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Chapter 2

The Concept of a
(Generalized) Quantifier

In this chapter we present our principal semantic tool, the concept of a (gener-
alized) quantifier introduced by logicians in the mid-20th century.1 But rather
than writing down the formal definitions directly, we introduce the concept
gradually, following the historical development right from its Aristotelian be-
ginnings. This procedure has not only pedagogical merits, we believe. The
evolution of notions of quantification is actually quite interesting, both from a
historical and a systematic perspective. We hope this will transpire in what
follows, even though our perspective in the text is mainly systematic. Indeed,
we shall use these glimpses from the history of ideas not merely as a soft way
to approach a technical concept, but also as occasions to introduce a number of
semantic and methodological issues that will be recurring themes of this book.

2.1 Early History of Quantifiers

2.1.1 Aristotelian Beginnings

When Aristotle invented the very idea of logic some two thousand four hundred
years ago, he focused precisely on the analysis of quantification. Operators like
and and or were added later (by Stoic philosophers). Aristotle’s syllogisms can
be seen as a formal rendering of some important inferential properties, hence
of important aspects of the meaning, of the expressions all, some, no, not

1Terminological note: Logicians call these objects ‘generalized’ quantifiers, since they were
originally generalizations of the universal and the existential quantifiers from first-order logic.
But once the naturalness and the ubiquity of the concept is appreciated, it becomes natural to
drop the qualification, and just call them quantifiers. This is what we officially do. However,
the original terminology, as well as abbreviations such as ‘GQ theory’, have become somewhat
entrenched, so we occasionally insert ‘generalized’ within parentheses to remind the reader that
we are talking about the general concept, not just ∀ and ∃.
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6 CHAPTER 2. THE CONCEPT OF A (GENERALIZED) QUANTIFIER

all. These provide four prime examples of the kind of quantifiers that this book
is about.

A syllogism has the form:2

Q1AB

Q2BC

Q3AC

where each of Q1, Q2, Q3 is one of the four expressions above. Later on these
expressions were often presented diagrammatically in the square of opposition:3

all no

not all some

�
�

�
� ��

�
�

� �

Positions in this square indicate logical relationships of ‘opposition’, which can
be seen as forms of negation. Two expressions Qi and Qj vertically above one
another in the square are each others ‘contradictory’ negations, or as we shall
say, outer negations. The proposition Qi A’s are B is then simply the negation
of Qj A’s are B, i.e., it is equivalent to It is not the case that Qj A’s are

B. This propositional negation ‘lifts’ to the (outer) negation of a quantifier, and
we can write Qi = ¬Qj (and hence Qj = ¬¬Qj = ¬Qi).
When there is a horizontal line between Qi and Qj they are each others ‘contrary’,
or inner negations: now Qi A’s are B is equivalent to Qj A’s are not B, which
can be thought of as applying the inner negation Qj¬ to the denotations of A and
B. Finally, diagonally opposed expressions in the square are each others duals,
where the dual of Qi is the outer negation of its inner negation (or vice versa):
Qd

i = ¬(Qi¬) = (¬Qi)¬ = ¬Qi¬.
The square is closed under these forms of negation: applying any number of these
operations to a quantifier in the square will not lead outside it. For example,
(nod)¬ = ¬no¬¬ = ¬no = some. (It is often noted that except in one case
(not all) the various negations of these four quantifiers are lexically expressed in
languages like Greek and English; in fact this appears to hold for most languages.)
The square is not closed under all Boolean operations, e.g., the conjunction some

but not all does not belong to it.

2This is the so-called first figure — three more figures are obtained by permuting AB or
BC in the premisses. We are simplifying Aristotle’s mode of presenting the syllogisms, but
not distorting it. Observe in particular that Aristotle was the first to use variables in logic,
and thus to introduce the idea of an inference scheme.

3Aristotle pointed out the various kinds of ‘opposition’ holding between these four quan-
tifiers (cf. below), but it appears to have been Apuleios of Madaura (2nd century A.D.) who
first presented them in the form of a square. The two top quantifiers — or rather the corre-
sponding propositions — are called ‘universal’ and the two bottom ones ‘particular’. In the
classical square the two bottom quantifiers are actually reversed compared to the figure here.
Then, the leftmost quantifiers (all, some) are ‘affirmative’, and the rightmost ones (no, not

all) ‘negative’.
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Here are two typical examples of syllogistic inference schemes:

(2.1) allAB

noBC

noAC

This scheme is clearly valid : no matter what the properties A,B,C are, it
always holds that if the two premisses are true, then so is the conclusion.

(2.2) allAB

someBC

someAC

This too has the stipulated syllogistic form, but it is invalid : one may easily
choose A,B,C so as to make the premisses true but the conclusion false.

A syllogism is a particular instantiation of a syllogistic scheme:

All Greeks are sailors

No sailors are scared

No Greeks are scared

is a valid syllogism, instantiating the scheme in (2.1), and

All whales are mammals

Some mammals have fins

Some whales have fins

is an invalid one instantiating (2.2).
It was perfectly clear to Aristotle (though regrettably not always to his fol-

lowers) that the actual truth or falsity of its premisses or conclusion is irrelevant
to the (in)validity of a syllogism — except that no valid inference can have true
premisses and a false conclusion. In particular, a valid syllogism can have false
premisses. For example, in the first (valid) syllogism above all three statements
involved are false, whereas in the second (invalid) one they are all true.

There are 256 syllogistic schemes. Aristotle characterized which ones of these
are valid, not by enumeration but by an axiomatic method where all valid ones
were deducible from (the valid ones in) the first figure (in fact from just two
syllogisms from that figure). Apart from being the first example of a deductive
system, it was an impressive contribution to the logico-semantic analysis of
quantification.

However, it must be noted that this analysis does not exhaust the meaning of
these quantifiers,4 since there are many valid inference schemes involving these
words which do not have the form of syllogisms, for example,

4Aristotle didn’t claim it did; in fact he was well aware that there are other forms of
logically valid reasoning.



8 CHAPTER 2. THE CONCEPT OF A (GENERALIZED) QUANTIFIER

John knows every professor

Mary is a professor

John knows Mary

No student knows every professor

Some student knows every assistant

Some professor is not an assistant

These inferences go beyond syllogistic form in at least the following ways:
(i) names of individuals play an essential role; (ii) there are not only names of
properties (such as adjectives, nouns, intransitive verbs) as in the syllogisms,
but also names of binary relations (such as transitive verbs); (iii) quantification
can be iterated (occur in both the sybject and the object of a transitive verb,
for example). While none of these features may seem, at least in hindsight, like
a formidable challenge, it is certainly much harder than in the syllogistic case
to describe the logical structures needed to account for the validity of inferences
of these kinds. At the same time, it is rather clear that a logic which cannot
handle such inferences will not be able to account for, say, the structure of proofs
in elementary geometry (like Euclid’s), or, for that matter, much of everyday
reasoning.

The failure to realize the limitations of the syllogistic form is part of the
explanation why logic led a rather stagnant and unproductive existence after
Aristotle, all the way up to the late 19th century. Only when the syllogistics
is extended to modern predicate logic do we in fact get a full set of inference
schemes which, in a particular but precise sense, capture all valid inferences
pertaining to the four quantifiers Aristotle studied.

Proof-theoretic vs. Model-theoretic Semantics for Quantifiers

Approaching meaning via inference patterns is characteristic of a proof-theoretic
perspective on semantics. In the case of our four quantifiers, however, it seems
that whenever a certain system of such schemes is proposed — such as the
syllogisms — we can always ask if these schemes are correct, and if they are
exhaustive or complete. Since we understand these questions, and likewise what
reasonable answers would be, one may wonder if there isn’t some other more
primary sense in which we know the meaning of these expressions. But, however
this (thorny) issue in the philosophy of language is resolved, it is clear that in
the case of Aristotelian quantifiers there is indeed a different and more direct
way in which their meaning can be given. Interestingly, that way is also clearly
present, at least in retrospect, in the syllogistics.

For, on reflection, it is clear that each of these four quantifier expressions
stands for a particular binary relation between properties, or, looking at the
matter more extensionally, a binary relation between sets. When A,B,C are
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arbitrary sets,5 these relations can be given in standard set theoretic notation
as follows:

all (A,B) ⇐⇒ A ⊆ B

some (A,B) ⇐⇒ A ∩ B 6= ∅

no (A,B) ⇐⇒ A ∩ B = ∅

not-all (A,B) ⇐⇒ A−B 6= ∅.

So, for example,

(2.3) All Greeks are sailors

simply means that the set of Greeks stands in the inclusion relation to the set
of sailors.

This observation fits with a model-theoretic perspective on meaning, rather
than a proof-theoretic one. In a way it lays the foundation for the whole theory
of (generalized) quantifiers that this book is built on, so the model-theoretic
approach will be dominant here.

Quantifier Expressions and their Denotations

In this connection, let us note something that has been implicit in the above.
Quantifier expressions are syntactic objects, different in different languages. On
the present account, some such expressions ‘stand for’, or ‘denote’, or have as
their ‘extensions’, particular relations between sets. So, for example, the English
no and the Swedish ingen both denote the relation that holds between two sets
if and only if they are disjoint. There is nothing language-dependent about these
relations. But, of course, to talk about them we need to use language: a meta-
language containing some set-theoretic terminology and, in the present book,
English. In this meta-language, we sometimes use the handy convention that
an English quantifier expression, in italics, names the corresponding relation
between sets. Thus, no as defined above is the disjointness relation, and hence
the relation denoted by both the Swedish expression ingen and the English
expression no.

We note that on the present (Aristotelian) analysis each of the main words
in a sentence like (2.3) has an extension; it denotes a set-theoretic object. Just
as sailor denotes the set of sailors and Greek the set of Greeks, all denotes the
inclusion relation. Such a ‘name theory’ of extension has by no means always
been preferred in the history of semantics, not even by those who endorse a
model-theoretic perspective.6 As we will see presently, it was explicitly rejected

5Aristotle did not allow the empty set. We are disregarding this complication here, for
simplicity. But note that it is still a moot point whether the meaning of quantifier expressions
contains special provisos concerning non-emptiness. For example, does All A’s are B imply
Some A’s are B (as Aristotle in fact claimed)? If there is no semantic implication here (as we
would maintain), is there still a ‘pragmatic’ one?

6Indeed, it has often been ridiculed, under names such as the ‘Fido’-Fido theory, as obvi-
ously inadequate.
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by medieval logicians, and likewise by some of the founders of modern logic, like
Bertrand Russell. The reason was, partly, that to these logicians there seemed
to be no good candidates for the denotation of this kind of expressions, so they
had to be dealt with in another way. However, Aristotle’s account of the four
quantifers mentioned so far surely points to one such candidate:

(*) Quantifier expressions denote relations between sets.

As it turns out, this simple idea resolves the problems encountered by earlier
logicians, and it lays the foundation of a coherent and fruitful account of quan-
tification.

2.1.2 Middle Ages

Medieval logicians and philosophers devoted much effort to the semantics of
quantified statements, essentially restricted to syllogistic form. We shall not
recount their efforts here, but merely note that they explicitly made the distinc-
tion between words that have an independent meaning, and words that don’t.
The former were called categorematic, the latter syncategorematic. Here is an
illustrative quote.

Categorematic terms have a definite and certain signification, e.g.
this name ‘man’ signifies all men, and this name ‘animal’ all animals,
and this name ‘whiteness’ all whitenesses. But syncategorematic
terms, such as are ‘all’, ‘no’, ‘some’, ‘whole’, ‘besides’, ‘only’, ‘in so
far as’ and such-like, do not have a definite and certain signification,
nor do they signify anything distinct from what is signified by the
categoremata. . . . Hence this syncategoremata ‘all’ has no definite
significance, but when attached to ‘man’ makes it stand or suppose
for all men . . . . And the same is to be held proportionately for
the others, . . . though distinct functions are exercised by distinct
syncatgoremata . . . . (William of Ockham, Summa Logicae, vol. I,
around 1320; [Bocheński 1970], p. 157–8.)

It is reasonable to take having ‘a definite and clear signification’ here to mean
having (at least) a denotation. A quantifier expression like all does not denote
anything by itself, Ockham says, but combined with categorematic nouns like
man it does denote something, apparently the set of all men. Likewise, (an
utterance of) some man could be taken to denote a particular man. So quantifier
words do not denote, but quantified noun phrases do. However, these ideas
about what they denote become problematic, to say the least, when applied to
other cases. Do we say that no man denotes the empty set, and thus has the
same denotation as no woman? What does not all cats denote? As we will
see, these problems are unsolvable and in fact show that this sort of account is
on the wrong tack.7

7In Section XXX we give a formal proof that any attempt to interpret quantified noun
phrases as sets of individuals must fail.
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The next quote also begins with attempt to explain, along similar (hence
equally problematic) lines, the signification of the Aristotelian quantifier ex-
pressions.

The universal sign is that by which it is signified that the universal
term to which it is adjoined stands copulatively for its suppositum
(per modum copulationis) . . . The particular sign is that by which
it is signified that a universal term stands disjunctively for all its
supposita. . . . Hence it is requisite and necessary for the truth of
this: ‘some man runs’, that it be true of some (definite) man to
say that he runs, i.e. that one of the singular (propositions) is true
which is a part of the disjunctive (proposition): ‘Socrates (runs) or
Plato runs, and so of each’, since it is sufficient for the truth of a
disjunctive that one of its parts be true. (Albert of Saxony, Logica
Albertucii Perutilis Logica, vol. III, Venice, 1522; [Bocheński 1970],
p. 234.)

The latter part of the quote, on the other hand, is a way of stating the
truth conditions for quantified sentences, in terms of (long) disjunctions and
conjunctions. This brings out the important point that it is perfectly possible
to state adequate truth conditions for quantified sentences without assuming
that the quantifier expressions themselves have an independent meaning (deno-
tation). Indeed, this is how the Tarskian truth definition is usually formulated
in current text books in first-order logic. Medieval logicians, and later Russell
(see below) took the position that it is in fact necessary to proceed in this way.
Generalized quantifier theory applied to natural languages, on the other hand,
claims that it is in fact possible to have quantifier expressions as denoting, and
that such an approach (which, as we have seen, can be traced back to Aristo-
tle) has definite advantages: it identifies an important syntactic and semantic
category, and it conforms better to the Principle of Compositionality, according
to which the meaning of a complex expression is determined by the meanings
of its parts and the mode of composition. More about this later.

Logicality vs. Syncategorematicity

While being on the subject of medieval logic, we take the opportunity to state
another important point. It was common then to define logic as the study of the
syncategorematic terms. And at first sight, it is indeed tempting to identify the
syncategorematic/categorematic distinction with the distinction between logical
and non-logical constants. But such an identification should be resisted, at least
when one is concerned with more substantial fragments of natural languages.
What makes a term merit the attribute ‘logical’ (or, for that matter ‘constant’) is
one thing, having to do with particular features of its semantics; precisely what
is involved here is a matter of some controversy, and we return to it in Chapter
XXX. However, the fact that a word or morpheme does not have independent
semantic status is quite another thing, which applies to many other expressions
than those traditionally seen as logical.
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Syncategorematic terms correspond roughly to what linguists nowadays call
grammatical morphemes. English examples might be the progressive verb ending
-ing, the word it in sentences such as It is hard to know what he meant,
and the infinitive particle to: in To lie to your teacher is bad, the second
to (the preposition) might be categorematic, but the first syncategorematic.

A grammatical morpheme may not belong in a dictionary at all, or if it
does there could be a description of its phonological and syntactic features (e.g.
valence features: which other words it combines with), but not of its meaning.
This does not preclude, as pointed out above, that there might be a systematic
account of what larger phrases containing the grammatical morpheme mean.
But its meaning as it were arises via a grammatical rule; hence the name.

Now, it may be a matter of dispute whether our four quantifier expressions
belong to this category. (We claim, of course, that this dispute can be settled.)
But whether they do or not, this fact is surely quite distinct from the eventual
fact of their logicality.

2.2 Quantifiers in Beginning Predicate Logic

Predicate logic was invented at the end of the 19th century. A number of
philosophers or mathematicians had similar ideas, partly independently of each
other, at about the same time, but the pride of place goes without a doubt to
Gottlob Frege. Nevertheless it is interesting to see the shape these new ideas
about quantification took with some other authors too, notably Peirce, Peano,
and Russell.

One totally new concept concerns variable-binding: the idea of variables
that could be bound by certain operators, notably the universal and existential
quantifiers. This was no small feat — it is not something that can be ‘copied’
from natural languages, since it is not obvious that this sort of variable-binding
occurs there at all — and the idea took some time to crystallize. In a way
variable-binding belongs to the syntax of predicate logic, though it is of course
crucial to the project to explain the truth conditions of sentences with bound
variables (an explanation which took even longer to reach its correct form). In
this respect (too), Frege was unique. His explanation, though perfectly correct
and precise, did not take the form that was fifty years later given by Tarski’s
truth definition. Instead, he treated — no doubt because of his strong views
about compositionality — the quantifier symbols as categorematic, standing for
certain second-order objects. This is closely related to the idea of quantifiers as
relations between sets that we have traced back to Aristotle, though in Frege’s
case combined with a much more expressive formal language than the syllogis-
tics and containing the mechanism of variable-binding. Nothing even remotely
similar can be found with the other early predicate logicians, so let us begin
with them.
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2.2.1 Peirce

Peirce in fact designed two systems of predicate logical notation. One was 2-
dimensional and diagrammatic, employing so-called existential graphs. What
the other one looked like is indicated in the following quote:

. . . the whole expression of the proposition consist[s] of two parts, a
pure Boolean expression referring to an individual and a Quantifying
part saying what individual this is. Thus, if k means ‘he is king’ and
h, ‘he is happy’, the Boolean

(k̄ + h)

means that the individual spoken of is either not a king or is happy.
Now, applying the quantification, we may write

Any(k̄ + h)

to mean that this is true of any individual in the (limited) universe
. . . .

In order to render this notation as iconical as possible we may use
Σ for some, suggesting a sum, and Π for all, suggesting a product.
Thus Σixi means that x is true of some one of the individuals denoted
by i or

Σixi = xi + xj + xk + etc.

