1. Narayan, S. M. et al. Treatment of Atrial Fibrillation by the Ablation of Localized Sources: The Conventional Ablation for Atrial Fibrillation With or Without Focal Impulse and Rotor Modulation:  CONFIRM Trial. J Am Coll Cardiol 60, 628-636 (2012).
  2. Shivkumar, K., Ellenbogen, K. A., Hummel, J. D., Miller, J. M. & Steinberg, J. S. Acute Termination of Human Atrial Fibrillation by Identification and Catheter Ablation of Localized Rotors and Sources: First Multicenter Experience of Focal Impulse and Rotor Modulation (FIRM) Ablation. J Cardiovasc Electrophysiol 23, 1277-1285, doi:DOI:10.1111/j.1540-8167.2012.012000.x. (2012).
  3. Miller, J. M. et al. Initial Independent Outcomes from Focal Impulse and Rotor Modulation Ablation for Atrial Fibrillation: Multicenter FIRM Registry. J Cardiovasc Electrophys 25, 921-929 (2014).
  4. Sommer, P. et al. Successful Repeat Catheter Ablation of Recurrent Longstanding Persistent Atrial Fibrillation with Rotor Elimination as the Procedural Endpoint: A Case Series. J Cardiovasc Electrophysiol, doi:10.1111/jce.12874 (2015).
  5. Rashid, H. & Sweeney, A. Approaches for Focal Impulse and Rotor Mapping in Complex Patients: A US Private Practice Perspective. J Innovations in Cardiac Rhythm Management 6, 2193–2198 (2015).
  6. Tomassoni, G. et al. Long-term Follow-up of FIRM-guided Ablation of Atrial Fibrillation: A Single-center Experience. J Innovations in Cardiac Rhythm Management, 2145-2151 (2015).
  7. Lin, Y. J. et al. Prevalence, characteristics, mapping, and catheter ablation of potential rotors in nonparoxysmal atrial fibrillation. Circ Arrhythm Electrophysiol 6, 851-858, doi:10.1161/CIRCEP.113.000318 (2013).
  8. Haissaguerre, M. et al. Driver Domains in Persistent Atrial Fibrillation. Circulation 130, 530-538, doi:10.1161/CIRCULATIONAHA.113.005421 (2014).
  9. Hansen, B. J. et al. Atrial fibrillation driven by micro-anatomic intramural re-entry revealed by simultaneous sub-epicardial and sub-endocardial optical mapping in explanted human hearts. Eur Heart J, doi:10.1093/eurheartj/ehv233 (2015).
  10. Hansen, B. J. et al. Human Atrial Fibrillation Drivers Seen Simultaneously by Focal Impulse and Rotor Mapping and High-resolution Optical Mapping [abstract]. Circulation 132, A18402 (2015).
  11. Zhao, J. et al. Integration of High Resolution Optical Mapping and 3D Micro-CT Imaging to Resolve the Structural Basis of Atrial Conduction in the Human Heart. Circ Arrhythm Electrophysiol (2015).
  12. Van Gelder, I. C. et al. Lenient versus strict rate control in patients with atrial fibrillation. N Engl J Med 362, 1363-1373, doi:NEJMoa1001337 [pii] 10.1056/NEJMoa1001337 (2010).
  13. Roy, D. et al. Rhythm control versus rate control for atrial fibrillation and heart failure. N Engl J Med 358, 2667-2677, doi:358/25/2667 [pii] 10.1056/NEJMoa0708789 (2008).
  14. Reddy, V. Y. et al. Randomized, Controlled Trial of the Safety and Effectiveness of a Contact Force-Sensing Irrigated Catheter for Ablation of Paroxysmal Atrial Fibrillation: Results of the TactiCath Contact Force Ablation Catheter Study for Atrial Fibrillation (TOCCASTAR) Study. Circulation 132, 907-915, doi:10.1161/CIRCULATIONAHA.114.014092 (2015).
  15. Verma, A. et al. Approaches to catheter ablation for persistent atrial fibrillation. N Engl J Med 372, 1812-1822, doi:10.1056/NEJMoa1408288 (2015).
  16. Calkins, H. Demonstrating the Value of Contact Force Sensing: More Difficult Than Meets the Eye. Circulation 132, 901-903, doi:10.1161/CIRCULATIONAHA.115.018354 (2015).
  17. Dukkipati, S. R. et al. Pulmonary Vein Isolation Using the Visually Guided Laser Balloon: Results of the U.S. Feasibility Study. J Cardiovasc Electrophysiol, doi:10.1111/jce.12727 (2015).
  18. Haissaguerre, M. et al. Spontaneous Initiation of Atrial Fibrillation by Ectopic Beats Originating in the Pulmonary Veins. N Engl J Med 339, 659-666 (1998).
  19. Moe, G. K., Rheinboldt, W. & Abildskov, J. A computer model of atrial fibrillation. American Heart Journal 67, 200-220 (1964).
