tensor

$$\mathbf{X} \approx \lambda [\mathbf{U} \hat{\mathbf{T}}, \mathbf{V} \hat{\mathbf{D}}, \mathbf{W} \hat{\mathbf{A}}] \equiv \lambda [\mathbf{T}, \mathbf{D}, \mathbf{A}]$$
Matricize: $X_{(n)}$

The nth-mode fibers are rearranged to be the columns of a matrix.

$$X = \begin{bmatrix} 1 & 5 & 3 & 7 \\ 2 & 6 & 4 & 8 \end{bmatrix}$$

$$X_{(1)} = \begin{bmatrix} 1 & 3 & 5 & 7 \\ 2 & 4 & 6 & 8 \end{bmatrix}$$

$$X_{(2)} = \begin{bmatrix} 1 & 2 & 5 & 6 \\ 3 & 4 & 7 & 8 \end{bmatrix}$$

$$X_{(3)} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \end{bmatrix}$$
Tucker and PARAFAC
Matrix Representations

Fact 1:

\[
([\mathcal{S} ; A, B, C])_{(1)} = AG_{(1)}(C \otimes B)^T
\]

Fact 2:

\[
([A, B, C])_{(1)} = A(C \odot B)^T
\]

Khatri-Rao Matrix Product (Columnwise Kronecker Product):

\[
C \odot B = \begin{bmatrix}
c_{1} \otimes b_{1} & c_{2} \otimes b_{2} & \cdots & c_{R} \otimes b_{R}
\end{bmatrix}
\]

Special pseudo-inverse structure:

\[
((C \odot B)^T)^\dagger = (C \odot B)(C^T C \ast B^T B)^{-1}
\]
Implicit Compressed PARAFAC ALS

Have: $\hat{X} = [x ; U^T, V^T, W^T]$
Want: $\hat{X} \approx [\hat{T}, \hat{D}, \hat{A}]$

Consider the problem of fixing the 2nd and 3rd factors and solving just for the 1st.

$$\min_{\hat{T}} \| \hat{X} - [\hat{T}, \hat{D}, \hat{A}] \|$$
$$\min_{\hat{T}} \| \hat{X}_{(1)} - \hat{T}(\hat{A} \odot \hat{D})^T \|$$

$$\hat{T} = \hat{X}_{(1)}((\hat{A} \odot \hat{D})^T)^\dagger$$

$$\hat{T} = \hat{X}_{(1)}(\hat{A} \odot \hat{D})Z^{-1} \quad \text{with} \quad Z = \hat{A}^T\hat{A} \ast \hat{D}^T\hat{D}$$

$$\hat{T} = U^TX_{(1)}(W \otimes V)(\hat{A} \odot \hat{D})Z^{-1}$$

$$\hat{T} = U^TX_{(1)}(W\hat{A} \odot V\hat{D})Z^{-1}$$

$$(\hat{T}Z)_{\cdot r} = U^TX_{(1)} \left[(W\hat{A})_{\cdot r} \otimes (V\hat{D})_{\cdot r} \right] \quad \text{Update columnwise}$$
Back to the Problem: Term x Doc x Author

Form tensor \mathbf{X} as:

$$\mathbf{X}_{ijk} = \mathbf{A}_{ij} \mathbf{B}_{jk}$$

Element (i,j,k) is nonzero only if author k wrote document j using term i.

\mathbf{A} = term-document matrix

$$a_{ij} = \frac{(1 + \log_2 f_{ij}) \log_2(N/n_i)}{d_j}$$

\mathbf{B} = author-document matrix

$$b_{kj} = \begin{cases} 1/\sqrt{m_j} & \text{if author } k \text{ wrote document } j \\ 0 & \text{otherwise} \end{cases}$$

6928 documents
4411 terms
6099 authors
464645 nonzeros

Terms must appear in at least 3 documents and no more than 10% of all documents. Moreover, it must have at least 2 characters and no more than 30.
Original problem is “overly” sparse

\[A = \text{term-document matrix} \]
\[a_{ij} = \frac{(1 + \log_2 f_{ij}) \log_2 (N/n_i)}{d_j} \]

\[B = \text{author-document matrix} \]
\[b_{ij} = \begin{cases} \frac{1}{\sqrt{m_j}} & \text{if author i wrote document j} \\ 0 & \text{otherwise} \end{cases} \]

Result: Resulting tensor has just a few nonzero columns in each lateral slice.

