Logical Representations and Computational Methods for Markov Decision Processes

Craig Boutilier
Department of Computer Science
University of Toronto

Course Overview

- **Lecture 1**
 - motivation; MDPs: classical model and algorithms
- **Lecture 2**
 - logical representations
 - simple abstraction methods
- **Lecture 3**
 - decision-theoretic regression
- **Lecture 4**
 - linear function approx’n
 - factored basis functions
 - approximate VI
 - solution by LPs
 - choosing basis sets
- **Lecture 5**
 - temporal logic and non-Markovian dynamics
 - wrap up; further topics
Recap and Overview

- Last time: decision-theoretic regression
 - dynamic abstraction (exact or approximate)
 - produces piecewise constant representation of VF
- Today: we’ll consider *linear function approximation* and *decomposition* methods
 - offers more flexibility in space of VFs spanned for same size of representation

Overview

- linear function approximation and approximate VI
- factored linear approximations
- basic function construction (incl. decomposition)

Function Approximation

- Common approach to solving MDPs
 - find a functional form $f(\theta)$ for VF that is tractable
 - e.g., not exponential in number of variables
 - attempt to find parameters θ s.t. $f(\theta)$ offers “best fit” to “true” VF
- Example:
 - use neural net to approximate VF
 - inputs: state features; output: value or Q-value
 - generate samples of “true VF” to train NN
 - e.g., use dynamics to sample transitions and train on Bellman backups (bootstrap on current approximation given by NN)
Linear Function Approximation

- Assume a set of basis functions $B = \{ b_1 ... b_k \}$
 - each $b_i : S \rightarrow \mathbb{R}$ generally compactly representible
- A linear approximator is a linear combination of these basis functions; for some weight vector w:
 $$\overline{V}(s) = \sum_i w_i b_i(s)$$

Several questions:
- what is best weight vector w?
- what is a “good” basis set B?
- what does this buy us computationally?

Flexibility of Linear Decomposition

- Assume each basis function is compact
 - e.g., refers only a few vars; $b_1(X,Y)$, $b_2(W,Z)$, $b_3(A)$
- Then VF is compact:
 $$V(X,Y,W,Z,A) = w_1 b_1(X,Y) + w_2 b_2(W,Z) + w_3 b_3(A)$$
- For given representation size (10 parameters), we get more value flexibility (32 distinct values) compared to a piecewise constant rep’n
- So if we can find decent basis sets (that allow a good fit), this can be more compact
Linear Approx: Components

- Assume basis set $B = \{ b_1 \ldots b_k \}$
 - each $b_i : S \rightarrow \mathbb{R}$
 - we view each b_i as an n-vector
 - let A be the $n \times k$ matrix $[b_1 \ldots b_k]$
- Linear VF: $V(s) = \sum w_i b_i(s)$
- Equivalently: $V = Aw$
 - so our approximation of V must lie in subspace spanned by B
 - let B be that subspace

Approximate Value Iteration

- We might compute approximate V using Value Iteration:
 - Let $V^0 = Aw^0$ for some weight vector w^0
 - Perform Bellman backups to produce $V^1 = Aw^1; V^2 = Aw^2; V^3 = Aw^3; \text{etc...}$
- Unfortunately, even if V^0 in subspace spanned by B, $L^*(V^0) = L^*(Aw^0)$ will generally not be
- So we need to find best approximation to $L^*(Aw^0)$ in B before we can proceed
Projection

- We wish to find a projection of our VF estimates into B minimizing some error criterion
 - We’ll use max norm (standard in MDPs)
- Given V lying outside B, we want a w s.t:

 \[\| Aw - V \| \text{ is minimal} \]

Projection as Linear Program

- Finding a w that minimizes $\| Aw - V \|$ can be accomplished with a simple LP

<table>
<thead>
<tr>
<th>Vars: $w_1, ..., w_k, \phi$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimize: ϕ</td>
</tr>
<tr>
<td>S.T. $\phi \geq V(s) - Aw(s)$, $\forall s$</td>
</tr>
<tr>
<td>$\phi \geq Aw(s) - V(s)$, $\forall s$</td>
</tr>
</tbody>
</table>