In the same way, Πixi means that x is true of all these individuals,
or

Πixi = xixjxk , etc.

. . . It is to be remarked that Σixi and Πixi are only similar to a
sum and a product; they are not strictly of that nature, because the
individuals of the universe may be innumerable. ([Peirce 1885], in
[Bocheński 1970], p. 349.)

Thus k, h, x are formulas here. Quantified sentences are divided into a
(Boolean) formula and a quantifier symbol, similarly to the modern notation.
The quantifier symbols are chosen in a way to indicate their meaning (in terms
of conjunction and disjunction), but Peirce does not yet have quite the notation
for bound variables. In Σixi it would seem that i is a variable whose occurrences
in the formula x get bound by the quantification, but in xi + xj + xk + . . . the
i, j, k look more like names of individuals. One sees how Peirce has basically
the right ideas, but that expressing them formally is still a non-trivial matter.
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2.2.2 Peano

One feature of standard predicate logic is that the same variables that occur
free in formulas can get bound by quantification. It appears that the first to
introduce this idea was Peano:

If the propositions a, b, contain undetermined beings, such as x, y, . . . ,
i.e. if there are relationships among the beings themselves, then
a ⊃x,y,... b signifies: whatever x, y, . . . , may be, b is deduced from
the proposition a. ([Peano 1889], in [Bocheński 1970], p. 350.)

Here we have a consistent use of variable-binding, albeit only for universally
quantified conditionals.

2.2.3 Russell

In his early philosophy Russell subscribed to an almost Meinongian idea about
denotation: all expressions of a certain form had to denote something, and it
was the logician’s task to say what these denotations were. Here is a quote from
1903:

In the case of a class a which has a finite number of terms [members]
— say, a1, a2, a3, . . . an, we can illustrate these various notions as
follows:

(1) All a’s denotes a1 and a2 and . . . and an.

(2) Every a denotes a1 and denotes a2 and . . . and denotes an.

(3) Any a denotes a1 or a2 or . . . or an, where or has the meaning
that it is irrelevant which we take.

(4) An a denotes a1 or a2 or . . . or an, where or has the meaning
that no one in particular must be taken, just as in all a’s we
must not take anyone in particular.

(5) Some a denotes a1 or denotes a2 or . . . or denotes an, where it
is not irrelevant which is taken, but on the contrary some one
particular a must be taken.

([Russell 1903], p. 59.)

This is an honest attempt to explain the denotation of (what we would now
call) certain quantified noun phrases; nevertheless it is clear that the account is
full of unresolved problems.8 It shows how hard the problem really was, and how
confusion as to the meaning of the quantifiers was possible among prominent
logicians around 1900.

8Even though it would also seem to contain some linguistic insights, for example, that
every is distributive in some way that all is not.
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Later on, Russell’s explications of the quantifiers became more similar to
those of Peano, in terms of propositional functions, and ‘real’ (free) and ‘appar-
ent’ (bound) variables.

It is easy to see that problems like these with specifying the denotation
of quantified noun phrases might lead one give up this idea completely, and
concentrate on precise statement of truth conditions for quantified sentences in-
stead. Indeed, Russell came to deny most emphatically that phrases like every

man, a man, the man were ‘denoting expressions’, and similarly for definite de-
scriptions like the woman, the present king of France. Today’s standard
predicate logic essentially takes the same view.

Russell’s change of opinion on this issue was not to him a matter of giving
up anything; rather he saw it as a deep insight about logical form contra surface
form, with far-reaching consequences for logic, epistemology (cf. knowledge by
acquaintace vs. knowledge by description), and philosophy of language. Though
his arguments were quite forceful, it would seem that later developments in
formal semantics, and in particular the theory of (generalized) quantifiers, have
seriously undermined them. Roughly, this theory provides a logical form which
does treat the offending expressions as denoting, and which thus brings out
a closer structural similarity between surface and logical structure. One may
debate which logical form is the correct one (to the extent that this question
makes sense), but one can no longer claim that no precise logical form which
treats quantifier expressions or noun phrases as denoting is available.

2.2.4 Frege

Already in 1879 (Begriffsschrift), Frege was clear about the syntax as well as
the semantics of quantifiers. But his two-dimensional logical notation did not
survive, so below we use a modernized variant.

First-level (n-ary) functions take (n) objects as arguments and yield an
object as value. Second-level functions take first-level functions as arguments,
and so on; values are always objects. Frege was the first to use the trick — now
standard in type theory9 — of reducing predicates (concepts) to functions: an
n-ary first-level predicate is a function from n objects to the truth values The
True and The False (or 1 and 0), and similarly for higher-level predicates.

For example, from the sentence

John is the father of Mary

we can obtain the two unary first-level predicates

ξ is the father of Mary

and

John is the father of η,

9In fact, a type theorist might not call this a trick at all, claiming instead that functions
are more fundamental mathematical objects than sets or relations.
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the binary first-level predicate

(2.4) ξ is the father of η,

as well as the unary second-level predicate

Ψ(John,Mary).

(Here Ψ stands for any binary first-level predicate. ‘Mixed’ predicates, like
Ψ(ξ,Mary), were not allowed by Frege.) For example, (2.4) denotes the function
which sends a pair of objects to The True if the first object is the father of the
second, and all other pairs of objects to The False. Equivalently, we can say it
denotes the relation ‘father of’.

Now suppose

A(ξ)
(2.5)

is a syntactic name of a unary first-level predicate. According to Frege, the
(object) variable ξ does not belong to the name; it just marks a place, and we
could as well write

A(·).

The sentence

∀xA(x)
(2.6)

is obtained, according to Frege, by inserting the name (2.5) into the second-level
predicate name

∀xΨ(x).
(2.7)

(2.7) is a primitive name denoting the universal quantifier, i.e., the unary second-
level predicate which is true (gives the value The True) for precisely those first
level (unary) predicates which are true of every object. (Again the (first-level)
variable Ψ in (2.7) is just a place-holder.) So (2.6) denotes the value of the
universal quantifier applied to the predicate (denoted by) (2.5), i.e., a truth
value. The result is that

∀xA(x) is true iff A(ξ) is true for any object ξ.

Other quantifiers can be given as primitive, or defined in terms of the universal
quantifier and propositional operators. For example,

¬∀x¬Ψ(x)

is the existential quantifier, and

∀x(Ψ(x) → Φ(x))

is the binary quantifier (second-level predicate) all — one of the four Aristotelian
quantifiers. Summarizing, we note
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• Frege’s clear distinction between names (formulas, terms) and their deno-
tations;

• the distinction between free and bound variables (Frege used different
letters whereas nowadays we usually use the same), and that quantifier
symbols are variable-binding operators;

• quantifier symbols are not syncategorematic but denote well-defined enti-
ties, quantifiers, that is, second-order (second-level) relations.

2.3 The Emergence of (Generalized) Quantifiers
in Logic

The notion of truth — as distinct from notions such as validity or provability
— was not formally connected to predicate logic until Tarski’s famous truth
definition in [Tarski 1935]. In this definition, quantifier symbols are again syn-
categorematic; they do not denote anything. But since one or two quantifiers are
enough (depending on whether one of ∀ and ∃ is defined in terms of the other)
for the mathematical purposes for which the logic was originally intended, such
as formalizing set theory or arithmetic, one may just as well have one clause for
each quantifier in the truth definition, and this is still standard practice.

2.3.1 Absolute vs. Relative Truth

In an important respect Tarski’s original truth definition is half-way between
Frege’s conception and a modern one. Frege’s notion of truth is absolute: all
symbols (except variables and various punctuation symbols) have a given mean-
ing, and the universe of quantification is fixed (to the class of all objects). The
modern notion, on the other hand, is that of truth in a structure or model. Tarski
too, in 1935, considers only symbols with a fixed interpretation, and although he
describes the possibility of relativizing truth to an arbitrary domain,10 he does
not really arrive at the notion of truth in a structure until his model-theoretic
work in the 1950’s.11

The model-theoretic notion of truth is relative to two things: an interpreta-
tion of the non-logical symbols, and a universe of quantification. Let us consider
these in turn.

Uninterpreted Symbols

We are by now accustomed to thinking of logical languages as (possibly) con-
taining certain uninterpreted or non-logical symbols, which receive a meaning,
or rather an extension, by an interpretation.

10In connection with ‘present day . . . work in the methodology of the deductive sciences
(in particular . . . the Göttingen school grouped around Hilbert)’ ([Tarski 1935], p. 199 in
Woodger’s translation).

11This switch from an absolute to a relative notion of truth is thus non-trivial and in itself
quite interesting; for an illuminative discussion see [Hodges 1986].
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The point to note in the present context is that this idea applies nicely to the
semantics of quantified expressions, if we keep in mind that an interpretation (in
this technical sense) assigns extensions to certain words. For it is characteristic
of quantifier expressions, at least on a first analysis (which actually goes a long
way), that only the extensions of their ‘arguments’ are relevant. That is, in con-
trast with many other kinds of phrases in natural languages, quantifier phrases
are extensional. Furthermore, phrases that provide arguments to quantifiers,
like nouns or adjectives or verb phrases, do have sets as denotations, and it is
often natural to see these denotations as depending on what the facts are. The
extension of dog or blue are certain sets; under different circumstances they
would have been other sets. It makes sense, then, to have a model or interpreta-
tion assign the appropriate extensions to them. Quantifier phrases, on the other
hand, do not appear to depend on the facts in this way, so their interpretation
is constant — in a sense which remains to make precise, and which we will come
back to.

Methodological digression. We are claiming that a first-order framework allows
us to get at the meaning of quantifier expressions, but we are not making the
same claim for, say, nouns. Here the claim is only that it provides all the needed
denotations — but it may provide many more (e.g. uncountable sets), and it says
nothing about how these denotations are constrained. For example, nothing in
predicate logic prevents us from interpreting bachelor in such a way that it is
disjoint from the interpretation of man.

But this is not a problem; it rather illustrates a general feature of all model-
ing.12 We are modeling a linguistic phenomenon — quantification. The model
should contain the relevant features of that phenomenon, but may disregard
other features of language. Abstracting away from certain features of the world
it allows us, if successful, to get a clearer view of others, by means of system-
izations, explanations, even predictions that would otherwise not be available.
By way of an analogy, to build a model that allows you to find out if a certain
ship will float — before putting it to sea — you need to model certain of its
aspects, like density, but not others, like the material of its hull. Provided,
of course, that the material doesn’t have effects on floatability that you didn’t
foresee; that it doesn’t is part of the claim that the model is successful. End of
digression.

Incidentally, the treatment of individual constants in predicate logic fits well
with the use of proper names in natural languages. Here the reason is not that
the denotation of a name depends on what the world is like, but that languages
contain a limited number of names, most of which are used to each denote a
large number of individuals. Selecting a denotation for such a name is a way
of fixing linguistic content for a certain occasion, and it accords with certain
aspects of how names are used, though, again, it does not constitute — and is

12Where ‘model’ is now used in the sense in which one can build a model of an aircraft to
test its aerodynamical properties, not in the logical sense which is otherwise predominant in
this book, namely, that of a mathematical structure or interpretation.
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not intended to constitute — anything like a full-scale analysis of this use.

Universes

The second relativization of truth is to a universe. If mathematical structures
are used as interpretations of sentences in a formal language, it is obvious that
universes can vary. But also in natural language, universes of discourse are
omnipresent, even if usually not marked in the syntax. For a trivial example, if
I claim on a certain occasion that

(2.8) All professors came to the party,

it is understood that I am not talking about all professors in the world, but
perhaps only those in my department. So the universe of discourse might be
the set of people either working or studying at that department. Getting this
universe right matters crucially to the truth or falsity of the sentence, and thus
to what is being claimed by that use of it. But none of the words in it, nor
its grammatical form, carries this information. Thus, the universe has to be
provided from somewhere else.

It does not follow that the universe of discourse is the universe of the model,
or even that it is provided by the model. Sometimes it is identical to the universe
of the model, and a handy convention is that if nothing else is said, the two are
identified. But often it is a subset of the universe of the model, or of some
other set built from that universe. It depends on context and may change as
the discourse goes along, even though the model stays the same.

Think of a model — a universe plus an interpretation — as representing
what we want to keep fixed at a certain point. Other semantically relevant
things may be allowed to vary. For example, in logic, assignments (of values
to variables) do not belong to the model. In language, various sorts of context
may provide crucial information, such as the universe of discourse, the reference
of certain pronouns, or, to take a different kind of example, the ‘thresholds’ of
certain quantifier expressions like most.13 This said, there is no doubt that the
idea of truth as truth in a model is useful not only for formal languages used
to talk about mathematical structures, but also for the semantics of natural
languages.

2.3.2 First-Order Logic vs. First-Order Languages

Predicate logic for Frege or Russell was not first-order; it was rather higher-order
since one could (universally or existentially) quantify over individuals, as well
as over properties of individuals, or properties of properties of individuals, etc.
But the first-order version, i.e., the restriction to quantification over individuals,
is particularly well-behaved and well understood, and today it forms the basic
logical system, which we call first-order logic or simply FO. This logic has

13How many A’s must be B in order for Most A’s are B to be true? Sometimes any number
more than half seems enough, but other times a larger percentage is required.
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• atomic formulas, including identities

• propositional operators

• the usual universal and existential quantifiers.

But the attribute ‘first-order’ is not restricted to FO. New quantifiers can
be added to FO, and while expressivity may thereby greatly increase, the re-
sult is still first-order, as long as these quantifiers too are taken to range over
individuals. Thus, first-order languages extend far beyond FO.14

Moreover, for quantification, the first-order version is paradigmatic. This
point, we think, is a principled one. Any non-empty collection of any objects
might be chosen as universe.15 And to explain the meaning of a quantifier
expression, we (usually) need to make no assumptions at all about that universe.

Linguistic and other circumstances sometimes impose various constraints on
the range of the quantifiers. In a mathematical case, we might restrict attention
to universes with a built-in total order, or with some arithmetic structure. In the
case of natural languages, we find on occasion that quantification is over n-tuples
of objects rather than single ones (adverbial quantification). Or it might be over
sets of objects, or a Boolean algebra, or some sort of lattice structure (plurals
and collective quantification). Furthermore, the forms of implicit quantification
we have mentioned involve adding additional structure to the things (like times
or possible worlds) quantified over.

Such manoeuvres can change the expressivity of the language: new things
may be expressible, others may get lost. We will see examples of this later
on. But here is the bottom line: understanding of what the quantifier expres-
sions mean does not appeal to any such constraints. That understanding comes
from the case with no restrictions and an arbitrary universe. For example, the
expression all stands for the inclusion relation, regardless of whether we are
talking about people, or n-tuples of cats, or numbers, or sets, or possible worlds,
or whatever — its meaning does not depend at all on what we happen to be
talking about.

The first-order case is also the logically simplest one: more structure usually
means more complications. Thus, from a meaning-theoretic as well as from a
methodological point of view, we would claim that for the study of quantification,
first-order languages is the right place to start. But we repeat that this in no
way means confining attention to FO. Indeed, natural languages easily express
many simple quantifiers that go far beyond the expressive powers of FO.

2.3.3 First-Order Logic (FO)

A first-order model thus consists of two things: a universe, and an interpretation
which assigns the right sort of things to (non-logical) symbols of various kinds.

14This terminology is not quite settled. Sometimes ‘first-order language’ is taken to mean
a language using only the resources of FO. In this book the locution is used in a wider sense
which, we believe, is both natural and illuminating.

15So it is slightly misleading to talk about a universe of individuals; ‘objects’ or ‘entities’ is
better.
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We write

M = (M, I)

where M is the universe and I the interpretation function.
The crucial semantic relation is the satisfaction relation

M |= ϕ(a1, . . . , an)

where ϕ = ϕ(x1, . . . , xn) is a formula containing at most the variables x1, . . . , xn

free, a1, . . . , an ∈ M , and xi is taken to denote ai, 1 ≤ i ≤ n. If ϕ has no free
variables, i.e., if ϕ is a sentence, then

M |= ϕ

says that ϕ is true in M.
Writing ā for a sequence a1, . . . , an, and forgetting for simplicity about in-

dividual constants and function symbols, the truth definition for FO can then
be expressed as follows, by induction on formulas:

standard truth definition for FO

(2.9) M |= P (a1, . . . , an) ⇐⇒ 〈a1, . . . , an〉 ∈ I(P ),

when P (x1, . . . , xn) is an atomic formula,

(2.10) M |= ai = aj ⇐⇒ ai = aj ,

(Note that ‘=’ stands for different things on the left and
right hand sides here.)

(2.11) M |= ¬ϕ ⇐⇒ M 6|= ϕ,

(2.12) M |= ϕ ∧ ψ ⇐⇒ M |= ϕ and M |= ψ,

and similarly for the other connectives; finally,

(2.13) M |= ∀xϕ(x, ā) ⇐⇒ for all b ∈M, M |= ϕ(b, ā),

(2.14) M |= ∃xϕ(x, ā) ⇐⇒ for some b ∈M, M |= ϕ(b, ā).

The last two clauses in the truth definition explain the meanings of the uni-
versal and existential quantifiers, without assuming that they denote anything.
(Similarly for (2.11) and (2.12), which only indirectly utilize the fact that ¬
and ∧ denote truth functions.) Still, even from a purely logical point of view
it is very natural to ask: What do these expressions have in common? What
category or type do they belong to? What kinds of things are their meanings?
What would other specimens of the same category look like? The first logician
to look at these questions from a model-theoretic point of view was Mostowski
in 1967.

We begin by a rephrasing of (2.13) and (2.14) which prepares the way for
the desired generalizations.
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2.3.4 Mostowski Quantifiers

A simple example of a quantifier distinct from ∀ and ∃ is, say, ∃≥5, where

M |= ∃≥5xϕ(x, ā) ⇐⇒ there are at least five b in M s. t. M |= ϕ(b, ā).

Once this example is appreciated, any number of others come to mind. To
express the general idea, we introduce the following notation.

extension of a formula in a model

For a formula ψ = ψ(x, y1, . . . , yn) = ψ(x, ȳ), and a sequence ā
of n objects in M , let

ψ(x, ā)M,x = {b ∈M : M |= ψ(b, ā)}.