Experimentally, PARAFAC seems to overfit such data and not do a good job of “mixing” different authors.
Compression Matrices & PARAFAC

\[\mathbf{X} \approx [\hat{\mathbf{X}} ; \mathbf{U}, \mathbf{V}, \mathbf{W}] \]

\[\mathbf{A} = \text{term-document matrix} \]
\[\mathbf{A} \approx \mathbf{U}_A \mathbf{\Sigma}_A \mathbf{V}_A^T \quad \text{(rank 100)} \]
\[\mathbf{U} = \mathbf{U}_A^T, \mathbf{V} = \mathbf{V}_A^T, \]

\[\mathbf{C} = \text{term-author matrix} \]
\[c_{ik} = \sum_j x_{ijk} \]
\[\mathbf{C} \approx \mathbf{U}_C \mathbf{\Sigma}_C \mathbf{V}_C^T \quad \text{(rank 100)} \]
\[\mathbf{W} = \mathbf{V}_C^T, \]

Run rank-100 PARAFAC on compressed tensor.
Reassemble results.
Three-Way Fingerprints

- Each of the Terms, Docs, and Authors has a rank-k (k=100) fingerprint from the PARAFAC approximation.
- All items can be directly compared in “concept space”.
- Thus, we can compare any of the following:
 - Term-Term
 - Doc-Doc
 - Term-Doc
 - Author-Author
 - Author-Term
 - Author-Doc
- The fingerprints can be used as inputs for clustering, classification, etc.

\[\mathbf{X} \approx \lambda \left[\mathbf{T}, \mathbf{D}, \mathbf{A} \right] \]

\[\text{score} = \mathbf{u}^\top \Lambda \mathbf{v} \]
MATLAB Results

- Go to MATLAB
Group 1

Weight = 0.649794

0.2291772 3474 Vortex motion law for the Schrodinger-Ginzburg-Landau equations
0.2280338 1633 Vortex state of d-wave superconductors in the Ginzburg-Landau energy
0.2233726 320 Studies of a Ginzburg-Landau model for d-wave superconductors
0.2183914 3340 Vortices in p-wave superconductivity
0.2056138 485 Numerical solution of the three-dimensional Ginzburg-Landau models using artificial boundary
-0.0130460 463 Layer stripping for a transversely isotropic elastic medium
-0.0132632 1151 Scattering of time-harmonic electromagnetic waves by anisotropic inhomogeneous scatterers or impenetrable
-0.0133375 1206 Phase equations for relaxation oscillators
-0.0135059 2592 On the two-dimensional gas expansion for compressible Euler equations
-0.0141843 3091 A thermomechanical model for energetic materials with phase transformations
0.4828654 3387 landau
0.4489465 2614 ginzburg
0.2600777 6130 superconductivity
0.2611251 6771 vortex
0.2227376 6772 vortices
-0.0120339 1964 elastic
-0.0120368 1620 design
-0.0120543 3767 mesh
-0.0144529 2554 gas
-0.0153897 5462 scattering
0.7300468 1322 du q
0.3112497 3142 lin tc
0.2275581 814 chapman sj
0.1382164 4991 sprrn d
0.1048653 3133 lin fg
-0.0182270 5898 yao pf
-0.0188236 2045 han wm
-0.0244190 2947 laurenct p
-0.0281511 2393 izhikevich em
-0.0316239 3369 manservisi s

Return to continue, jump to rank, or '0' (zero) to quit:
Find terms similar to 'tensor'