  20. Lee, S. et al. Simultaneous Bi-Atrial High Density (510 – 512 electrodes) Epicardial Mapping of Persistent and Long-Standing Persistent Atrial Fibrillation in Patients: New Insights into the Mechanism of Its Maintenance. Circulation, doi:10.1161/CIRCULATIONAHA.115.017007 (2015).
  21. Herweg, B., Kowalski, M. & Steinberg, J. S. Termination of persistent atrial fibrillation resistant to cardioversion by a single radiofrequency application. Pacing Clin Electrophysiol 26, 1420-1423 (2003).
  22. Narayan, S. M. et al. Conventional Ablation for Atrial Fibrillation With or Without Focal Impulse and Rotor Modulation: The CONFIRM Trial (Late Breaking Clinical Trial Abstract). Heart Rhythm 8, LB-04 (2011).
  23. Narayan , S. M., Krummen, D. E. & Rappel, W.-J. Clinical Mapping Approach to Identify Rotors and Focal Beats in Human Atrial Fibrillation. J Cardiovasc Electrophysiol 23, 447-454 (2012).
  24. Narayan , S. M., Krummen, D. E., Enyeart, M. W. & Rappel, W. Computational Mapping Approach Identifies Stable and Long-Lived Electrical Rotors and Focal Sources in Human Atrial Fibrillation. PLos One 7, e46034 (2012).
  25. Weiss, J. N. et al. Perspective: a dynamics-based classification of ventricular arrhythmias. J Mol Cell Cardiol 82, 136-152, doi:10.1016/j.yjmcc.2015.02.017 (2015).
  26. Narayan, S. M., Bode, F., Karasik, P. L. & Franz, M. R. Alternans Of Atrial Action Potentials As A Precursor Of Atrial Fibrillation. Circulation 106, 1968-1973 (2002b).
  27. Patterson, E., Po, S. S., Scherlag, B. J. & Lazzara, R. Triggered firing in pulmonary veins initiated by in vitro autonomic nerve stimulation. Heart Rhythm 2, 624-631. (2005).
  28. Katritsis, D. G. et al. Rapid pulmonary vein isolation combined with autonomic ganglia modification: a randomized study. Heart Rhythm 8, 672-678, doi:S1547-5271(10)01445-1 [pii]  10.1016/j.hrthm.2010.12.047 (2011).
  29. Engelman, Z. J., Trew, M. L. & Smaill, B. H. Structural heterogeneity alone is a sufficient substrate for dynamic instability and altered restitution. Circ Arrhythm Electrophysiol 3, 195-203, doi:10.1161/CIRCEP.109.890459 (2010).
  30. Narayan, S. M., Kazi, D., Krummen, D. E. & Rappel, W.-J. Repolarization and Activation Restitution Near Human Pulmonary Veins and Atrial Fibrillation Initiation: A Mechanism for the Initiation of Atrial Fibrillation by Premature Beats. J Am Coll Cardiol 52, 1222-1230 (2008c).
  31. Narayan, S. M., Franz, M. R., Clopton, P., Pruvot, E. J. & Krummen, D. E. Repolarization Alternans Reveals Vulnerability to Human Atrial Fibrillation. Circulation 123, 2922-2930 (2011b).
  32. Franz, M. R., Swerdlow, C. D., Liem, L. B. & Schaefer, J. Cycle length Dependence of human action potential duration in vivo.  Effects of single extrastimuli, sudden sustained rate acceleration and deceleration, and different steady-state frequencies. J Clin Invest 82, 972-979 (1988a).
  33. Schricker, A., Rostamian, A., Lalani, G., Krummen, D. E. & Narayan , S. M. Human Atrial Fibrillation Initiates by Organized Not Disorganized Mechanisms. Circ Arrhythm Electrophysiol 7, 816-824 (2014).
  34. Gonzales, M. J., Vincent, K. P., Rappel, W.-J., Narayan, S. M. & McCulloch, A. D. Structural Contributions to Fibrillatory Rotors in a Patient-Derived Computational Model of the Atria. Europace 16, iv3-iv10 (2014).
  35. Marrouche, N. F. et al. Association of atrial tissue fibrosis identified by delayed enhancement MRI and atrial fibrillation catheter ablation: the DECAAF study. JAMA 311, 498-506, doi:10.1001/jama.2014.3 (2014).
    de Groot, N. M. et al. Electropathological substrate of longstanding persistent atrial fibrillation in patients with structural heart disease: epicardial breakthrough. Circulation 122, 1674-1682, doi:CIRCULATIONAHA.109.910901 [pii]10.1161/CIRCULATIONAHA.109.910901 (2010).
  36. Narayan, S. M. et al. Classifying Fractionated Electrograms in Human Atrial Fibrillation Using Monophasic Action Potentials and Activation Mapping: Evidence for Localized Drivers, Rate Acceleration and Non-Local Signal Etiologies. Heart Rhythm 8, 244-253, doi:S1547-5271(10)01118-5 [pii]10.1016/j.hrthm.2010.10.020 (2011a).
  37. Jacquemet, V. et al. Study of unipolar electrogram morphology in a computer model of atrial fibrillation. J. Cardiovasc Electrophysiol 14, S172-179 (2003).