More generally, if ψ = ψ(x1, . . . , xk, y1, . . . , yn) = ψ(x̄, ȳ),

ψ(x̄, ā)M,x̄ = {(b1, . . . , bk) ∈ Mk : M |= ψ(b1, . . . , bk, ā)}.

Then (2.13) and (2.14) become

M |= ∀xϕ(x, ā) ⇐⇒ ϕ(x, ā)M,x = M

M |= ∃xϕ(x, ā) ⇐⇒ ϕ(x, ā)M,x 6= ∅

Likewise, writing |X | for the cardinality of the set X ,

M |= ∃≥5xϕ(x, ā) ⇐⇒ |ϕ(x, ā)M,x| ≥ 5.

We can go on ad lib. For example, the following two quantifiers have been
studied in model theory:

M |= Q0xϕ(x, ā) ⇐⇒ ϕ(x, ā)M,x is infinite

M |= QCxϕ(x, ā) ⇐⇒ |ϕ(x, ā)M,x| = |M |.

(On finite universes, QC is identical to ∀, but not on infinite ones.)
We have a arrived at Mostowski’s notion of a (generalized) quantifier. Here

is a general formulation.

type 〈1〉 quantifiers

Let, for each universe M , QM be any set of subsets of M , and
use at the same time (to simplify notation) ‘Q’ as a new sym-
bol for a corresponding variable-binding operator. Then Q is a
(generalized) quantifier of type 〈1〉, whose meaning is given by

M |= Qxϕ(x, ā) ⇐⇒ ϕ(x, ā)M,x ∈ QM .

(2.15)

For the examples considered above we have:
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• ∀M = {M}

• ∃M = {A ⊆M : A 6= ∅}

• (∃≥5)M = {A ⊆M : |A| ≥ 5}

• (Q0)M = {A ⊆M : A is infinite}

• (QC)M = {A ⊆M : |A| = |M |} (the Chang quantifier)

Two other examples, which will play some role in what follows, are

• (Qeven)M = {A ⊆M : |A| is an even natural number}

• (QR)M = {A ⊆M : |A| > |M −A|} (the Rescher quantifier16)

Actually, Mostowski imposed a constraint on the sets QM , one which is
satisfied by the previous examples, but not by arbitrary sets of subsets of M .
For example, the constraint does not hold for

• QM = {A ⊆M : John ∈ A and Mary ∈ A}.

The condition is called Isomorphism closure; we will come back to this in Chap-
ter 3.2.2.

2.3.5 Lindström Quantifiers

Mostowskian quantifiers are, on each M , unary relations among subsets of M .
We can generalize immediately to binary or n-ary relations among subsets. This
turns out to increase expressivity considerably. For example, it was noted early
by logicians that whereas the Rescher quantifier QR says of a set A that most
elements of the universe belong to A, it cannot be used to say of two sets A and
B that most elements of A belong to B. In other words, it cannot be used to
express the relation

• mostM (A,B) ⇐⇒ |A ∩ B| > |A−B|.17

Notice by the way that, on finite universes, we get

• (QR)M (A) ⇐⇒ |A| > 1/2|M |

• mostM (A,B) ⇐⇒ |A ∩ B| > 1/2|A|,

16There is some terminological confusion in the literature about which quantifier is to be
called ‘the Rescher quantifier’. In this book, it is QR as defined above. That is also how
Rescher defines it in [Rescher 1962] (he calls it ‘M’), so the name is quite apt. See also the
next footnote.

17Rescher distinguished QR from most and claimed (without proof) that ‘It is readily shown
that . . . “Most A’s are B’s” cannot be defined by means of the usual resources of [FO]; not even
when these are supplemented by [QR], or any other type of quantification, for that matter.’
([Rescher 1962], p. 374) We shall see precisely what this claim amounts to later on. The claim
is true, but the proof is not trivial. The only published proof, to our knowledge, of the full
claim (if taken to mean that most is not definable in terms of FO with any finite number of
type 〈1〉 quantifiers added) appeared in [Kolaitis and Väänänen 1995].
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so there most means ‘more than half of’, and QR means ‘more than half of
the elements of the universe’.18 Here are some more examples of quantifiers as
relations between subsets of M :

• allM (A,B) ⇐⇒ A ⊆ B

• noM (A,B) ⇐⇒ A ∩ B = ∅

• someM (A,B) ⇐⇒ A ∩ B 6= ∅

• not-allM (A,B) ⇐⇒ A−B 6= ∅

These are of course the four Aristotelian quantifiers from Section 2.1.1.

• MOM (A,B) ⇐⇒ |A| > |B|

• IM (A,B) ⇐⇒ |A| = |B| (the Härtig, or equicardinality quantifier)

• more-thanM (A,B,C) ⇐⇒ |A ∩ C| > |B ∩ C|.

All of these are of type 〈1, 1〉, except the last which is of type 〈1, 1, 1〉.19

What are the corresponding variable-binding operators? A type 〈1, 1〉 quan-
tifier symbol Q will now apply to a pair of formulas (ϕ, ψ), and we may write,

Qx, y(ϕ, ψ),

where all free occurrences of x are bound in ϕ, and all free occurrences of y are
bound in ψ. Actually, it is possible, and sometimes simpler, to use the same
variable, writing instead

Qx(ϕ, ψ),

where all free occurrences of x are bound in both ϕ and ψ. Thus we have, for
example,

M |= most x(ϕ(x, ā), ψ(y, ā)) ⇐⇒ mostM (ϕ(x, ā)M,x, ψ(x, ā)M,x),

and similarly for the other examples. Let us summarize:

type 〈1, 1〉 quantifiers

A (generalized) quantifier of type 〈1, 1〉 associates with each universeM
a binary relation QM between subsets of M . Using the same symbol
as a variable-binding operator, the meaning of a quantified formula
Qx(ϕ, ψ), where ϕ = ϕ(x, x1, . . . , xn) and ψ = ψ(x, x1, . . . , xn) have
at most the free variables shown, is given by

M |= Qx(ϕ(x, ā), ψ(x, ā)) ⇐⇒ QM (ϕ(x, ā)M,x, ψ(x, ā)M,x).

(2.16)

18As noted earlier, this relation most is one meaning of the English word most, although in
some contexts it could mean the same as, say, at least 75% of.

19MO was called more in [?], but we now find that name misleading. Unlike the Härtig
quantifier, it has no established name in the literature. The word more occurs in various
comparative constructions, but not properly as an English determiner expression. more-than,
on the other hand, can be seen as a 2-place determiner, as we saw in Chapter 1.
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Similarly for type 〈1, 1, 1〉 quantifiers, etc. Observe that on the left hand side
of (2.16) a syntactic expression — a formula in a formal language — is said to
be true in a model M (or, more precisely, satisfied by a sequence ā of elements
of M). On the right hand side, by contrast, we are saying that two sets stand
in a certain relation, namely the relation QM , to each other.

This generalization of Mostowski’s notion of quantifier is due to [Lindström 1966].
Lindström further observed that there is no principled reason to restrict atten-
tion to relations between sets ; the general concept is that of a relation between
relations, or a second-order relation.20 Here are three examples. For A ⊆ M
and R,S ⊆M2, define

• W rel
M (A,R) ⇐⇒ R is a well-ordering of A

• RamM (A,R) ⇐⇒ ∃X ⊆ A [X is infinite and any two distinct elements
of X are related by R] (a ‘Ramsey quantifier’)

• (Res2(MO))M (R,S) ⇐⇒ |R| > |S| (the ‘resumption’ of MO to pairs).

The first two quantifier have type 〈1, 2〉 and the last 〈2, 2〉; the principle should
be clear. The names of these quantifiers will be explained later.

As to the syntax of the formal language corresponding to such quantifiers,
the variable-binding operator symbol now applies to an k-tuple of formulas if
the second-order relation is k-place, and in each formula it binds the number of
variables corresponding to the arity of that relation argument. Let us illustrate
with a quantifier of type 〈2, 3, 1〉.

type 〈2, 3, 1〉 quantifiers

A (generalized) quantifier of type 〈2, 3, 1〉 associates with each uni-
verse M a ternary relation QM between a binary relation, a ternary
relation, and a unary relation (subset) over M . Using the same
symbol as a variable-binding operator, the meaning of a quantified
formula Qxy, zuv, w(ϕ, ψ, θ), where ϕ = ϕ(x, y, x1, . . . , xn), ψ =
ψ(z, u, v, x1, . . . , xn), and θ = θ(w, x1, . . . , xn) have at most the free
variables indicated, and a1, . . . , an ∈M , is given by

M |= Qxy, zuv, w(ϕ(x, y, ā), ψ(z, u, v, ā), θ(w, ā))(2.17)

⇐⇒ QM (ϕ(x, y, ā)M,x,y, ψ(z, u, v, ā)M,z,u,v, θ(w, ā)M,w)

Already in Chapter 1 we distinguished between monadic and polyadic quan-
tifiers. Here is the formal definition:

20This is of course very similar to Frege’s treatment of quantifiers as second-level relations
which was sketched in Section 2.2.4. However, neither Mostowski nor Lindström seems to
have been aware of Frege’s definition. See also Section ??.
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monadic vs. polyadic quantifiers

A monadic quantifier is one of type 〈1, 1, . . . , 1〉. Semantically it is (on
each M) a relation between a subsets of M . Syntactically it binds one
variable in each of the formulas it applies to. A polyadic quantifier is of
type 〈n1, . . . , nk〉, where each ni is a natural number ≥ 1. Semantically
it is (on each M) a relation between k relations over M , where the i:th
relation is ni-ary. Syntactically it binds ni variables in the i:th formula
it applies to.

Logicians generalized the quantification available in FO partly as a ‘local’
and relatively well behaved means to increase its expressive power. There are
other ways to strengthen FO, for example, by going to second-order logic. But
with the generalized quantifier approach we can add the expressive means for a
particular purpose that cannot be served in FO, while remaining in a first-order
language.

Here is an example. Suppose you want to be able to say, of an ordering
relation <, that each element has at most finitely many predecessors.21 In
second-order logic, you can say that a set A is infinite by a sentence of the
following sort:

(2.18) There is an element a of A and a one-one function f from A to A−{a}.

But to use the machinery of second-order logic just for this purpose is perhaps a
bit of overkill. Instead, add to FO the quantifier Q0 from the previous section.
Then you can say directly that a set is infinite, and now the sentence

∀x¬Q0y(y < x)

expresses the desired proposition. FO with Q0 added is stronger than FO and
therefore lacks some of its pleasant properties (such as a completeness theorem),
but it is much weaker than second-order logic.

2.3.6 Branching Quantifiers

There is another natural way of generalizing FO quantification, which actually
antedates generalized quantifiers by a few years. Think of formulas in prenex
form, beginning with a quantifier prefix consisting of a sequence of expressions
of the form ∀x or ∃y. When a universal quantifier precedes an existential one,
a dependency is created. In

∀x∃y∀z∃wϕ(x, y, z, w)
(2.19)

21For example, given a Big Bang theory and a discrete time ordering, this would be true of
that ordering, even if each time point has infinitely many successors.
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y depends on x, and w depends on both x and z. Another order in the quantifier
prefix may change the dependencies: in

∀x∀z∃y∃wϕ(x, y, z, w)
(2.20)

both y and w depend on x and z. A convenient way of making the dependen-
cies explicit is by means Skolem functions :22 (2.19) and (2.20) are equivalent,
respectively, to

∃f∃g∀x∀zϕ(x, f(x), z, g(x, z))
(2.21)

∃f∃g∀x∀zϕ(x, f(x, z), z, g(x, z)).
(2.22)

Now, another way to generalize ordinary quantification is to lift the restric-
tions that are created by linear dependencies, and allow, for example, a sentence
with truth conditions

∃f∃g∀x∀zϕ(x, f(x), z, g(z)).
(2.23)

This was proposed in [Henkin 1961], where also the following graphical way of
writing (2.23) as a first-order sentence was introduced:

∀x ∃y
ϕ(x, y, z, w)

∀z ∃w

�
�

�
�

(2.24)

The partial ordering of the quantifier prefix clearly shows that y depends only
on x, and w only on z. This can be extended to all partially ordered prefixes of
existential and universal quantifiers; the particular prefix in (2.24) is called the
Henkin prefix.

It is not obvious that partially ordered or branching quantifiers extend the
expressive power of FO, for example, that there is no FO sentence equivalent
to (2.24). But this can be seen by the following simple but ingenious argument
due to Ehrenfeucht. In FO, no sentence in two 1-place predicate symbols A and
B expresses that |A| ≤ |B|.23 That is, no FO sentence can say that there is a
1-1 function f from A to B:

∃f∀x∀z[(x = z ↔ f(x) = f(z)) & (A(x) → B(f(x)))].

22Actually, this needs some form of the Axiom of Choice, which guarantees that the required
functions exist.

23This is equivalent to saying that the quantifier MO from Section 2.3.5 is not FO definable.
We will see later how to prove such facts.
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But this is equivalent to

∃f∃g∀x∀z[(x = z ↔ f(x) = g(z)) & (A(x) → B(f(x)))]

which can be written by means of the Henkin prefix:

∀x ∃y
[(x = z ↔ y = w) & (A(x) → B(y))]

∀z ∃w

�
�

�
�

So with the Henkin prefix we can say that |A| ≤ |B|. Similarly, we can also
express the sentence (2.18) from the previous section.

First-Order vs. Second-Order Again

The Henkin prefix may seem to make our notion of a first-order language from
Section 2.3.2 problematic. For if the Henkin sentence is written as in (2.24)
it looks first-order, but the version (2.23) quantifies over functions and looks
second-order. So what is it?

Second-order logic, or SO, is like FO except that it in addition has variables
and (universal and existential) quantification over sets, relations, or functions.
We can make a similar distinction as before between SO on the one hand, and
second-order languages on the other.

But now one may want also to use ‘second-order’ in an extended sense. If a
logic is, roughly, a syntax (a language) plus a truth definition, it makes sense to
say that such a logic is ‘essentially second-order’ if its truth definition essentially
involves quantification over relations or functions. Or, a bit more precisely, if
its expressive power is that of SO, or of some substantial fragment of SO.

Logic with branching quantifiers might be case in point. Its truth definition
does seem to involve quantification over functions — essentially, in contrast
with (2.21) and(2.22) where the use of Skolem functions was not essential but
could be replaced by FO expressions. Also, its expressive power turns out to
be exactly that of SO restricted to formulas whose prenex forms begin with a
sequence of existential second-order quantifiers, followed by an FO formula, just
as in (2.23).

We may note in this connection that the Henkin prefix trivially corresponds
to a (generalized) quantifier: define QH of type 〈4〉 by

(QH)M (R) ⇐⇒ there are functions f, g on M such that for all a, b ∈M ,
R(a, f(a), b, g(b)).

(2.24) would then be written

QHxyzw ϕ(x, y, z, w)

Again, this quantification is first-order in that it only employs individual vari-
ables, although the dependencies are no longer visible in the notation. Thus,
the notion of a partially ordered quantifier is in this sense already subsumed
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under the concept of a (generalized) quantifier. But it could still be claimed
that logic with the Henkin quantifier is essentially second-order.

However, this latter issue is controversial. Jaakko Hintikka has argued
forcefully in recent years that not only is logic with partially ordered prefixes
first-order in nature: it should in fact replace FO as the first-order logic; see
[Hintikka 1996] and [Hintikka and Sandu 1997]. He has introduced a special
linear syntax where independencies are marked explicitly, so that, for example,
(2.24) can be written

∀x∃y∀z(∃w/∀x)ϕ(x, y, z, w)
(2.25)

This is called IF (‘independence-friendly’) logic. Moreover, Hintikka gives the
semantics for IF logic in game-theoretic terms, so that truth becomes the exis-
tence of a winning strategy in a certain game.

One might argue that this is still essentially second-order, since winning
strategies are precisely a kind of functions, but Hintikka thinks not and in
addition claims a host of other advantages for IF logic.

However, our simple point in Section 2.3.2 still stands, we think, and does
not involve taking a position on these more difficult issues. The point is just
that, in order to explain the meaning of a particular quantifier it is often not only
possible but in fact advisable to use a a first-order language, for that amounts
to quantification over an arbitrary domain, without making any assumptions
abouts its structure. And, we claimed, that is how the meanings of quantifier
expressions usually seems to be given to us. So in this (perhaps shallow but
still illuminating) sense, the Henkin quantifier is undoubtedly first-order.

Branching Generalized Quantifiers

If ∀ and ∃ can be branched, what about other quantifiers? This question was
first raised in [Barwise 1978], where it was pointed out that such branching
seemed to give the correct truth conditions for certain English sentences.24 For
example, the simplest form of branching with most would be

most x A(x)
R(x, y)

most y B(y)

�
�

�
�

which from two quantifiers of type 〈1, 1〉 produces a polyadic quantifier of type
〈1, 1, 2〉, saying that there is a subset X of A containing most of its elements,
and a corresponding subset Y of B, such that each pair (a, b) where a ∈ X and
b ∈ Y belongs to the relation R. This can be taken to be the form of the truth
condition for a sentence like

24Hintikka had claimed earlier that the Henkin quantifier is needed for the semantics of
English. This claim engendered some controversy, and Barwise pointed out that branching of
most might be a clearer example. For references, see [Barwise 1978] [BETTER: GIVE SOME
OF THESE REFERENCES].



30 CHAPTER 2. THE CONCEPT OF A (GENERALIZED) QUANTIFIER

(2.26) Most boys in your class and most girls in my class have all dated each
other.

but it is not expressible by most alone (used linearly). We shall return to these
matters in more detail in Chapter XXX.

Simple branching of most makes obvious sense. The reason seems to be that
this quantifier is (right upward) monotone; cf. Section 3.2.4. For quantifiers
with other forms of monotonicity, or with no monotonicity at all, it is more
doubtful what branching should amount to. See [Barwise 1978] and [?] for a
discussion, and [Sher 1997] for a proposal of a general definition.