Match 1: tensor (6261)
 No. docs in which the term appears: 61
 No. authors that use the term: 118
 Norm of matching item: 1.934519e-001
 -- Top 10 matches for PARAFAC --
 Score 2.73e-001: tensor (6261)
 Score 2.35e-001: multilinear (3955)
 Score 2.15e-001: tensors (6262)
 Score 2.06e-001: svds (6162)
 Score 2.04e-001: deficient (1520)
 Score 2.00e-001: valuable (6660)
 Score 1.97e-001: confirms (1160)
 Score 1.94e-001: hyper (2860)
 Score 1.93e-001: displacement (1787)
 Score 1.92e-001: div (1814)
 -- Top 10 matches for SVD --
 Score 1.17e-001: decomposition (1498)
 Score 1.13e-001: squares (5391)
 Score 1.07e-001: rank (4980)
 Score 9.75e-002: least (3437)
 Score 9.20e-002: singular (5724)
 Score 7.09e-002: tensor (6261)
 Score 7.21e-002: elasticity (1965)
 Score 6.22e-002: orthogonal (4327)
 Score 6.19e-002: mixed (3837)
 Score 5.71e-002: elastic (1964)
Find documents similar to 'tensor'

Match 1: tensor (6261)
 No. docs in which the term appears: 61
 No. authors that use the term: 118
 Norm of matching item: 1.934519e-001
 -- Top 10 matches for PARAFAC --
 Score 2.21e-001: On the best rank-1 and rank-(R1R2...R-N) approximation of higher-order tensors (1224)
 Score 2.01e-001: Efficient solution of the rank-deficient linear least squares problem (146)
 Score 1.87e-001: On the best rank-1 approximation of higher-order supersymmetric tensors (2570)
 Score 1.86e-001: Orthogonal tensor decompositions (2180)
 Score 1.82e-001: A counterexample to the possibility of an extension of the Eckart-Young low-rank approximation theorem
 Score 1.78e-001: Least-squares solution of matrix equation AXB(*)+CYD(*)=E(*) (3192)
 Score 1.74e-001: Least-squares methods for incompressible Newtonian fluid flow Linear stationary problems (4244)
 Score 1.74e-001: Least-squares methods for linear elasticity (4243)
 Score 1.73e-001: Tensor methods for large sparse nonlinear least squares problems (1119)
 Score 1.69e-001: Multilevel boundary functionals for least-squares mixed finite element methods (396)
 -- Top 10 matches for SVD --
 Score 5.78e-002: A counterexample to the possibility of an extension of the Eckart-Young low-rank approximation theorem
 Score 5.77e-002: On the best rank-1 and rank-(R1R2...R-N) approximation of higher-order tensors (1224)
 Score 5.59e-002: Least-squares methods for linear elasticity (4243)
 Score 5.35e-002: First-order system least squares for the stress-displacement formulation Linear elasticity (3431)
 Score 4.98e-002: Rank-one approximation to high order tensors (2369)
 Score 4.72e-002: Least-squares methods for incompressible Newtonian fluid flow Linear stationary problems (4244)
 Score 4.51e-002: First-order system least squares for linear elasticity Numerical results (1178)
 Score 4.43e-002: Orthogonal tensor decompositions (2180)
 Score 4.39e-002: Layer stripping for a transversely isotropic elastic medium (463)
 Score 3.91e-002: First-order system least squares for the Stokes and linear elasticity equations Further results (1178)
Find authors similar to 'tensor'

Match 1: tensor (626)
 No. docs in which the term appears: 61
 No. authors that use the term: 118
 Norm of matching item: 1.934519e-001
 -- Top 10 matches for PARAFAC --
 Score 1.91e-001: vandewalle j (5451)
 Score 1.04e-001: delathauwer l (1101)
 Score 1.83e-001: quintanaorti g (4293)
 Score 1.83e-001: quintanaorti es (4292)
 Score 1.83e-001: petitet a (4109)
 Score 1.76e-001: chen y (873)
 Score 1.76e-001: shi m (4346)
 Score 1.73e-001: demoor b (1199)
 Score 1.68e-001: barlow j (288)
 Score 1.66e-001: cai zq (693)
Find terms similar to Dhillon

Match 1: dhillon is (1239)
 No. terms used by authcr: 63
 No. documents written by author: 1
 Norm of matching item: 5.289941e-002
 -- Top 10 matches for PARAFAC --
 Score 2.27e-001: bidiagonal (575)
 Score 2.26e-001: qr (4907)
 Score 2.11e-001: ldl (3424)
 Score 2.08e-001: lapack (3391)
 Score 2.07e-001: columns (1000)
 Score 2.04e-001: column (999)
 Score 2.03e-001: revealing (5308)
 Score 2.03e-001: pivoting (4579)
 Score 2.02e-001: rank (4980)
 Score 1.98e-001: bjorck (610)
Find authors similar to Dhillon