- Number of variables is small ($k+1$); but number of constraints is large (2 per state)
 - this defeats the purpose of function approximation
 - but let’s ignore for the moment
Approximate Value Iteration

- Run value iteration; but after each Bellman backup, project result back into subspace B
- Choose arbitrary w^0 and let $V^0 = Aw^0$
- Then iterate
 - Compute $V^t = L^*(Aw^{t-1})$
 - Let $V^t = Aw^t$ be projection of V^t into B
- Error at each step given by ϕ
 - final error, convergence not assured
- Analog for policy iteration as well

Factored MDPs

- Suppose our MDP is represented using DBNs and our reward function is compact
 - can we exploit this structure to implement approximate value iteration more effectively?
- We’ll see that if our basis functions are “compact”, we can implement AVI without state enumeration
 - we’ll exploit principles we’ve seen in abstraction methods
Assumptions

- State space defined by variables X_1, \ldots, X_n
- DBN action representation for each action a
 - assume small set $\text{Par}(X_i)$
- Reward is sum of components
 - $R(X) = R_1(W_1) + R_2(W_2) + \ldots$
 - each $W_i \subseteq X$ is a small subset
- Each basis function b_i refers to a small subset of vars C_i
 - $b_i(X) = b_i(C_i)$

Factored AVI

- AVI: repeatedly do Bellman backups, projections
- With factored MDP and basis representations
 - Aw and V are functions of variables X_1, \ldots, X_n
 - Aw is compactly representable
 - $Aw = w_1 b_1(C_1) + \ldots + w_k b_k(C_k)$
 - each $W_i \subseteq X$ is a small subset
 - So $V^t = Aw^t$ (projection of V^t into B) is compact
- So we need to ensure that:
 - each V^t (nonprojected Bellman backup) is compact
 - we can perform projection effectively
Compactness of Bellman Backup

- Bellman backup: \(V^t(s) = \max_a Q^t(a, s) \)
- Q-function:

\[
Q^t(x, s) = R(x) + \sum_{x'} \Pr(x, a, x') \cdot V^{t-1}(x') = R_i(w_1) + R_2(w_2) + ... + \sum_x \Pr(x, a, x') \cdot \left[w^{t-1}_i b_i(c_i') + ... + w^{t-1}_k b_k(c_k') \right] = R_i(w_1) + R_2(w_2) + ... + w^{t-1}_i \sum_{c_i} \Pr(c_i' \mid Par(c_i')) \cdot b_i(c_i') + ... + w^{t-1}_k \sum_{c_k} \Pr(c_k' \mid Par(c_k')) \cdot b_k(c_k')
\]

- So Q-functions are (weighted) sums of a small set of compact functions:
 - the rewards \(R_i(W_i) \)
 - the functions \(f_i(Par(C_i)) \) – each of which can be computed effectively (sum out only vars in \(C_i \))
 - note: backup of each \(b_i \) is decision-theoretic regression

- Maximizing over these to get VF straightforward
 - Thus we obtain compact rep’n of \(V^t = L^*(A(w^t)^{-1}) \)

- Problem: these new functions don’t belong to the set of basis functions
 - need to project \(V^t \) into \(B \) to obtain \(V^t \)
Factored Projection

- We have V^t and want to find weights w^t that minimize $\|Aw^t - V^t\|$.
 - We know V^t is the sum of compact functions.
 - We know Aw^t is the sum of compact functions.
 - Thus, their difference is the sum of compact functions.
- So we wish to minimize $\|\sum f_j(Z_j; w^t)\|$.
 - Each f_j depends on small set of vars Z_j and possibly some of the weights w^t.
- Assume weights w^t are fixed for now.
 - Then $\|\sum f_j(Z_j; w^t)\| = \max \{ \sum f_j(z_j; w^t) : x \in X\}$

Variable Elimination

- Max of sum of compact functions: variable elim.