2.3.7 Quantifers and Type Theory

TBW

2.3.8 Summary

TBW



Chapter 3

Basic Properties of Natural
Language Quantifiers

In this chapter we introduce and discuss some characteristic properties of quan-
tifiers. These properties are all relevant from a linguistic perspective, though
several of them have a general mathematical-logical interest as well, and have
been studied quite independently of any connection to natural languages.

Some of these properties can be stated irrespective of the type of the quan-
tifier, whereas others make sense only for specific types. This will become clear
from our presentation, though we shall spend the bulk of the chapter on type
〈1〉 and type 〈1, 1〉 quantifiers. These two types are by far the most prominent
ones in a linguistic context; it will appear that most quantifiers of other types
related to natural languages are in some sense reducible to them.

Before we begin, however, some preliminary terminological and methodolog-
ical points will be made.

3.1 Preliminaries

3.1.1 Global and Local Quantifiers

A quantifier Q, then, is on each universe M a second-order relation QM (a
relation between relations) overM . When it is necessary to make the distinction,
we call such second-order relations local quantifiers, since they are local to a
particular universe. The quantifier Q itself, on the other hand, i.e., the function
which associates with each M a local quantifier QM on M , can then be called
a global quantifier.

A property P of local quantifiers extends automatically to the corresponding
global quantifier along the following scheme:

(G) Q is P ⇔def For each M , QM is P.

31



32CHAPTER 3. BASIC PROPERTIES OF NATURAL LANGUAGE QUANTIFIERS

Most properties of quantifiers that we discuss are like this — they are intended
for the global case but naturally defined first for the local case; indeed, via (G)
the definition applies directly to both cases.

Some properties, however, are genuinely local in that the corresponding
global property is uninteresting or even unintelligible. Here are two examples.

Trivial Quantifiers

We call a second-order relation trivial if it is either the universal relation or the
empty relation. More precisely, for each type τ = 〈n1, . . . , nk〉:

the two trivial quantifiers of type τ on M

1τ,M is the universal relation of type τ over M . That is, whenever Ri

is an ni-ary relation on M , for 1 ≤ i ≤ k,

1τ,M (R1, . . . , Rk)

holds. Likewise, 0τ,M is the empty relation of type τ over M , so
0τ,M (R1, . . . , Rk) never holds. (When there is no risk of confusion,
one or both of the subscripts τ and M will be dropped.)

Now, one could lift this notion of triviality to Q itself via (G). Then there
would be just two trivial global quantifiers, but that would be a coarse and
uninteresting notion of triviality. More interestingly, Q might associate trivial
quantifiers with some universes (say, with all universes of size less than a fixed
number), and non-trivial ones with other universes. More fine-grained notions of
(non-)triviality are called for in the global case, and would typically be adapted
to a particular class of quantifiers or a particular investigative purpose.1

The Number of Quantifiers

Suppose you ask how many quantifiers (of a certain type) with a certain property
there are. If you mean global quantifiers, this question risks being senseless.
Such a quantifier associates with each set M a second-order relation over M ,
so there would normally be at least as many such quantifiers as there are sets,
but there is no such thing as ‘the number of all sets’. The class of all sets is not
itself a set, and hence cannot be counted.2

If, on the other hand, you mean local quantifiers on a particular universe,
the question has an answer that one might be able to figure out using set theory

1Examples are the condition VAR from [van Benthem 1984] for type 〈1, 1〉 quantifiers, and
what is called (m1 , . . . ,mk)-nontriviality in [Westerst̊ahl 1994] for certain quantifiers of type
〈1, 1, . . . , 1, k〉. The point of such global notions of non-triviality is to be able to formulate
results or generalizations in the most perspicuous and illuminating way, without having to
make exceptions or add extra clauses for various less interesting cases.

2One way turning the question into a meaningful ones is to (a) restrict attention to quan-
tifiers satisfying ISOM (see Section 3.2.2), and (b) fix a cardinal number κ and ask instead
how many quantifiers there are on a universe of cardinality at most κ.
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in the infinite case, or some piece of finite combinatorics in case the universe
was finite. For example, suppose your question was: How many distinct type
〈1, 1〉 quantifiers are there in all on a given universe with just 2 elements? (The
answer is: 216 = 65.536 (!)). How many with property P? Now there are definite
answers, though they may be easy or hard to find.

Two Perspectives on Language and Logic

The global/local contrast concerns not just different kinds of properties but
different perspectives on quantifiers, and more generally on language and on
the use of logic for linguistic purposes. Very roughly, one may say that the
more linguistically oriented literature on quantification has tended towards a
local perspective, where discussion takes places within a particular universe of
discourse which is taken for granted or presupposed, whereas the more logically
oriented literature has used a global perspective. But there really is no need to
make a choice here. What is needed, rather, is to always be clear about whether
a particular claim or generalization or definition or result is to be taken globally
or locally.

As a rule of thumb, we prefer global versions whenever possible, not because
our orientation is more logical than linguistic, but simply because local versions
then follow by instantiation. But in many cases, the relationship between global
and local is more complex. It may require work or non-trivial reformulation to
extract a global statement from a local fact. And sometimes there may be more
than one global version, or, as we have seen, none at all.

One area where this contrast is particularly acute is expressive power. To
say that a certain quantifier is expressible or definable by such and such means
may be true in local sense but false globally. Therefore, broad claims about
expressive power can be seriously ambiguous if not carefully stated. And more
than just resolving the ambiguity, one needs to reflect carefully on which concept
of expressivity is the correct one for the occasion at hand. We will return to
these questions in Chapter ??, but clarity about the global/local distinction is
a theme that runs throughout this book.

3.1.2 Natural Language Quantifiers

We shall use ‘natural language quantifier’ for such quantifiers as are likely to be
useful in an account of the semantics of natural languages. Such a description
might seem intolerably vague, but let us at least try to make our idea clear. In
earlier work, the first author used this locution in a narrower and more opera-
tional sense, namely, for those quantifiers which are denoted by some determiner
expression in some natural language.3 However, many quantifiers that crop up
in a linguistic context are not denotations of determiners. They might be de-
notations of noun phrases, or of certain adjectives, or they might arise in more
complex constructions without necessarily being denotations of particular parts
of these. Therefore, a broader notion also makes sense.

3In particular, in [Westerst̊ahl 1989] and [Väänänen and Westerst̊ahl 2001].
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As an example, consider the two type 〈1, 1〉 quantifiers most and MO from
Chapter 2.3.5. It is an interesting fact, and a fact which can be explained (cf.
Section 3.3 below), that only the first of these is likely to be the denotation of
a determiner in any language, even though from a logical point of view they
are equally simple and natural; indeed MO seems more basic. However, MO
still turns up in linguistic contexts. For example, the meaning of the phrase
more-than, in constructions such as

(3.1) More students than teachers came to the opening.

appears to be derived in a uniform way from the simple comparison of cardinals
given by MO; this is clear from the definition of the type 〈1, 1, 1〉 quantifier
more-than (which is a determiner denotation):

more-thanM (A,B,C) ⇐⇒ |A ∩ C| > |B ∩ C|

Therefore, in this book we count MO among the natural language quantifiers.
The observation referred to above of course remains, but it can be made using
‘determiner denotation’ instead.

The general idea is this. The concept of a (generalized) quantifier is a math-
ematical one. It can be used for linguistic purposes, but it is likely that there
is a huge number of quantifiers with purely mathematical definitions which will
never turn up in the semantics of natural languages. Among type 〈1, 1〉 quan-
tifiers consider, for example,

DivM (A,B) ⇐⇒ |A ∩ B| divides |A|

TrtM (A,B) ⇐⇒ |A ∩ B| > 3

√

|A|

Even though these two satisfy standard properties of determiner denotations
(see Section 3.3), it seems likely they will never turn up as such, or in any other
linguistic constructions. Such examples can of course be multiplied endlessly.

Quantifiers can be classified by descriptions of the form: ‘being the denota-
tion of expressions (in some language) of category X’. Other descriptions may
be in terms of a specific construction Y without mentioning denotation. Such
classifications can be quite useful. If one enumerated all the relevant categories
and constructions, one would arrive at a definition of the concept of a natu-
ral language quantifier that we are after. We don’t have such an enumeration,
hence no definition. But we hope that the above explanations at least point in
the direction of one.

3.1.3 Boolean Operations on Quantifiers

For any fixed type τ , we can define Boolean combinations of quantifiers of type
τ in the obvious way:

• (Q ∧Q′)M (R1, . . . , Rk) ⇐⇒ QM (R1, . . . , Rk) and Q′
M (R1, . . . , Rk)
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• (Q ∨Q′)M (R1, . . . , Rk) ⇐⇒ QM (R1, . . . , Rk) or Q′
M (R1, . . . , Rk)

• (¬Q)M (R1, . . . , Rk) ⇐⇒ not QM (R1, . . . , Rk)

Note that these become definitions of global quantifiers Q∧Q′, Q∨Q′, and ¬Q,
by (G) above.

Discussing the Aristotelian square of opposition in Chapter 2.1.1, we also
found a natural notion of inner negation Q¬ for those quantifiers. Then one
is not negating the quantified proposition but replacing one argument by its
complement. This of course presupposes that a particular argument has been
selected. For type 〈1, 1〉 quantifiers denoted by determiner expressions it is the
second argument — naturally, since it corresponds to the verb phrase which is
precisely what one is negating when forming the ‘contrary’ of a given sentence.4

Only for quantifiers of type 〈n〉 is there no choice, and we have, for R ⊆Mn,

• (Q¬)M (R) ⇐⇒ QM (Mn −R)

In the general case of a type 〈n1, . . . , nk〉 quantifier, assuming the i’th argument
has been selected, we define

• (Q¬)M (R1, . . . , Rk) ⇐⇒ QM (R1, . . . , Ri−1,M
ni −Ri, Ri+1, . . . , Rk)

Then, as before, the dual of Q is

• Qd = ¬(Q¬)

Since ¬(Q¬) = (¬Q)¬ we may omit parentheses and write Qd = ¬Q¬.
There are often interesting relations between properties of a quantifier and

properties of its dual. This motivates the following terminology:

co-properties

Let P be a property of quantifiers of a type τ for which the notion of
dual is well-defined. Then we say that

(3.2) Q is co-P iff Qd is P.

For a trivial example, let P be the property of belonging to the square of
opposition. Then P and co-P are the same properties. Less trivial examples
will follow.

Inner negation is a Boolean operation too. Taking the complement of a set
(or a set of n-tuples) is the same kind of operation as negating a sentence —
they are both the complement operation in the corresponding Boolean algebra.
So it is to be expected that Boolean-type ‘laws’ hold for inner negations and
duals as well, for example the following ones.

3.1.1 Fact

4Other terms in the literature for inner negation in this case are VP negation and post-

complement.
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(a) ¬(Q1∧Q2) = ¬Q1∨¬Q2; (Q1∧Q2)¬ = Q1¬∧Q2¬; (Q1∧Q2)
d = Qd

1 ∨Q
d
2

(b) ¬(Q1∨Q2) = ¬Q1∧¬Q2; (Q1∨Q2)¬ = Q1¬∨Q2¬; (Q1∨Q2)
d = Qd

1 ∧Q
d
2

(c) ¬¬Q = Q¬¬ = (Qd)d

Proof. (a1) is just propositional logic. (a2) can be directly verified using only
the definitions of inner negation and conjunction of quantifiers. (a3) follows
from the definition of duals, using (a1) and (a2). (b) and (c) are similar. �

3.1.4 Relational vs. Functional View on Quantifiers

We have defined quantifiers (locally) as second-order relations, but from a type-
theoretic perspective they would be viewed as functions instead. Recall that
Frege defined all relations, including quantifiers, in terms of their characteristic
functions. So for example, a (local) type 〈1〉 quantifier QM would be a function
from ℘(M), the powerset (set of subsets) of M , to the set of truth values 2 =
{0, 1}, and instead of QM (A) one would write

QM (A) = 1

(The global Q then associates with each universe M such a function.) The set
of all such functions is sometimes written5

[℘(M) −→ 2]

Likewise, a type 〈1, 1〉 quantifier on M could be seen as a function from ℘(M)
to [℘(M) −→ 2].6

Whether one adopts a functional or a relational perspective on quantifiers is,
we think, largely a matter of taste. In principle, it is easy to translate from one
to the other. There is a certain austere elegance to a type-theoretic framework,
where everything is a function. Also, linguists have often preferred a functional
view since it allows an intuitively pleasing formulation of compositionality in
terms of function application. This too goes back to Frege, and in modern
times is especially prominent in the tradition from Montague. In particular,
the use of Boolean functions of various kinds, not just quantifiers, makes pos-
sible an elegant and uniform treatment account of large tracts of semantics; cf.
[Keenan and Faltz 1985].7

However, when one focuses on the theory of (generalized) quantifiers, the re-
lational perspective is, to our minds, logically and intuitively somewhat simpler,
and so that perspective is the one usually preferred in this book.

5Another notation is 2℘(M).
6Equivalently, it could be seen as a function from ℘(M) × ℘(M) to 2.
7Further remarks on the advantages of a functional view of quantifiers can be found in

[Keenan and Westerst̊ahl 1997], in particular p. 858.
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3.2 Type 〈1〉 Quantifiers

Type 〈1〉 quantifiers are, on each universe, sets of subsets of that universe.
The terminology here varies somewhat in the literature; at times they are called
‘unary’ quantifiers (then type 〈1, 1〉 quantifiers are binary). But ‘unary’ can also
refer to the arity of the arguments or the second-order relation, and the word is
also used for the case when all of the arguments are 1-place, i.e., for what are
here called monadic quantifiers.8 In that case type 〈1〉 has been called ‘simple
unary’. There is also some diversity as regards the type notation.9 However,
we shall stick to the original notation and terminology from [Lindström 1966]
introduced in Chapter 2.3.5.

3.2.1 Examples

Some Logical Quantifiers

Most of the following examples of type 〈1〉 quantifiers were defined in Chapter
2.3.4:

(3.3) ∀, ∃, ∃≥5, ∃≤7, ∃=3, Qeven, Q0, Q
C , QR.

On finite universes, QR is a typical example of a proportional quantifier: we
have (QR)M (A) ⇔ |A| > 1/2|M |. Let us introduce the following notation.

(3.4) For natural numbers p, q such that 0 < p < q and a finite universe M , the
type 〈1〉 quantifier (p/q) is defined by:10

1. (p/q)M (A) ⇐⇒ |A| > p/q · |M |

Similarly,

2. [p/q]M (A) ⇐⇒ |A| ≥ p/q · |M |

So QR = (1/2). In addition, we have Boolean combinations, including inner
negations and duals, of the quantifiers above (as well as those mentioned below).
Here are some examples:

∀d = ∃

(∃=3¬)M (A) ⇐⇒ |M −A| = 3

(∃≥2 ∧ ∃≤7)M (A) ⇐⇒ 2 ≤ |A| ≤ 7

(QR)dM (A) ⇐⇒ |A| ≥ 1/2|M |; in general:

8E.g. in [Väänänen 1997].
9For example, type 〈1, 1, 1〉 was written 〈〈1, 1〉, 1〉 in [Keenan and Westerst̊ahl 1997] (to

emphasize the special role of the first two ‘noun’ arguments for quantifiers like more-than)
and (1; 3) in [Väänänen 1997].

10Some quantifiers only ‘make sense’ for finite universes, so when discussing them we will
tacitly assume that universes are finite. To make a definition like (3.4) fully general one may
stipulate, for example, that (p/q)M = 1M when M is infinite.
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(3.5) (p/q)d = [(q − p)/q]

These are all logical quantifiers in a sense to be made precise in Section 3.2.2
below. In a natural language context, many non-logical type 〈1〉 quantifiers
arise. Here is a first example.

Montagovian Individuals

In the treatment of proper names introduced in [Montague 1969], a name like
John referring to an individual j is interpreted as the set of subsets containing
j.11 More precisely, define, for each individual j,

(3.6) (Ij)M = {A ⊆M : j ∈ A}

The motive is to obtain a uniform treatment of all noun phrases as (locally)
sets of subsets of the universe. Since proper names can be conjoined with
quantified noun phrases into more complex noun phrase, as in John and most

students, the uniformity resulting from a Montagovian treatment of names is
substantial.

Note that even if Ij is non-logical, there is nothing ‘local’ about its definition
as we have formulated it here. It is a global quantifier, which with every universe
M associates a local quantifier, given by (3.6). In particular, the definition does
not presuppose that j ∈ M (although this would be presupposed for most
applications of this quantifier in concrete cases). If j 6∈ M , it follows from the
definition that (Ij)M is the trivial quantifier 0M on M .12

One may still claim that quantifiers of the form Ij really are independent
of the universe in a strong sense. If John is a professor is true (false), it
remains so if the universe of discourse is extended (provided the set of professors
is the same). The same holds for Somebody is a professor, but not, for
example, for Everybody is a professor. Universe-independence in this sense
is a property of (some) global quantifiers. It will be made precise and discussed
in Section 3.2.3.

In a context where it is clear that John denotes j, we may write Ij simply
as John. And we may go on:

(3.7) John and Mary = Ij ∧ Im

(3.8) John or Mary = Ij ∨ Im

Then a set A ⊆M belongs to (John and Mary)M (to (John or Mary)M ) iff
j ∈ A and m ∈ A (j ∈ A or m ∈ A), so using these quantifiers will give correct
truth conditions for both of

(3.9) John and Mary used to like pizza.

11So in a sense we have two interpretations of proper names. To separate these, one may
let the lexical item John denote j, and the noun phrase John denote the corresponding set of
subsets.

12This is for simplicity; it is not intended to convey an insight about the semantics of names.
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(3.10) John or Mary used to like pizza.

Of course, this analysis will not work for all uses of John and Mary, for example,

(3.11) John and Mary met at the party.

We come back to such examples in Chapter XXX.

Noun Phrase Denotations

Proper names are one kind of noun phrase, but perhaps the most obvious candi-
dates for type 〈1〉 quantifiers in a natural language context are those interpreting
quantified noun phrases like

every cat, most sailors, at least three students, not more than five profes-
sors, . . .