Match 1: dhillon is (1239)
 No. terms used by authcr: 63
 No. documents written by author: 1
 Norm of matching item: 5.289941e-002
 -- Top 10 matches for PARAFAC --
 Score 3.11e-001: dhillcn is (1239)
 Score 3.11e-001: parlett bn (4024)
 Score 2.28e-001: drmac z (1315)
 Score 2.19e-001: molera jm (3625)
 Score 2.16e-001: jessup er (2437)
 Score 2.04e-001: dopico fm (1292)
 Score 2.04e-001: moro j (3661)
 Score 2.02e-001: jubete f (2495)
 Score 2.02e-001: pruneda re (4253)
 Score 2.02e-001: castillo e (761)
Find terms similar to OLeary DP

Match 1: oleary dp (3913)
 No. terms used by author: 114
 No. documents written by author: 2
 Norm of matching item: 2.567276e-001
 -- Top 10 matches for PARAFAC --
 Score 2.35e-001: ill (2906)
 Score 2.15e-001: tikhonov (6334)
 Score 2.12e-001: posed (4667)
 Score 2.07e-001: regularization (5142)
 Score 2.05e-001: conditioned (1138)
 Score 2.02e-001: clustered (940)
 Score 2.01e-001: unmixed (6601)
 Score 2.01e-001: regularizing (5145)
 Score 1.95e-001: regularisation (5140)
 Score 1.95e-001: regularized (5144)

Find authors similar to OLeary DP

Match 1: oleary dp (3913)
 No. terms used by author: 114
 No. documents written by author: 2
 Norm of matching item: 2.567276e-001
 -- Top 10 matches for PARAFAC --
 Score 2.55e-001: oleary dp (3913)
 Score 2.37e-001: kilmer me (2645)
 Score 2.30e-001: hansen pc (2056)
 Score 2.18e-001: o'leary dp (3889)
 Score 2.10e-001: gulliksson m (1956)
 Score 2.10e-001: wedin pa (5695)
 Score 2.09e-001: maass p (3306)
 Score 2.08e-001: mante c (3372)
 Score 2.07e-001: jin qn (2458)
 Score 2.05e-001: johnston pr (2470)
Find authors like H.Y. Zha

Match 1: zha hy (5990)
 No. terms used by author: 164
 No. documents written by author: 5
 Norm of matching item: 3.795614e-001
 -- Top 10 matches for PARAFAC --
 Score 3.55e-001: zha hy (5990)
 Score 3.46e-001: simon hd (4090)
 Score 3.36e-001: zhang zy (6025)
 Score 3.28e-001: simon h (4399)
 Score 3.19e-001: fundelic re (1645)
 Score 3.09e-001: zha h (5989)
 Score 2.94e-001: zhang t (6013)
 Score 2.81e-001: vandocren p (5453)
 Score 2.77e-001: golub g (1320)
 Score 2.75e-001: dopico fm (1292)
Find authors similar to 'svd'

Match 1: svd (6181)
 No. docs in which the term appears: 24
 No. authors that use the term: 36
 Norm of matching item: 1.789480e-001
 -- Top 10 matches for PARAFAC --
 Score 3.28e-001: delathauwer l (1181)
 Score 3.23e-001: golub g (1320)
 Score 3.23e-001: vandooren p (5453)
 Score 3.21e-001: dopico fm (1292)
 Score 3.21e-001: moro j (3661)
 Score 3.20e-001: fundelich re (1645)
 Score 3.13e-001: jessup er (2437)
 Score 3.12e-001: zha h (5989)
 Score 3.12e-001: demmel j (1197)
 Score 3.12e-001: vandewalle j (5451)

>>
Wrap-Up

- Higher-order LSI for term-doc-author tensor
- Tucker-PARAFAC combination for sparse tensors
 - Spasre Tensor Toolbox (release summer 2006)
- Mathematical manipulations
- Thanks to Kevin Boyack for journal data
- For more info: Tammy Kolda, tgkolda@sandia.gov

Kolda, Bader, Kenny, ICDM05