\[
\max X_1X_2X_3X_4X_5X_6 \{ f_1(X_1X_2X_3) + f_2(X_3X_4) + f_3(X_4X_5X_6) \}
\]

\begin{align*}
\text{Elim } X_1: \text{ Replace } f_1(X_1X_2X_3) \text{ with } \\
& f_4(X_2X_3) = \max X_1 \{ f_1(X_1X_2X_3) \}
\end{align*}

\begin{align*}
\text{Elim } X_3: \text{ Replace } f_2(X_3X_4) \text{ and } f_4(X_2X_3) \text{ with } \\
& f_5(X_2X_4) = \max X_3 \{ f_1(X_1X_2X_3) + f_4(X_2X_3) \}
\end{align*}

etc. (eliminating each variable in turn until maximum value is computed over entire state space)

- Complexity determined by size of intermediate factors (and elim ordering)
Factored Projection: Factored LP

- VE works for fixed weights
 - but w^i is what we want to optimize
 - Recall LP for optimizing weights:

 \[
 \begin{align*}
 \text{Vars: } & w_1, \ldots, w_k, \phi \\
 \text{Minimize: } & \phi \\
 \text{S.T.: } & \phi \geq V(s) - Aw(s), \forall s \\
 & \phi \geq Aw(s) - V(s), \forall s
 \end{align*}
 \]

- \(\phi \geq V(s) - Aw(s), \forall s\)
 - equiv. to \(\phi \geq \max \{V(s) - Aw(s) \mid s \in S\}\)
 - equiv. to \(\phi \geq \max \{\Sigma f_j(z_j \mid w) \mid x \in X\}\)

Factored Projection: Factored LP

- The constraints: \(\phi \geq \max \{\Sigma f_j(z_j \mid w) \mid x \in X\}\)
 - exponentially many
 - but we can “simulate” VE to reduce the expression of these constraints in the LP
 - the number of constraints (and new variables) will be bounded by the “complexity of VE”
Factored Projection: Factored LP

- Choose an elimination ordering for computing
 \[
 \max \{ \Sigma f_j(z_j ; w) , x \in X \}
 \]
 - note: weight vector \(w \) is unknown
 - but structure of VE remains the same (actual numbers can’t be computed)

- For each factor (initial and intermediate) \(e(Z) \)
 - create a new variable \(u(e,z_1,\ldots,z_n) \) for each instantiation \(z_1,\ldots,z_n \) of the domain \(Z \)
 - number of new variables exponential in size (\#vars) of factor

Factored Projection: Factored LP

- For each initial factor \(f_j(Z_j ; w) \), pose constraint:
 \[
 u(f_j,z_1,\ldots,z_n,w) = f_j(z_1,\ldots,z_n;w) , \forall z_1,\ldots,z_n
 \]
 - though the \(w \) are vars, \(f_j(Z_j ; w) \) linear in \(w \)
Factored Projection: Factored LP

- For elim step where X_k removed, let
 - $g_k(Z_k ; w) = \max x_k g_{k1}(Z_{k1} ; w) + g_{k2}(Z_{k2} ; w) + ...$
 - here each g_{kj} a factor including X_k (and is removed)
- For each intrm factor $f_k(Z_k ; w)$, pose constraint:

\[
\begin{align*}
 u(g_k, z_1, \ldots, z_n, w) &\geq \\
 g_{k1}(z_1, \ldots, z_{n1}; w) + g_{k1}(z_1, \ldots, z_{n1}; w) + \ldots + \forall x_k, \forall z_1, \ldots, z_n
\end{align*}
\]

- constraints linear in w
- force u-values for each factor to be at least max over X_k values
- number of constraints: size of factor * $|X_k|

Factored Projection: Factored LP

- Finally pose constraint
 - $\phi \geq u_{\text{final}}()$
- This ensures:

\[
\phi \geq \max \{ \sum f_i(z_i ; w) , x \in X\} = \max \{ V(s) - A w(s) , s \in S\}
\]

- Note: objective function in LP minimizes ϕ
 - so constraints are satisfied at the max values
- In this way
 - we optimize weights at each iteration of Vallter
 - but we never enumerate the state space
 - size of LPs bounded by total factor size in VE
Some Results [GKP-01]