A proper analysis of these will involve the interpretation of the corresponding
determiner expressions, for which type 〈1, 1〉 quantifiers are used. We come to
this in Section 3.3 below, but in fact it turns out that in a precise sense type 〈1〉
quantifiers is the right place to start. We therefore make the following definition
here, which begins to explore the fact that in such noun phrases, quantification
is restricted to the set provided by the noun.

restricted type 〈1〉 quantifiers

Let Q be type 〈1〉 quantifier and A a fixed set. The quantifier Q[A] is
defined as follows, for any M and any B ⊆M :

(3.12) (Q[A])M (B) ⇐⇒ QM∩A(A ∩ B)

For example, let cat be the set of cats, cat ⊆M . Then (∃
[cat]
=3 ¬)M is the set

of subsets B of M such that (∃=3¬)cat(cat∩B), i.e., such that |cat−B| = 3. So
if hungry is the set of hungry things in M (including, say, hungry cats, hungry

dogs, hungry people, etc.), (∃
[cat]
=3 ¬)M (hungry) holds if and only if the sentence

(3.13) All but three cats are hungry.

is true. Thus, (∃
[cat]
=3 ¬)M is a suitable interpretation of the noun phrase all

but three cats. In this way, restrictions of the quantifiers exemplified in (3.3)
above provide a plethora of type 〈1〉 quantifiers that turn up in linguistic con-
texts.

Above we assumed that cat ⊆ M , but this is not essential. Whether there
are cats outside the universe considered depends not only on the facts but on
methodological choices; in any case the restriction in definition (3.12) is to cats
in M . A sentence like (3.13) normally is not about all cats but only those in a
local universe of discourse, say, the set X of living things in my house. We may
effect this restriction either by taking M = X , or by restricting ∃=3¬ in (3.13)
not to cat but to A = X∩ cat. In the latter case, A ⊆M .
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[Barwise and Cooper 1981] used the following suggestive terminology for a
characteristic trait of restricted quantifiers:

• Suppose Q is a type 〈1〉 quantifier, M a universe, and A ⊆M . Then QM

lives on A iff, for all B ⊆M ,

QM (B) ⇐⇒ QM (A ∩ B)

(This is a property of local quantifiers, not global ones.)

Here are some facts about this property:

(i) QM always lives on M , but need not live on any proper subset of M .

[The first claim is obvious. To see that the second claim is true, let,
for example, a ∈ M , A = M − {a}, B = {a}. Then ∃M (B) but
A ∩ B = ∅, so ¬∃M (A ∩ B). Hence, ∃M does not live on any proper
subset of M .]

(ii) If A ⊆ M , (Q[A])M lives on A. It can also live on some proper subset of
A.

[The first claim follows directly from the definitions of (Q[A])M and
‘live on’. The second is a consequence of the example in (iii) below.]

(iii) If M is infinite, there need be no smallest subset A of M such that QM

lives on A.

[Let QM (B) iff M − B is finite, so Q means ‘all but finitely many
things in the universe’. Take an infinite universe M . Then QM lives
on exactly the co-finite subsets of M , i.e., the sets A ⊆M such that
M − A is finite. (This follows using the fact that M − (A ∩ B) =
(M − A) ∪ (M − B), which is finite iff both M − A and M − B are
finite.) But there is no smallest co-finite subset of M : if A is such
a subset it has to be infinite, and so if a ∈ A, A − {a} is a proper
subset of A which is also co-finite with respect to M .]

This ends our list examples of type 〈1〉 quantifiers, but some more will appear
in the following sections.

3.2.2 Isomorphism Closure

Mostowski imposed a condition on what we call type 〈1〉 quantifiers, namely,
that they “should not allow us to distinguish between elements [ofM ].” ([Mostowski 1957],
p. 13). Lindström used the same condition for the general case, and it is usually
taken for granted by logicians. The condition, which we shall Isomorphism Clo-
sure or simply ISOM, expresses the idea that in logic only structure counts, not
individual objects, sets, or relations. This means that if a sentence in a logical
language is true in one model, it is true in all isomorphic models (cf. below).
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We first give a definition of ISOM for type 〈1〉 quantifiers, however, which
does not mention isomorphic models but uses the notion of two sets having the
same size, i.e., the same cardinal number.

ISOM type 〈1〉 quantifiers

A type 〈1〉 quantifier Q satisfies ISOM if whether QM (A) holds or not
depends only on the cardinality of A and M −A. In other words, for any
universes M , M ′ and any A ⊆M , A′ ⊆M ′:

(3.14) If |A| = |A′| and |M −A| = |M ′ −A′|, then QM (A) ⇔ QM ′(A′).

It follows that Q can be identified with a binary relation between cardinal
numbers, namely, those pairs (|M −A|, |A|) for which QM (A) holds. This
relation is also called Q. It is thus defined as follows, for any cardinal
numbers κ, λ:

Q(κ, λ) ⇐⇒ there are M and A ⊆M such that(3.15)

|M −A| = κ, |A| = λ, and QM (A)

Conversely, given any binary relation Q between cardinal numbers, we get
back the corresponding type 〈1〉 quantifier (also called Q) by

QM (A) ⇐⇒ Q(|M −A|, |A|)

Thus, ISOM type 〈1〉 quantifiers only care about ‘quantities’, or sizes of
sets, not the sets themselves. The condition can be extended to all monadic
quantifiers (and is sometimes called QUANT in the literature).

All the quantifiers mentioned in (3.3) – (3.5) satisfy ISOM. We can see this
by identifying the corresponding relations between numbers. Here are a few
cases:

∀(κ, λ) ⇐⇒ κ = 0

∃(κ, λ) ⇐⇒ λ 6= 0

∃≥5(κ, λ) ⇐⇒ λ ≥ 5

Qeven(κ, λ) ⇐⇒ λ is an even natural number

Q0(κ, λ) ⇐⇒ λ is infinite

QC(κ, λ) ⇐⇒ λ = κ+ λ

QR(κ, λ) ⇐⇒ κ > λ

[p/q](m, k) ⇐⇒ k ≥ p/q(m+ k)

Furthermore, the following is easily established.
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3.2.1 Fact

The class of ISOM type 〈1〉 quantifiers is closed under Boolean operations, in-
cluding inner negations and duals. In particular, using the terminology intro-
duced in Section 3.1.3, co-ISOM = ISOM. Moreover, viewed as relations between
numbers, the inner negation of a quantifier is simply its converse, i.e.,

Q¬(κ, λ) ⇐⇒ Q(λ, κ)

However, if a quantifier involves a particular individual or a particular set,
ISOM usually fails. For example:

3.2.2 Fact

Quantifiers of the form Ia are never ISOM.

Proof. Intuitively, this is obvious, but let us check with the definition. Take
two distinct objects a, b, and a universe M0 which contains them both. Then
|{a}| = |{b}| = 1, and |M0 −{a}| = |M0 − {b}| = |M0| − 1. On the other hand,
(Ia)M0

({a}) holds, since a ∈ {a}, but (Ia)M0
({b}) fails, since a 6∈ {b}. Thus,

we have found a counter-instance to (3.14) (with M = M ′ = M0, A = {a}, and
A′ = {b}), so ISOM is not satisfied. �

Likewise, quantifiers of the form Q[A] are usually not ISOM, even if Q is
ISOM. Intuitively, this is again clear. Even if it is a fact that

At least four students smoke.

and also that the number of smokers (in a given finite universe of discourse) is
the same as the number of drinkers, it certainly does not follow that

At least four students drink.

But it would follow, if the quantifier ∃
[student]
≥4 were ISOM. The next proposition

extracts the idea of this argument and gives a very general sufficient condition.

3.2.3 Proposition

Suppose A 6= ∅, and that QA is not trivial. Then Q[A] is not ISOM.

Proof. Since QA is not trivial, there are subsets C1, C2 of A such that QA(C1)
but not QA(C2). We now claim that by possibly adding some new elements to
A, we can form a universe M ′ and subsets B1, B2 of M ′ such that

• |B1| = |B2| and |M ′ −B1| = |M ′ −B2|

• A ∩ B1 = C1 and A ∩ B2 = C2

Thus, QA(A ∩ B1) and ¬QA(A ∩ B2), i.e., (since A ⊆ M ′) (Q[A])M ′ (B1) and
¬(Q[A])M ′(B2), which contradicts ISOM for Q[A].

To verify the claim, suppose |C1 − C2| = k1, |C2 − C1| = k2, |C1 ∩ C2| = n,
and |A − (C1 ∪ C2)| = m. Furthermore, suppose that k1 ≤ k2 (the case when
k2 ≤ k1 is symmetric). We then add a set D of sufficiently many new elements
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to A, so that B1 = C1 ∪ D has exactly k2 + n elements. (If k2 is a finite
number then |D| = k2 − k1; otherwise |D| = k2.) Also, we let B2 = C2

and M ′ = A ∪ D. Now |B1| = k1 + n + (k2 − k1) = k2 + n = |B2|, and
|M ′ − B2| = k1 + m + (k2 − k1) = k2 + m = |M ′ − B1|. (These calculations
hold also when k2 is infinite and k2 − k1 is replaced by k2.) Thus, the claim is
proved. �

We may conclude that noun phrase denotations of the form Q[A] are usually
not ISOM. The conclusion, however, should be stated with some care. In Propo-
sition 3.2.3, A is a fixed set. In a linguistic context, on the other hand, a universe
of discourse M is given, and a noun denotation A such that (usually) A ⊆ M .
Thus, for the argument of the above proof to go through there has to be enough
elements in M −A to make the required extension. (The proof builds a subuni-
verse M ′ = A ∪D such that A ⊆ M ′ ⊆ M and provides a counter-example to
ISOM with universe M ′. This automatically gives a counter-example to ISOM
with universe M .13)

Two more observations are in order. First, for some noun phrases, like

everything, something, nobody

the noun denotation is as it were indexically set to M itself (think of thing as
denoting the universe of discourse). Thus, given M , the noun phrase denotation
is (Q[M ])M , which is just QM . But this means that these noun phrases can
actually be interpreted as the quantifiers ∀, ∃, ¬∃, respectively, which are of
course ISOM. However, among quantified noun phrases they are exceptions
rather than the rule.

Second, though noun phrase denotations Q[A] are usually not ISOM, the
underlying quantifier Q usually is. In Section 3.3 below we will see that a type
〈1, 1〉 quantifier Qrel, the relativization of Q, is the proper interpretation of the
corresponding determiner phrase, and Qrel is ISOM if Q is. This underscores
that ISOM, far from being a condition that only interests logicians, is highly
relevant for natural language semantics too.

ISOM for Arbitrary Quantifiers

How does one generalize ISOM from type 〈1〉 to quantifiers of arbitrary type?
The condition in (3.14) generalizes easily to other monadic quantifiers; this
will be described in Section 3.3. But for arbitrary, i.e., polyadic, quantifiers,
one needs another formulation, in terms of the notion of isomorphism between
structures or models.

A structure in general consists of a universe M , some relations overM , some
distinguished elements of M , and some operations on M . Thus it is essentially

13It is also a matter of what a local version of Proposition 3.2.3 should look like. A first
suggestion might be that if ∅ 6= A � M and QA is not trivial, then (Q[A])M is not PERMM

(cf. Section 3.2.2). But this is not quite true since, as noted, M − A must be sufficiently big
for the above proof to go through.
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what we in Chapter 2.3.3 called a model of a first-order language (with cor-
responding non-logical predicate symbols, individual constants, and function
symbols). If there are no relations, such structures are usually called algebras
in mathematics. Here, on the other hand, we restrict attention to relational
structures, which have only relations. These structures can be classified (typed)
in the same way as quantifiers.14

isomorphic structures

A (relational) structure of type τ = 〈n1, . . . , nk〉 has the form M =
(M,R1, . . . , Rk), where each Ri is a ni-ary relation over M . Two such
structures M and M′ = (M ′, R′

1, . . . , R
′
k) are isomorphic, in symbols,

M ∼= M′

if there is a 1-1 function f from M onto M ′ (a bijection from M to
M ′) such that, for each i between 1 and k, and for all a1, . . . , ani

∈M ,

Ri(a1, . . . , ani
) ⇐⇒ R′

i(f(a1), . . . , f(ani
))

f is then called an isomorphism from M to M′.

Now, the connection with our first version of ISOM is the following

3.2.4 Fact

If M = (M,A) and M′ = (M ′, A′) are type 〈1〉 structures, then

M ∼= M′ ⇐⇒ |A| = |A′| and |M −A| = |M ′ −A′|
(3.16)

Thus, ISOM for a type 〈1〉 quantifier Q amounts to the condition that whenever
M ∼= M′, QM (A) ⇔ QM ′(A′).

Proof. By definition, two sets have the same cardinality iff there is a bijection
between them. Now if M ∼= M′ via a bijection f , then f restricted to A is a
bijection from A to A′, and f restricted to M −A is a bijection from M −A to
M ′ −A′. To see this, note that we already know that f is 1-1, and that a ∈ A
iff f(a) ∈ A′ by (3.16). Also, if b ∈ A′ (b ∈ M ′ − A′), b = f(a) for some unique
a, and, again by (3.16), a ∈ A (a ∈ M − A). So it follows that |A| = |A′| and
|M −A| = |M ′ −A′|.

Conversely, if there is a bijection g from A to A′, and a bijection h from
M − A to M ′ − A′, then the union f = g ∪ h of the two (viewed as sets of

14There is a familiar ambiguity of the English word ‘structure’. On the one hand it refers
to mathematical structures as above. On the other hand one often says that if M ∼= M′

they have the ‘same structure’, or (as we did in the beginning of this section) that in logic
only structure counts, not particular objects or relations. A more precise terminology for the
latter usage, which avoids the ambiguity, is to say that isomorphic structure have the same
isomorhism type.



3.2. TYPE 〈1〉 QUANTIFIERS 45

ordered pairs) is a bijection from M to M ′ such that for all a ∈ M , a ∈ A iff
f(a) ∈ A′. Thus, M ∼= M′. �

It is now immediate what ISOM should amount to for an arbitrary quantifier.

ISOM for arbitrary quantifiers

A quantifier Q of type τ = 〈n1, . . . , nk〉 satisfies ISOM iff whenever
(M,R1, . . . , Rk) and (M ′, R′

1, . . . , R
′
k) are isomorphic structures of

type τ ,

QM (R1, . . . , Rk) ⇐⇒ QM ′(R′
1, . . . , R

′
k)

In other words, ISOM quantifiers cannot distinguish between isomorphic
structures. It should be clear that this is a precise way of expressing Mostowski’s
idea that they do not allow us to distinguish between elements of the universe.
Furthermore, we can now also see that instead of defining (global) quantifiers as
functions associating with each universe a certain second-order relation over that
universe, we could simply have defined them as classes of relational structures
of a given type. In fact, that is how they were defined in [Lindström 1966]. This
is not much more than a notational variant: instead of writing

QM (R1, . . . , Rk)

we may write

(M,R1, . . . , Rk) ∈ Q

Then ISOM is literally closure under isomorphism: if M ∈ Q and M ∼= M′,
then M′ ∈ Q.

Finally, we note that there is a slightly different way of making precise
Mostowski’s idea. With ISOM one cannot even distinguish between elements of
different universes, if the corresponding ‘structure’ is the same. Another version
restricts attention to elements of one universe at a time.

• An automorphism on M, where M is of type τ , is an isomorphism from
M to itself. The corresponding condition on a type τ quantifier Q of
being closed under automorphisms is sometimes called PERM, or Permu-
tation Closure,15 since a bijection from a set M to itself is often called a
permutation on M . ISOM implies PERM, but not (always) vice-versa.

• Note that on a given universe M , Permutation Closure can be stated as
a condition on QM . If we call this local version PERMM , then PERM is
the corresponding global version (cf. (G) in Section 3.1.1). ISOM has no
such local version.

We can see that PERM is weaker than ISOM by considering again (3.14).
The corresponding version of PERM says that, for all M and all A,A′ ⊆M :

15Or PI, or Permutation Invariance.
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(3.17) If |A| = |A′| and |M −A| = |M −A′|, then QM (A) ⇔ QM (A′).

Now suppose that Q is defined by

QM =

{

∃M if |M | < 10,
(∃≥2)M if |M | ≥ 10

Then Q satisfies PERM but not ISOM: PERM is clear, but if M has, say, 9
elements, a unit set {a} is in QM for a ∈ M , whereas if M is extended to M ′

by adding just one new element, {a} is not in QM ′ , contradicting ISOM.

3.2.3 Extension

Looking at the list of examples of type 〈1〉 quantifiers in Section 3.2.1, in par-
ticular the ISOM ones which can be seen as binary relations between numbers,
it is conspicuous that for some of them, whether QM (A) (alternatively, Q(κ, λ))
holds or not depends only on A (on |A| = λ). For others, it depends only on
M −A (on |M −A| = κ), and for the rest it depends on both arguments. The
first of these properties is a kind of universe-independence, which in the litera-
ture goes by the name of EXT or Extension. This terminology derives from the
first version of the following definition.

EXT for type 〈1〉 quantifiers

A quantifier Q of type 〈1〉 satisfies EXT if and only if

(3.18) A ⊆M ⊆M ′ implies QM (A) ⇔ QM ′(A)

That is, extending the universe has no effect. An equivalent formula-
tion is:

(3.19) If A is a subset of both M and M ′, then QM (A) ⇔ QM ′(A)

Clearly (3.19) implies (3.18). Conversely, if A ⊆M,M ′, let M ′′ = M ∩M ′.
Since A ⊆ M ′′ ⊆ M and A ⊆ M ′′ ⊆ M ′, we get, using (3.18) twice, QM (A) ⇔
QM ′′(A) ⇔ QM ′(A).

For ISOM type 〈1〉 quantifiers, EXT has yet another useful formulation.

3.2.5 Fact

If Q is ISOM, EXT is equivalent to the following condition:

(3.20) If Q(κ, λ), then for all cardinal numbers κ′, Q(κ′, λ).

This means that Q can be seen as a class S of cardinal numbers, i.e., the cardinal
numbers of those sets which satisfy the condition of the quantifier:

λ ∈ S ⇐⇒ for some κ,Q(κ, λ)(3.21)

⇐⇒ for some M, and some A ⊆M s.t. |A| = λ,QM (A)
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In other words, Q is EXT iff there is a class S such that (3.21) holds, or
(equivalently), for all M and all A ⊆M ,

QM (A) ⇐⇒ |A| ∈ S

Proof. Suppose EXT holds and that Q(κ, λ). So for some M and some A ⊆M
such that |A| = λ and |M − A| = κ, QM (A). Now if κ′ is any number, take a
universe M ′ such that A ⊆M ′ and |M ′ −A| = κ′. This is always possible, and
it follows by (3.19) that QM ′(A), i.e., that Q(κ′, λ). Thus, (3.2.5) holds.

Conversely, given (3.2.5), suppose that A ⊆ M ⊆ M ′. Then QM (A) ⇔
Q(|M −A|, |A|), and QM ′(A) ⇔ Q(|M ′−A|, |A|). But then (3.2.5) implies that
QM ′(A) ⇔ QM (A).

We have shown that when Q is seen as a relation between cardinal numbers,
EXT means that the first argument of this relation is immaterial. Thus, Q can
be identified with the class of numbers that occur as the second argument (i.e.,
with the range or co-domain of the relation). �

The following are examples of ISOM and EXT quantifiers:

∃, ∃≥5, ∃≤7, ∃=3, Qeven, Q0

Thus, by Fact 3.2.5, ∃ can be identified with the class of cardinal numbers
> 0, ∃≥5 with those ≥ 5, ∃≤7 with {0, 1, . . . , 7}, ∃=3 with {3}, Qeven with
{0, 2, 4, . . .}, etc.

Among quantifiers which are not ISOM, we may note that

• All quantifiers of the form Ia are EXT.

[Since a ∈ A or not regardless of the surrounding universe.]

• If Q is EXT, so is Q[A].

[Follows from (3.19) and the definition (3.12) of Q[A] in Section 3.2.1.]

Another easily verified observation is:

• The class of EXT type 〈1〉 quantifiers is closed under conjunction, disjunc-
tion, and (outer) negation.

This gives us a host of EXT quantifiers, also odd ones such as ∃=3 ∨ Ia, which
holds of a set A iff A either has exactly three elements or contains a.

Here is one more example, that we have not mentioned before. A sentence
like

Nobody but John smokes.

expresses that John smokes but nobody else (in the discourse universe) does.
This means that the noun phrase nobody but John denotes the quantifier NBj

(assuming that John denotes j) defined by

(3.22) (NBj)M (A) ⇐⇒ A = {j}
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This is EXT, since the truth condition is quite independent of M . NBj is an
exception quantifier; we will have more to say about these in Section ZZZ. Not
all of them are EXT; for example,

Everybody but John smokes.

gives the exception quantifier

(3.23) (EBj)M (A) ⇐⇒ A = M − {j}

where M plays a crucial role. Note that EBj is the inner negation of NBj .
If QM (A) ‘depends’ only on A, then Q¬M (A) and Qd

M (A) ‘depend’ only on
M −A. In other words, they are co-EXT. So taking inner negations and duals
of the previous examples we get co-EXT type 〈1〉 quantifiers, where the earlier
condition on A is replaced by the corresponding condition, or its negation, on
M −A. The foremost example is

∀

Likewise,

(∃≤7¬)M (A) ⇐⇒ |M −A| ≤ 7

(∃d
≤7)M (A) ⇐⇒ |M −A| > 7

etc. are co-EXT. As in Fact 3.2.5, co-EXT and ISOM type 〈1〉 quantifiers can
also be identified with classes of cardinal numbers; this time the sizes of the sets
M −A satisfying the condition of the quantifier.

Proportional quantifiers are typical examples of quantifiers that are neither
EXT nor co-EXT, i.e., where both A and M − A are essential. As one might
expect, we will see that such quantifiers are more complex in various senses than
the EXT or co-EXT ones. We can also get examples from Boolean combinations
of EXT and co-EXT quantifiers, such as

∃ ∧ ¬∀

which we can read as something but not everything. Then (∃ ∧ ¬∀)M (M)
is false, but if M is a proper subset of M ′, (∃ ∧ ¬∀)M ′ (M) is true. This shows
that EXT fails, and by a similar argument co-EXT fails too.

As we have said, EXT expresses a notion of universe-independence. This
notion is not in any way tied to type 〈1〉 quantifiers, so it is immediate how to
formulate EXT for abitrary types. Here is the version corresponding to (3.18).

EXT for arbitrary quantifiers

A quantifierQ of type 〈n1, . . . , nk〉 satisfies EXT iff the following holds:

(3.24) If Ri ⊆ Mni for 1 ≤ i ≤ k, and M ⊆ M ′, then
QM (R1, . . . , Rk) ⇔ QM ′(R1, . . . , Rk)

What is the significance of EXT? We are not quite sure if there is a simple
answer to this question. In Section 3.3 we shall find that in the type 〈1〉 case, it
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corresponds exactly to a significant class of natural language quantifiers of type
〈1, 1〉. But in the general case, what we would like to say is the following: EXT
is a criterion of constancy of expressions that denote quantifiers.

A quantifier associates a second-order relation (of a certain type) with each
universe. In principle, it can associate wildly different relations with different
universes. With universes containing John and at least three dogs it could
associate the universal quantifier, with those containing John but fewer than
three dogs it could associate Ij , and with other universes it could associate

∃
[cat]
≥7 . Nothing in the general definition of a quantifier prevents this. Even if

ISOM is imposed, QM could still be completely different for different sizes of
M . But in practice such examples do not seem to occur ‘naturally’, and in
particular not in natural language contexts.

So EXT is a substantive constraint, which rules out global quantifiers that
associate wildly different local quantifiers with different universes. Contrapos-
ing, we would like to say that EXT allows only those global quantifiers that
associate the same quantifier with each universe. But of course that can at best
be a metaphorical or preliminary way of speaking. If M 6= M ′, QM and QM ′

are usually different.16 So we need another sense of ‘same quantifier’ here, and
one suggestion, then, is that EXT provides precisely this sense.

We would like to say this, but there is a problem: in the type 〈1〉 case,
EXT does not seem to give the right notion of ‘same quantifier’. To take the
most obvious example, the universal quantifier ∀ intuitively appears to be the
same on each universe, but it is not EXT. Obviously, if a subset of a universe
contains everything in it (i.e., if it is identical to that universe), it cannot contain
everything in a larger universe. The same holds for quantifiers like all but at
most three things.

These examples are co-EXT (their duals are ∃ and ∃≥4, respectively), so we
might try to capture our idea of constancy with ‘EXT or co-EXT’ instead. But
even the Rescher quantifier, and other proportional type 〈1〉 quantifiers, surely
are not ‘wildly different’, but instead quite uniform, over different universes.
Something else must be going on here. Perhaps the significance of EXT is
different for type 〈1〉 than for other types. We come back to the question in
Section 3.3.4.

We end this section with two more remarks about EXT. First, since EXT
says precisely that the universe is irrelevant, one may drop the subscript indi-
cating the universe for such quantifiers, and write simply

Q(R1, . . . , Rk)

rather than

QM (R1, . . . , Rk)

More formally, we can define

16For example, if M and M ′ are disjoint then QM and QM′ are always different except in
the one case when both are the empty set.
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• Q(R1, . . . , Rk) iff for some M such that Ri ⊆ Mni for 1 ≤ i ≤ k,
QM (R1, . . . , Rk).

It then follows that this is well-defined (independent of the choice of M) if Q
satisfies EXT.

Second, at the end of the last section we saw that PERM is a weaker con-
straint than ISOM. In the presence of EXT, however, they are equivalent. The
verification of the following fact is left as an exercise.17

3.2.6 Fact

Let Q be a quantifier (of any type) satifying EXT. If PERM holds for Q, then
so does ISOM.

3.2.4 Monotonicity

Monotonicity is a phenomenon that turns up in all kinds of contexts, linguistic as
well as mathematical. Abstractly, it says of some function F that it is increasing :
relative to an ordering of the arguments and an ordering (the same or a different
one) of the values: if x ≤ y, then F (x) ≤ F (y). Such functions are well-behaved
in ways that make them have interesting properties, and they occur frequently.
Leaving abstract formulations aside, we begin with monotonicity of type 〈1〉
quantifiers.

monotonicity for type 〈1〉 quantifiers

Let Q be of type 〈1〉. QM is (monotone) increasing iff the following
holds:

(3.25) If A ⊆ A′ ⊆M , then QM (A) implies QM (A′).

QM is (monotone) decreasing iff

(3.26) If A′ ⊆ A ⊆M , then QM (A) implies QM (A′).

These local notions extend immediately to the global case: Q is mono-
tone increasing (decreasing) if each QM is.

Monotone increasing quantifiers are often called just monotone in the litera-
ture.18 Most of the quantifiers we have seen so far are increasing or decreasing;
here are the relevant observations:

17Hint: First show that under EXT, PERM implies that whenever (M, R1, . . . , Rk) and
(M ′, R′

1, . . . , R′

k) are isomorphic structures such that M and M ′ are disjoint,

QM (R1 , . . . , Rk) ⇐⇒ QM′(R′

1 , . . . , R′

k)

Then show that the general case follows from this.
18Thus, these quantifiers can be called ‘monotone increasing’, or just ‘increasing’, or just

‘monotone’. It is also common to let ‘monotone’ stand for ‘either increasing or decreasing’,
so that monotonicity is what increasing and decreasing quantifiers have in common, whereas
non-monotone quantifiers are neither increasing nor decreasing. Further, the terms upward

and downward monotone are also used. These slight differences in terminology should not
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• Of the quantifiers exemplified in Section 3.2.1, (3.3) – (3.5),

– ∀, ∃, ∃≥n, Q0, Q
C , QR, (p/q), [p/q], (p/q)d are monotone increasing,

– ∃≤n is monotone increasing,

– ∃=n, ∃=n¬, ∃≥n ∧ ∃≤m, Qeven are neither increasing nor decreasing
(if n ≤ m).

• There might seem to be fewer decreasing than increasing ones, but that is
just an impression created by what may appear most natural to take as
primitive, as the following observations illustrate:

– Q is increasing iff ¬Q is decreasing.

[Since if QM (A) implies QM (A′), then ¬QM (A′) implies ¬QM (A).]

– Q is increasing iff Q¬ is decreasing.

[Since if A ⊆ A′, then M −A′ ⊆M −A; hence:]

– Q is increasing (decreasing) iff Qd is increasing (decreasing).

• The trivial quantifiers 1M and 0M are both increasing and decreasing. But
on a given universe M they are the only quantifiers with this property.

[For, if QM 6= 0M there is some A ⊆ M such that QM (A). Take any
B ⊆ M . Then QM (A ∩ B) since QM is decreasing, hence QM (B) since
QM is increasing. So QM (B) holds for any B, i.e., QM = 1M .]

• Montagovian individuals Ia are monotone increasing.

• If Q is monotone increasing (decreasing), so is Q[A].

The last observation19 explains why many noun phrase denotations are increas-
ing or decreasing. For example, at most four students is decreasing, which
is illustrated by facts such that if

(3.27) At most four students came to the opening.

is true, then

(3.28) At most four students came to the opening wearing a tie.

must also be true. Likewise, if

(3.29) Most professors came to the funeral.

cause confusion.
Note also that with the functional view of (local) type 〈1〉 quantifiers (Section 3.1.4) as

functions in [℘(M) −→ 2], monotonicity is precisely that A ≤ A′ implies QM (A) ≤ QM (A′),
where the (partial) ordering on subsets of M is the inclusion order, and the ordering on the
values 0, 1 is the usual one.

19Note that this last observation (in contrast with most of the other ones above) is a global
but not a local fact: If one wants to conclude that (Q[A])M is increasing, it does not help to
know that QM is increasing; one needs to know that QM∩A is increasing.
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is true, then

(3.30) Most professors came to the funeral or attended the service.

is also true, witnessing the fact that most professors is monotone increasing.

By means of such examples one can devise tests for monotonicity, for ex-
ample, that sentences of the form At least five A are B should imply At

least five A are B or C. Of course, this is not a test that the quantifier ∃
[A]
≥5

is increasing — we already know that it is. Rather, it is a test that we have
interpreted noun phrases of the form at least five A correctly, or at least in
a way that does not violate linguistic intuitions. Naturally such tests are not in
themselves conclusive. The hypothesis tested concerns meaning, which is about
all possible cases, whereas we can only test a finite number of them. And even
if we should find a counterexample, the blame may be put elsewhere than on
the meaning of the noun phrase. For example, if we should find that English
speakers easily envisage situations where they would judge John is at school

to be true, but John is at school or at home to be false, then we ought to
conclude that something is seriously amiss with our semantics, but it need not
be Montague’s treatment of proper names — it could be something to do with
or instead. Luckily, we do not find such intuitions prevalent among English
speakers,20 and this then is a test of (among other things) that treatment of
names, which does interpret them by means of an increasing quantifier.

It is a fact that among the non-monotone quantifiers (in the sense of be-
ing neither increasing nor decreasing) that occur ‘naturally’, a great many are
nevertheless Boolean combinations of monotone ones. Thus, between three and
six dogs is the conjunction of at least three dogs and at most six dogs, and all
but five is the inner negation of the conjunction of at least five and at most
five. But a notable exception to this pattern is the quantifier Qeven, and its
cognates like an odd number of cards, or all but an even number of balls. These
are not increasing or decreasing, nor are they Boolean combinations of such
quantifiers. There is no reason for the parity of a set to be preserved when one
adds to or deletes from it an arbitrary number of elements. Of course this claim
about Qeven — that it is not expressible as a Boolean combination of monotone
quantifiers — is so far very preliminary: though seemingly plausible when one
thinks about it, it needs to be (a) made precise, and (b) verified (or disproved).
We return to such matters of expressive power, and in particular to the above
claim, in Chapter ??.

To extend the idea of monotonicity to arbitrary quantifiers is an easy mat-
ter. Naturally, if a quantifier as a second-order relation has more than one
argument, we must specify which argument we are talking about. This leads to
the following definition.

20Again, we must take care to distinguish pragmatic facts, such that if one knows that John
is at school it may feel odd to say that he is at school or at home, from simple judgements
about truth and falsity.
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monotonicity for arbitrary quantifiers

A quantifier QM of type 〈n1, . . . , nk〉 is (monotone) increasing in the
i:th argument iff the following holds:

(3.31) If QM (R1, . . . , Rk), and if it holds that Ri ⊆ R′
i ⊆ Mni , then

QM (R1, . . . , Ri−1, R
′
i, Ri+1, . . . , Rk).

Similarly for the (monotone) decreasing case.

Of course a quantifier can be increasing in one argument and decreasing in
another; many such combinations occur naturally as we will see, beginning in
Section 3.3 for the type 〈1, 1〉 case. But there are a few more things we want to
say about type 〈1〉 quantifiers.

Linguistic Aspects of Monotonicity

Monotonicity is a pervasive trait in natural languages, so it is perhaps not sur-
prising that it is involved in various generalizations and explanations of linguistic
phenomena. [Barwise and Cooper 1981] give a number of such possible general-
izations, for example, that noun phrases with syntactically simple determiners
in natural languages denote either increasing or decreasing quantifiers, or con-
junctions of such quantifiers. Another example is that positive (negative) strong
natural language quantifiers are monotone increasing (decreasing), where Q is
positive (negative) strong iff for every M , QM (M) (for every M , not QM (M)).

Such ‘linguistic universals’ are sometimes nothing but proposed empirical
generalizations across languages, but sometimes they can be explained along
more principled lines, or figure themselves in explanations of other linguistic
phenomena. As an example, Barwise and Cooper started exploring the idea
that monotone quantifiers are easier to process than non-monotone ones; this
was developed (a lot) further by van Benthem; cf. [van Benthem 1986], ch. 10,
and also ch. 8. But probably the most striking use of monotonicity to explain
a linguistic phenomenon concerns the distribution of so-called negative polarity
items.

Monotonicity and Polarity

TBW

Monotonicity under ISOM

A monotone increasing quantifier Q associates with a universe M an idea of
‘bigness’: ‘big’ subsets of M are in QM in the sense that if A is in QM so are all
bigger sets. Of course quite small sets may also be ‘big’; the standard associated
with M is arbitrary, and in the extreme case when ∅ ∈ QM , all subsets of M
are ‘big’ (so QM = 1M ).
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In general there need be no smallest among the ‘big’ sets; smallest in the
sense that no proper subset is ‘big’. For example, consider Qd

0 , the dual of
infinitely many things, i.e., all but finitely many things. This is monotone in-
creasing, since Q0 is increasing, or, more directly, since if M − A is finite and
A ⊆ A′ ⊆M , then M −A′ is also finite. But if M is infinite there is no smallest
A such that M −A is finite. If N = {0, 1, 2, . . .}, then N −{0} ⊇ N −{0, 1} ⊇
N − {0, 1, 2} ⊇ . . . are all ‘big’ by the standards of (Qd

0)N .
Note however that there is always a smallest size among the ‘big’ sets. This

is because any class of cardinal numbers has a smallest element, so indeed for
any quantifier QM there is a smallest size of the sets it contains, regardless of
whether it is monotone or not. But when Q is monotone increasing and ISOM,
this intuitive idea takes a definite and concrete shape. Then the standard of
‘bigness’ depends only on |M |, and is a cardinal number κ ≤ |M |, such that
QM (A) holds iff |A| ≥ κ. We shall introduce some very useful notation for this
in the special case of finite universes.