- characteristic functions over single variables
- characteristic functions over pairs of variables

Basis sets considered:

Some Results [GKP-01]

Computation Time
Some Results [GKP-01]

Computation Time

Some Results [GKP-01]

Relative error wrt optimal VF (small problems)
Linear Approximation: Summary

- Results seem encouraging
 - 40 variable problems solved in a few hours
 - simple basis sets seem to work well for “network” problems
- Open issues:
 - are tighter (a priori) error bounds possible?
 - better computational performance?
 - where do basis functions come from?
 - what impact can good/poor basis set have on solution quality?
 - are there “nonlinear” generalizations?

An LP Formulation

- AVI requires generating a large number of constraints (and solving multiple LPs/cost nets)
- But normal MDP can be solved by an LP directly:
 - \((L^aV)(s)\) is linear in values/vars \(V(s)\)

\[
\begin{align*}
\text{Vars: } V(s) \\
\text{Minimize: } \sum_s V(s) \\
\text{S.T. } V(s) \geq (L^aV)(s), \forall a, s
\end{align*}
\]
Using Structure in LP Formulation

- These constraints can be formulated without enumerating state space using cost network as before [SchPat-00]
 - by not iterating, great computational savings possible
 - a couple orders of magnitude on “networks”
 - techniques like constraint generation offer even more substantial savings

Good Basis Sets

- A good basis set should
 - be reasonably small and well-factored
 - be such that a good approximation to \(V^* \) lies in the subspace \(B \)
- Latter condition hard to guarantee
- Possible ways to construct basis sets
 - use prior knowledge of domain structure
 - e.g., problem decomposition
 - search over candidate basis sets
 - e.g., sol’n using a poor approximation might guide search for an improved basis
Parallel Problem Decomposition

- Decompose MDP into parallel processes
 - product/join decomp.
 - each refers to subset of relevant variables
 - actions affect each

- Key issues:
 - how to decompose?
 - how to merge sol’ns?

- Contrast serial decomposition
 - macros [Sutton95, Parr98]

Generating SubMDPs

- Components of additive reward: subobjectives
 - often combinatorics due to many competing objectives
 - e.g., logistics, process planning, order scheduling
 - [BouBrafmanGeib97, SinghCohn97, MHKPDB98]

- Create subMDPs for subobjectives
 - use abstraction methods discussed earlier to find subMDP relevant to each subobjective
 - solve using standard methods, DTR, etc.
Generating SubMDPs

Dynamic Bayes Net over Variable Set

Generating SubMDPs

Green SubMDP (subset of variables)
Generating SubMDPs

Red SubMDP (subset of variables)

Composing Solutions

- Existing methods piece together solutions in an online fashion; for example:
 1. Search-based composition [BouBrafmanGeib97]:
 - VFIs used in heuristic search
 - partial ordering of actions used to merge
 2. Markov Task Decomposition [MHPKDB98]:
 - has ability to deal with large actions spaces
 - MDPs with thousands of variables solvable
Search-based Composition

- Online action selection: standard expectimax search
 [DB94,97,BBS95,KS95,BG98,KMN99,...]
- Decomposed VFs viewed as heuristics (reduce requisite search depth for given error)
- E.g., given subVFs $f_1, ..., f_k$

\[V(s) \leq f_1(s) + f_2(s) + \ldots + f_k(s) \]
\[V(s) \geq \max \{ f_1(s), f_2(s), \ldots, f_k(s) \} \]
Offline Composition

- These subMDP solutions can be “composed” by treating subMDP VFVs as a basis set
- Approx. VF is a linear combination of the subVFVs
- Some preliminary results [Patrascu et al. 02] suggest this technique can work well
 - for decomposable MDPs, subVFVs offer better solution quality than simple characteristic functions
 - often piecewise linear combinations work better than linear combinations [Poupart et al. 02]

Next Time

- Non-Markovian processes
- Temporal logic
- Conversion to Markov process
References

References (con’t)