So assume Q is monotone increasing and satisfies ISOM. There is then a
corresponding function f which with each finite universe of size n associates a
natural number f(n), which is the smallest size of sets in QM , when |M | = n.
Thus, 0 ≤ f(n) ≤ n. This covers all cases except one, namely, when no sets at
all are in QM (so QM = 0M ). But if we stipulate that f(n) = n+ 1, it holds in
general that if A ⊆M ,

QM (A) ⇐⇒ |A| ≥ f(|M |)

(In particular, if f(|M |) = |M |+1, |A| ≥ f(|M |) is always false.) We summarize
this in the following definition and observation:

the quantifiers Qf

If f is any function from natural numbers to natural numbers such that
for all n, 0 ≤ f(n) ≤ n + 1, the type 〈1〉 quantifier Qf is defined as
follows (on finite universes): For any finite M and any A ⊆M ,

(3.32) (Qf )M (A) ⇐⇒ |A| ≥ f(|M |)

Then Qf is ISOM and monotone increasing. Moreover, any ISOM and
monotone increasing quantifier Q is equal to Qf (on finite universes)
for some f , which we may call the monotonicity function for Q.

Here are some of our previous examples written in this format:

• If f1(n) = 1 for all n, then Qf1
= ∃. More generally, if g(n) = a constant

k for all n, then Qg = ∃≥k.

• If f2(n) = n for all n, then Qf2
= ∀. If h(n) = n − k for a fixed k, then

Qh is all but at most k things.

• If f3(n) = the smallest natural number > n/2, then Qf3
= QR.
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We noted earlier that Q is increasing iff its dual Qd is increasing. Now
observe that, with |M | = n,

(Qd
f )M (A) ⇐⇒ |M −A| < f(|M |)

⇐⇒ n− |A| < f(n)

⇐⇒ |A| > n− f(n)

⇐⇒ |A| ≥ n− f(n) + 1

Thus, we have the following

3.2.7 Fact

Define

fd(n) = n− f(n) + 1

for all n. Then fd is the monotonicity function for the dual of Qf , that is,
Qfd = (Qf )d.

3.3 Type 〈1, 1〉 Quantifiers

The significance of the class of type 〈1, 1〉 quantifiers for natural language se-
mantics is that most determiner expressions (simple or complex) can be taken
to denote in this class. They are, on each universe, binary relations between
subsets of the universe. However, not all such quantifiers are eligible as deter-
miner interpretations, but only those which are so-called relativizations of type
〈1〉 quantifiers. This is a fundamental observation, which goes a long way to
explaining the characteristic semantic behavior of determiners. The concept of
relativization (familiar from logic long before generalized quantifier theory was
applied to natural language) is precisely what one needs for a precise account
of the idea that determiners restrict the domain of quantification to the noun
argument. We call this argument the restriction of the quantifier, and the sec-
ond argument its scope.21 After giving some examples, we define the relevant
notion of relativization and the idea of domain restriction, and then discuss the
consequences for the semantics of determiners.

3.3.1 Examples of Determiners

Here is a list of examples of English determiner expressions, of increasing com-
plexity.22

(3.33) a. some, a, all, every, no, several, most, neither, the, both, this, these,
my, John’s, many, few, enough, a few, a dozen, ten,

21These terms are usually applied to the corresponding syntactic parts of a corresponding
quantified sentence, as their names indicate. As we will see, ‘restriction’ is adequate also
semantically. The (semantic) scope is sometimes called the verb argument.

22The list is essentially as in [Keenan and Westerst̊ahl 1997].
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b. the ten, John’s ten, at least/more than/ fewer than/ at most/exactly
ten, all but ten, half of the, half of John’s, infinitely many, at most
finitely many, about two hundred, nearly a hundred, most of John’s,
an even number of, at least two thirds of the, less than ten percent of
the, between five and ten, exactly three quarters of the,

c. not all, not every, not many, no more than ten, not more than half of
the, some/most but not all, at least two and no more than ten, neither
John’s nor Mary’s, either fewer than five or else more than a hundred,
no child’s, most male and all female, not one of John’s, more of John’s
than of Mary’s, no/every . . . but John, all but finitely many.

The list is intended to show the richness of English determiner expressions
that can be interpreted as type 〈1〉 quantifiers. In various cases one might argue
for another treatment. For example, it has been claimed that the indefinite a

or the definite the, or numerals like ten, should not be treated as quantifiers.
But our point here is just that they can be so treated, and that it is then fairly
obvious which quantifiers they denote. For example,

theM (A,B) ⇐⇒ A ⊆ B and |A| = 1

(this is the singular the; for the plural case the second conjunct is |A| > 1);

tenM (A,B) ⇐⇒ |A ∩ B| = 10

(another reading that might be possible is at least ten);

John’s tenM (A,B) ⇔ |A ∩ {a : R(j, a)}| = 10 and A ∩ {a : R(j, a)} ⊆ B

(where R is a contextually given relation, cf. John’s ten bikes, John’s ten

exams, John’s ten friends, John’s ten toes).

no . . . but JohnM (A,B) ⇐⇒ A ∩ B = {j}

every . . . except JohnM (A,B) ⇐⇒ A−B = {j}

In some of the above cases, like about two hundred, vagueness may be
an obstacle to giving an interpretation. But this is the problem of finding
an adequate semantics for vague expressions in general, and not specific to
determiners.

Some of the determiners above require input from the context for their in-
terpretation. As already noted most sometimes means more than half of the
— this is the default interpretation we use here — but sometimes the ‘thresh-
old’ is higher. There is no problem thinking of context as providing this. In
other cases, context-dependence is so strong that one may doubt if extensional
(generalized) quantifiers are adequate as interpretations. Consider

(3.34) a. Too many doctors attended the reception.
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b. Too many lawyers attended the reception.

Even in a situation when the set of lawyers at the reception was identical
to the set of doctors at the reception, these two sentences could have different
truth values. One may thus decide to treat too many as intensional and exclude
it from the present treatment. But one may also maintain that the nouns of
the respective sentences form part of the context, so that different standards
for ‘too many’ are generated. In the literature, this question has been dis-
cussed especially for many and few; some authors exclude them on the ground
of intensionality whereas others attempt a context-dependent extensional inter-
pretation.23 Again, the issue is part of the more general one of how to deal with
context-dependence and intensionality. We shall not need to take a stand on it
here, but will return to the interpretation of many and few in Section 3.3.4.

The above list of examples shows that in many cases complex determiners are
Boolean combinations of simpler determiners. Idealizing a bit, it is sometimes
practical to assume that the class of determiner denotations is closed under
Boolean operations. In reality, this is probably not true. Note, however, that

(a) the issue is not when expressions of the form Det and Det or not Det are
clumsy or longwinded and therefore hardly ever used (as is no doubt often
the case), but when they are meaningful, and

(b) even if such an expression is judged not meaningful, there might still
be another (possibly clumsy) determiner expression which denotes the
quantifier in question, and this is all that is required. For example, not
most may be judged ill-formed and hence meaningless, but the negation
of most is expressed by at most half of the, and is thus a determiner
denotation.

Some attempts to describe more accurately the behavior of the class of deter-
miner denotations under Boolean operations, in particular under outer and inner
negation, can be found in [Barwise and Cooper 1981], pp. PPP, and [Westerst̊ahl 1989],
pp. 70–74.

3.3.2 Relativization

A type 〈1〉 quantifier specifies a property of sets, which — unless it satisfies
EXT — depends on the universe considered. But then we can form a corre-
sponding type 〈1, 1〉 quantifier, where the first argument plays the role of that
universe. The ‘action’ of the resulting relativized quantifier is thus restricted
to this first (set) argument; as a consequence, the relativized quantifier itself
automatically satisfies EXT. The operation of relativization is not restricted to
type 〈1〉 quantifiers but applies to any type. Here is the definition.

23Cf. [Barwise and Cooper 1981], [Keenan and Stavi 1986], [Westerst̊ahl 1985],
[Fernando and Kamp 1996], [Cohen 2001], among others.
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definition of Qrel

If Q is of type 〈1〉, the type 〈1, 1〉 quantifier Qrel is defined as follows:
for any M and any A,B ⊆M ,

(3.35) (Qrel)M (A,B) ⇐⇒ QA(A ∩ B)

More generally, if Q is of type 〈n1, . . . , nk〉, Qrel of type 〈1, n1, . . . , nk〉
is defined, for A ⊆M and Ri ⊆Mni , 1 ≤ i ≤ k, by

(Qrel)M (A,R1, . . . , Rk) ⇐⇒ QA(R1 ∩An1 , . . . , Rk ∩ Ank)

Here we shall mainly be interested in the type 〈1〉 case, so if we write
‘Qrel’ it is assumed unless otherwise stated that Q is of type 〈1〉.

The following examples of relativized quantifiers show that the relativization
operation is in fact quite familiar.

• ∀rel = every

• ∃rel = some

• ∃rel
≥4 = at least four

• ∃rel
=5 = exactly five

• (∃=5¬)rel = all but five

• Qrel
0 = infinitely many

• (QR)rel = most

• (p/q)rel = more than p q’ths of the

• [p/q]rel = at least p q’ths of the

• Qrel
even = an even number of

These are all ISOM quantifiers, but relativization applies also to the non-
ISOM case:

• If NBj and EBj are the type 〈1〉 quantifiers nobody but John and ev-
erybody but John, respectively (that is, (NBj)M (B) ⇔ B = {j} and
(EBj)M (B) ⇔ B = M − {j}), then

– (NBj)
rel = no . . . but John

– (EBj)
rel = every . . . except John

• If JT is the type 〈1〉 quantifier John’s things defined by JTM (B) ⇔ {a ∈
M : R(j, a)} ⊆ B (where R is a contextually given ‘ownership’ relation),
then
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– JT rel = John’s

Similarly, if JT=10 is John’s ten things, then

– JT rel
=10 = John’s ten

So it seems that all the interpretations of familiar determiners are in fact
relativizations of type 〈1〉 quantifiers; we shall elaborate on this in Section 3.3.3
below. But although all type 〈1〉 quantifiers can be relativized, not all such rel-
ativizations are possible interpretations of natural language determiners. Apart
from relativizations of purely mathematical type 〈1〉 quantifiers, such as

DM (A) ⇐⇒ |A| divides |M |

whose relativization is the quantifier Div from Section 3.1.2, we have cases like
the following:

• If we relativize a Montagovian individual Ij (Section 3.2.1), we obtain

(Irel
j )M (A,B) ⇐⇒ j ∈ A ∩B

But there appear to be no determiners John-d in natural languages such
that, say (in the English case),

John-d students smoke

means that John is a student who smokes, i.e., such that John-d students
means ‘some student who is identical with John’. So these relativized
quantifiers do not turn up in a natural language context.

• We may also relativize restricted type 〈1〉 quantifiers of the form Q[A]

((3.12) in Section 3.2.1), obtaining

(Q[A])relM (B,C) ⇐⇒ Q
[A]
B (B ∩ C)

⇐⇒ QA∩B(A ∩ B ∩ C)

⇐⇒ Qrel
M (A ∩ B,C)

which might be expressed loosely by saying that relativizing Q[A] to B
is the same as relativizing Q to A ∩ B. But the linguistic point here
is another, namely, that Q[A] is already a kind of relativized quantifier,
or more precisely obtained by first relativizing Q and then freezing the
restriction argument; we come back to this in Section 3.3.3 below (Fact
3.3.3).

Let us also note that the right hand side of definition (3.35) (or the definition
for arbitrary types) does not mention the universe at all, so it is clear that the
following holds.
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3.3.1 Fact

Relativized quantifiers satisfy EXT.

As stated at the end of Section 3.2.3, for EXT quantifiers one may drop the
subscript indicating the universe. So we shall often write

Qrel(A,B)

rather than

(Qrel)M (A,B)

Empty Universes

For definition (3.35) to work properly, one needs to observe the following stip-
ulation:

• Quantifiers are also defined on the empty universe. For most familiar
quantifiers, the truth conditions in that case are obvious: they are obtained
by simply applying the usual defining condition to ∅. For example,

– ∃∅(∅) is false, since ∅ 6= ∅ is false.

– ∀∅(∅) is true, since ∅ = ∅ is true.

– (QR)∅(∅) is false, since it is false that 0 = |∅| > |∅ − ∅| = 0. But
(QR)d∅(∅) is true.

– Etc.

These stipulations may seem gratuitous in the type 〈1〉 case, but they are in-
dispensable — or rather, they avoid totally unnecessary complications — for
relativized quantifiers, since even if one often assumes that the universe of dis-
course is non-empty, the arguments of a quantifier must be allowed to be empty.

Still, one might feel that these stipulations, even if practical, are somewhat
momentous, and one may also wonder if they are the ‘right’ ones. But it should
be noted that in the case of relativized quantifiers it is just a matter of choosing
between one of two possibilities. In general, the truth of

QM (∅, B)

may vary with B. But when the quantifier is of the form Qrel, there are only
two cases; it follows immediately from (3.35) that:

• Either Qrel
M (∅, B) holds for all B ⊆M (namely, when Q∅(∅) is true), or it

holds for no such B (when Q∅(∅) is false).

Thus, the stipulations are in fact not so momentous. Are they ‘correct’? To
the extent that this question has an answer, it depends on various intuitive
judgements of speakers. As always, care must be taken to distinguish the fact
that if one knows that the noun A has empty denotation, it would often be odd
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to utter a sentence of the form Q A’s are B, from facts about the perceived
falsity (or truth) of the sentence in this case. So one way to be careful is to
use sentences where it clearly can be unknown whether the noun denotation is
empty or not, such as the following:

(3.36) All solutions to this system of equations are integers.

It seems unproblematic that this sentence could be acceptable (for example,
provable in a certain theory) regardless of whether there were any solutions at
all to the system of equations in question, or at least regardless of whether one
has any knowledge about the existence of such solutions.

A perhaps more convincing (because more widely applicable) strategy is to
choose examples where an eventual presupposition of non-emptiness is explicitly
canceled. For example, speakers presumably find the following acceptable:

(3.37) It is true that no graduate students at the party were drunk, because
there were in fact no graduate students at the party.

Even the following seems acceptable:

(3.38) It is true that all graduate students at the party were drunk, because
there were in fact no graduate students at the party.

But they would find the following unacceptable:

(3.39) It is true that at least two graduate students at the party were drunk,
because there were in fact no graduate students at the party.

(3.40) It is true that no graduate students at the party except John were drunk,
because there were in fact no graduate students at the party.

The following seems unacceptable too:

(3.41) It is true that more than half of the graduate students at the party were
drunk, because there were in fact no graduate students at the party.

These observations would then support the corresponding stipulations. It
should be noted, however, that for other determiners such judgements are
less clear, e.g., for most, where the stipulation makes Most A’s are B false
when A is empty, or at least half of the, where the corresponding sen-
tence would be true. A lot more can be said about this (cf. the discussion
in [Barwise and Cooper 1981]), but here our main points have just been that

(a) definition (3.35) works properly only if quantifiers are defined also on the
empty universe, and

(b) stipulations as to how they are defined on the empty universe are not
arbitrary but directly related to the question of how we judge the truth
value of sentences where a determiner phrase applies to an empty noun.
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3.3.3 Conservativity, Extension, and Relativization

Conservativity

That determiner denotations satisfy EXT was (we believe) first noted by van
Benthem; see [van Benthem 1986], ch. 1. Earlier on it had been observed24 that
they also satisfy another condition:

conservativity for type 〈1, 1〉 quantifiers

A type 〈1, 1〉 quantifier Q is called conservative (CONSERV) if, for all
M and all A,B ⊆M ,

(3.42) QM (A,B) ⇐⇒ QM (A,A ∩ B)

Barwise and Cooper expressed this property in terms of the ‘live on’ property
(Section 3.2.1). Seeing a determiner D as denoting (on each M) a function
||D||M associating with noun denotations (sets) A ⊆ M a type 〈1〉 quantifier,
their claim was that ||D||M (A) always lives on A. If we define the type 〈1, 1〉 Q
by

QM (A,B) ⇐⇒ B ∈ ||D||M (A)

this is precisely the claim that Q is conservative. The term ‘conservativity’ is
from [Keenan 1981].

First Determiner Universal

Putting together the above observations we obtain the following important de-
terminer universal :

(DU-1) Type 〈1, 1〉 quantifiers that interpret determiners in natural languages
satisfy CONSERV and EXT.

A few remarks about this claim are in order.
First, observe that (DU-1) places real constraints on the eligible the type

〈1, 1〉 quantifiers. In principle, nothing would seem to prevent some determiner
in some language to denote a quantifier meaning some on universes with less
than 10 elements, and at least four on larger universes. That quantifier is CON-
SERV but not EXT, but it just seems that no language has such determiners.
Likewise, many mathematically natural type 〈1, 1〉 quantifiers are (EXT but)
not CONSERV, for example, MOM (A,B) ⇔ |A| > |B|, or the Härtig quantifier
IM (A,B) ⇔ |A| = |B|. At first sight at least, nothing in principle would seem
to exclude these as determiner denotations. But in fact, they are excluded.

Second, in the case of CONSERV, clear intuitions about logical equivalent
sentences in, for example, English, support (DU-1). It seems evident that the
sentences in the following pairs are equivalent — indeed, the second sentence is
just a more clumsy way of expressing the first.

24In [Barwise and Cooper 1981], [Keenan 1981], and [Higginbotham and May 1981].
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(3.43) a. At least four students smoke.

b. At least four students are students who smoke.

(3.44) a. More than half of the balls are red.

b. More than half of the balls are red balls.

(3.45) a. All but five teams made it to the finals.

b. All but five teams are teams that made it to the finals.

(3.46) a. John’s two bikes were stolen.

b. John’s two bikes are bikes that were stolen.

But, third, it would clearly be unsatisfactory to see (DU-1) merely as an
empirical generalization based on examples such as the above.25 Rather, (DU-
1) should in turn be explained by the notion that one function of determiners is
to restrict the domain of quantification to the denotation of the corresponding
noun. Indeed, this was the idea behind CONSERV and EXT all along. And we
can now see how that idea can be made precise with the help of the concept of
relativization.

The Relativization Characterization

The relevant observation is expressed in the following result.

3.3.2 Proposition

Quantifiers of the form Qrel satisfy CONSERV and EXT. Conversely, each
CONSERV and EXT type 〈1, 1〉 quantifier is equal to Qrel for some type 〈1〉
quantifier Q.

Furthermore, the operation ·rel is a bijection between the class of type 〈1〉
quantifiers and the class of CONSERV and EXT type 〈1, 1〉 quantifiers, a bijec-
tion which in fact is an isomorphism in that it preserves a number of features of
these quantifiers, among them ISOM, monotonicity, and Boolean combinations.

Proof. The verifications of these claims are all straightforward, but in view the
importance of the result we go through them in some detail. We have already
observed (Fact 3.3.1) that Qrel satisfies EXT. It also satisfies CONSERV, since

(Qrel)M (A,B) ⇐⇒ QA(A ∩ B) [by definition (3.35)]

⇐⇒ (Qrel)M (A,A ∩ B) [again by (3.35), since

A ∩ (A ∩ B) = A ∩B]

25Even if it is true that, in the case of CONSERV, systematic sampling supports (DU-1)
(for discussion of one or two possible exceptions, see [Keenan and Stavi 1986]), and more-
over, familiar constructions of complex determiners from simpler ones preserve CONSERV:
[Keenan and Westerst̊ahl 1997], pp. 854-855.
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Conversely, suppose Q1 is a type 〈1, 1〉 quantifier which is CONSERV and
EXT. Then define a type 〈1〉 quantifier Q by

QM (B) ⇐⇒ (Q1)M (M,B)

for all M and all B ⊆M . It follows that

(Qrel)M (A,B) ⇐⇒ QA(A ∩ B)

⇐⇒ (Q1)A(A,A ∩ B) [by definition of Q]

⇐⇒ (Q1)M (A,A ∩ B) [since Q1 is EXT]

⇐⇒ (Q1)M (A,B) [since Q1 is CONSERV]

This means that Q1 = Qrel, and we have proved the first part of the proposition.
For the second part, we have just seen that the operation ·rel is onto (sur-

jective), so to prove that it is a bijection we only need to establish:

Qrel
1 = Qrel

2 =⇒ Q1 = Q2

But if Qrel
1 = Qrel

2 and M and B ⊆M are arbitrary, then

(Q1)M (B) ⇐⇒ (Qrel
1 )M (M,B) [by definition (3.35)]

⇐⇒ (Qrel
2 )M (M,B) [by assumption]

⇐⇒ (Q2)M (B)

Thus, Q1 = Q2.
Next, that ·rel preserves ISOM means that

Q is ISOM ⇐⇒ Qrel is ISOM

This too is straightforward, but we come back to a fuller discussion of the role of
ISOM here in Section 3.3.5 below. Likewise, the preservation of monotonicity,
or more precisely that

Q is increasing ⇐⇒ Qrel is increasing in the 2nd argument

is taken up in Section ??. Finally, preservation of Boolean operations means
that the following holds:

(a) (Q1 ∧Q2)
rel = Qrel

1 ∧Qrel
2

(b) (Q1 ∨Q2)
rel = Qrel

1 ∨Qrel
2

(c) (¬Q)rel = ¬Qrel

(d) (Q¬)rel = Qrel¬, and hence, (Qd)rel = (Qrel)d

We check (d); the others are similar. For any M and any A,B ⊆ M we get,
using (3.35) and the definition of inner negation (Section 3.1.3),

(Q¬)relM (A,B) ⇐⇒ (Q¬)A(A ∩ B)

⇐⇒ QA(A−B) [since A− (A ∩ B) = A−B]

⇐⇒ Qrel
M (A,M −B) [since A ∩ (M −B) = A−B]

⇐⇒ (Qrel¬)M (A,B)
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The second claim in (d) now follows from the first claim and (c), via the defini-
tion of duals. �

This proposition, then, clarifies the import of the properties of conservativity
and extension as aspects of domain restriction, since the CONSERV and EXT
type 〈1, 1〉 quantifiers are precisely the relativizations of the type 〈1〉 quantifiers.
It gives substance to the universal (DU-1). And it explains why, although
determiner denotations are irrevocably binary relations between sets,26 the class
of type 〈1〉 quantifiers is still fundamental for their interpretations. Proposition
3.3.2 shows how the whole class of type 〈1〉 quantifiers is mirrored in a subclass
of the type 〈1, 1〉 quantifiers, and we shall explore this correspondence on several
occasions in the sequel.

One property which is not preserved by ·rel is EXT. That Qrel is EXT does
not imply that Q is EXT; indeed, Qrel is always EXT. So it is natural to ask
which property among CONSERV and EXT type 〈1, 1〉 quantifiers that EXT
for type 〈1〉 quantifiers corresponds to. That question too has a simple but
interesting answer, which we will come back to in Section 3.3.4.

Restricted Quantifiers Once Again

We thus see that for type 〈1, 1〉 quantifiers that interpret determiner expressions
in natural languages, there is a significant difference between the first argument,
or restriction, which restricts the domain of quantification, and the second ar-
gument, i.e., the scope, which comes from the verb phrase. Furthermore, if we
freeze the restriction, we obtain a type 〈1〉 quantifier which serves as the inter-
pretation of the noun phrase consisting of the determiner and the corresponding
noun. This ‘freezing’ is quite useful, as a mechanism for reducing (CONSERV
and EXT) type 〈1, 1〉 quantifiers to type 〈1〉 quantifiers. Formally it can be
described as follows.

freezing the restriction

If Q is any type 〈1, 1〉 quantifier, and A is any set, the type 〈1〉 quantifier
QA is defined, for all M and all B ⊆M , by

(3.47) (QA)M (B) ⇐⇒ QM (M ∩ A,B)

Now, as the reader will recall, we already defined, in Section 3.2.1, a notion
of the restriction Q[A] of a type 〈1〉 quantifier Q, and claimed that such restricted
quantifiers were appropriate interpretations of noun phrases. Fortunately, the
restriction of Q to A in this sense and the freezing of the restriction argument

26Or n-ary relations for some n > 1. We have already seen that determiner expressions like
more . . . than can be seen as taking two restrictions, and are thus of type 〈1, 1, 1〉. In view of
this, we shall need to consider, in Section 3.4, how the universal (DU-1) and the considerations
about domain restriction made here can be generalized to that case.
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to A for the corresponding relativized quantifier amount to exactly the same
thing.

3.3.3 Fact

Let Q be any type 〈1〉 quantifier, and A any set. Then

(Qrel)A = Q[A]

Proof. Take any M and any B ⊆M . Then

((Qrel)A)M (B) ⇐⇒ (Qrel)M (M ∩ A,B) [by definition (3.47)]

⇐⇒ QM∩A(A ∩ B) [by definition (3.35)]

⇐⇒ (Q[A])M (B) [by definition (3.12)]

�

The idea of freezing is familiar from the literature, but there is actually a
small twist as to how it should be defined, which is related to the global vs. local
perspective issue (Section 3.1.1). We end this section by commenting on this;
these remarks can be skipped if one is not interested in such methodological fine
tuning.

Methodological digression. Often, freezing the restriction of a type 〈1, 1〉 quanti-
fier Q is defined a bit ‘sloppily’ by considering only the case when the universe
M is given and the restriction set A is a subset of M . That is, one defines a
local quantifier QA on M by

QA(B) ⇐⇒ QM (A,B) for all B ⊆M

and ignores how this could be turned into a global definition.27 For most ap-
plications, and in particular for the important application of freezing in the
definition of iteration of quantifiers (Section ZZZZ), the ‘sloppy’ version is suf-
ficient since only the case when A ⊆M is used.

Since we prefer global definitions whenever possible, we used (3.47) above
instead, which works for any A but of course reduces to the ‘sloppy’ definition
when A ⊆M . But another global version is possible as well. One might decide
to include A ⊆M in the defining condition, either by reading

(QA)M (B) ⇐⇒ QM (A,B)

in this way, so that (QA)M (B) becomes false whenever A 6⊆M ,28 or by making
this explicit, and thus defining, given Q and A,

(QA)M (B) ⇐⇒ A ⊆M and QM (A,B), for all B ⊆M

27This is done in [Keenan and Westerst̊ahl 1997], [Westerst̊ahl 1996], and essentially also in
[Barwise and Cooper 1981].

28This route is followed in [Westerst̊ahl 1994].
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Again, there is no difference when A ⊆ M . But in the general case there is
small difference. Note that exactly the same choice turns up for the definition
of Q[A] (for a type 〈1〉 Q): we used (3.12), i.e.,

(Q[A])M (B) ⇐⇒ QM∩A(A ∩B)

but could instead have chosen

(Q[A])M (B) ⇐⇒ A ⊆M and QA(A ∩ B)

It is easily seen that if we had taken the second alternative in both cases, then
Fact 3.3.3 would still hold. So is there a reason for our choice of the first
alternative here?

It is perhaps not a big deal, but we have two (small) arguments. First, we
find it more satisfactory that restriction to a noun denotation A (say, the set of
dogs) works even when you are in a smaller universe of discourse M (say, the set
of things in my house): so you restrict to M ∩A (the set of dogs in my house).
Second, there are results which hold for our version of the definition but fail for
the other case. For example, we noted in Section 3.2.3 that EXT is preserved
when going from Q to Q[A]; this is no longer true if ‘A ⊆M ’ is included in the
defining condition (since if M is extended to M ′, it can be the case that A 6⊆M
but A ⊆M ′). End of digression.

3.3.4 Symmetry

It is a notable fact that some determiners in natural languages (and their cor-
responding denotations) are symmetric and others are not. The (a) and (b)
sentences in the following examples imply each other, but the (c) and (d) sen-
tences do not.

(3.48) a. Some lawyers are crooks.

b. Some crooks are lawyers.

c. All lawyers are crooks.

d. All crooks are lawyers.

(3.49) a. No lawyers are crooks.

b. No crooks are lawyers.

c. Most lawyers are crooks.

d. Most crooks are lawyers.

(3.50) a. Several lawyers are crooks.

b. Several crooks are lawyers.
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c. Every lawyer is a crook.

d. Every crook is a lawyer.

(3.51) a. Three lawyers are crooks.

b. Three crooks are lawyers.

c. All but two lawyers are crooks.

d. All but two crooks are lawyers.

(3.52) a. More than six lawyers are crooks.

b. More than six crooks are lawyers.

c. Two thirds of the lawyers are crooks.

d. Two thirds of the crooks are lawyers.

(3.53) a. At most four lawyers are crooks.

b. At most four crooks are lawyers.

c. The lawyers were crooks.

d. The crooks were lawyers.

(3.54) a. A woman was a witness.

b. A witness was a woman.

c. The woman was a witness.

d. The witness was a woman.

Thus, no, some, three and other numerals, more than six, at most four

and other modified numerals, are symmetric, but all, every, all but two,
and most and other proportionals, are not. Aristotle devoted a good part of
his syllogistics to codifying the different inference characteristics of these two
classes of quantifiers.

There are some initially puzzling challenges to symmetry, like the intuitive
contrast between (3.55a) and (3.55b) below:

(3.55) a. Some men are bachelors.

b. Some bachelors are men.

(3.55a) seems informative whereas (3.55b) is trivial. But this puzzle can be
satisfactorily resolved with a pragmatic theory about the point of utterances,
such as Grice’s theory of conversational implicature. (3.55a) normally carries
the implicature (3.56a), and (3.55a) would carry (3.56b).
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(3.56) a. Not all men are bachelors.

b. Not all bachelors are men.

The self-contradictory nature of (3.56b) explains the oddness of (3.55b). Con-
versational implicature is also pertinent to the feeling that symmetry pairs like
those above are not fully synonymous. For example, (3.48a) has the implicature
(3.57a), and (3.48b) has the non-equivalent implicature (3.57b).

(3.57) a. Not all lawyers are crooks.

b. Not all crooks are lawyers.

A similar observation is the following. Determiners have, as we have noted,
the property of restricting the domain of quantification to what is accordingly
called the restriction argument. This is a semantic property, codified in CON-
SERV and EXT. But it is natural to assume that there are also pragmatic
aspects of domain restriction, such as making the extension of the correspond-
ing noun the topic at that point of an utterance. If so, the respective sentences
in a symmetry pair have different topics, and are already for this reason not
fully synonymous.

In any case, aside from these pragmatic aspects, there is an obvious semantic
property of generalized quantifiers denoted by symmetric determiners, namely,
the symmetry, in the usual sense, of the corresponding second-order relations.

symmetry

A type 〈1, 1〉 quantifier Q is symmetric (SYMM) if, for all M and all
A,B ⊆M ,

(3.58) QM (A,B) implies QM (B,A)

Clearly the quantifiers corresponding to the symmetry pairs above are all
symmetric in this sense, whereas those in the other pairs are not symmetric.
But looking at these examples, we can see that there seems to be another way
of expressing the characteristic semantic properties of the quantifiers in the
symmetry pairs. This is the property that only the intersection of the restriction
and the scope matters for whether the sentence is true or not. For example, the
only thing that matters for whether Three lawyers are crooks is true or not
is the number of lawyers that are crooks. The number of honest lawyers, say,
has no influence at all. This property (in this case of the quantifier three) has
been called intersectivity. We give a precise definition, and then state exactly
how it relates to symmetry.
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intersectivity

A type 〈1, 1〉 quantifier Q is intersective (INT) if the truth value of
QM (A,B) only depends on A ∩ B. More precisely, for all M and all
A,B,A′, B′ ⊆M ,

(3.59) If A ∩ B = A′ ∩ B′, then QM (A,B) ⇔ QM (A′, B′).

A different way of expressing the same property is the following: For
all M and all A,B ⊆M ,

(3.60) QM (A,B) ⇐⇒ QM (A ∩ B,A ∩B).

(3.59) implies (3.60), since if we take A′ = B′ = A ∩ B in (3.59), A ∩ B =
A′ ∩B′, and so (3.60) follows. Conversely, if A ∩B = A′ ∩B′ and (3.60) holds,
two applications of this property gives the conclusion of (3.59). An advantage
of expressing intersectivity as in (3.59) is, as we will see in Section 3.4, that it
generalizes to determiner denotations of other types than 〈1, 1〉.

It is also clear that intersectivity implies symmetry: in order to conclude
QM (B,A) from QM (A,B), we let A′ = B and B′ = A in (3.59). The converse
implication does not hold in general, but it does hold if Q is conservative:

3.3.4 Fact

Under CONSERV, SYMM and INT are equivalent.

Proof. It remains to verify that symmetry implies intersectivity under CON-
SERV. Suppose A,B ⊆M . Then

QM (A,B) ⇐⇒ QM (A,A ∩ B) [by CONSERV]

⇐⇒ QM (A ∩ B,A) [by SYMM]

⇐⇒ QM (A ∩ B,A ∩B) [by CONSERV]

Thus, (3.60) holds. �

We have claimed that determiner denotations are both CONSERV and EXT,
and so the intuition that the quantifiers in symmetry pairs are both symmetric
and intersective is justified. Note that under EXT, (3.60) can be written

(3.61) QM (A,B) ⇐⇒ QA∩B(A ∩ B,A ∩ B).

The fact that determiner denotations are CONSERV and EXT is explained
by their being relativizations of type 〈1〉 quantifiers (Proposition 3.3.2). So
what is the property of type 〈1〉 quantifiers that corresponds to symmetry of
their relativizations? The simple answer is given in the following

3.3.5 Proposition

Qrel is symmetric if and only if Q satisfies EXT (for type 〈1〉 quantifiers).
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Proof. Suppose first that Qrel is symmetric. Let A be a subset of both M and
M ′. Then

QM (A) ⇐⇒ Qrel
M (M,A) [by (3.35)]

⇐⇒ Qrel
A (A,A) [by (3.61)]

⇐⇒ Qrel
M ′(M ′, A) [by (3.61)]

⇐⇒ QM ′(A) [by (3.35)]

Thus, Q satisfies EXT. Conversely, suppose that Q satisfies EXT, and that
A,B ⊆M . Then

Qrel
M (A,B) ⇐⇒ QA(A ∩ B) [by (3.35)]

⇐⇒ QA∩B(A ∩B) [by EXT]

⇐⇒ Qrel
M (A ∩ B,A ∩B) [by (3.35)]

So (3.60) holds for Qrel, and hence it is symmetric. �

So we see that there is a substantial difference between EXT for type 〈1〉
quantifiers and EXT for type 〈1, 1〉 quantifiers, in a natural language context
— cf. the discussion at the end of Section 3.2.3. The latter property holds
of all determiner denotations. But the EXT type 〈1〉 quantifiers single out a
particular class of determiner denotations, namely, the symmetric ones.

. . .
If closure under isomorphism (ISOM) holds, we can further characterize

symmetry. Keenan calls a type 〈1, 1〉 quantifier Q cardinal (CARD) if the
following holds, for all M and all A,B ⊆M :

(3.62) If |A ∩ B| = |A′ ∩ B′|, then QM (A,B) ⇔ QM (A′, B′).

This is a stronger property than intersectivity (since the antecedent of (3.59)
implies the antecendent of (3.62)), i.e., CARD implies INT. The precise relation
between the two notions is given in the following.

3.3.6 Fact

For any type 〈1, 1〉 quantifier Q, CARD is equivalent to ISOM + INT, on finite
universes. Hence, under CONSERV, it is equivalent to ISOM + SYMM on finite
universes. Under CONSERV and EXT, it is equivalent to ISOM + SYMM on
arbitrary universes.

Proof. Suppose Q satisfies CARD. We already saw that INT follows. Also,
ISOM for type 〈1〉 quantifiers in the form (3.14) in Section 3.2.2 generalizes for
type 〈1, 1〉 quantifiers to a similar condition on the cardinalities of the four sets
A ∩ B, A − B, B − A, and M − (A ∪ B). (This is spelled out in Section 3.3.5
below.) But CARD says that the desired conclusion follows already from just
one part of this condition, namely the one on A ∩ B, and so a fortiori ISOM
holds.
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This implication is true whether the universe is finite or not. Now suppose,
conversely, that Q satisfies ISOM and INT, that A,B,A′, B′ ⊆ M where M is
finite, and that |A∩B| = |A′∩B′|. It follows that |M−(A∩B)| = |M−(A′∩B′)|
(but this is not necessarily true if M is infinite). Then

QM (A,B) ⇐⇒ QM (A ∩ B,A ∩B) [by (3.60)]

⇐⇒ QM (A′ ∩ B′, A′ ∩ B′) [by ISOM]

⇐⇒ QM (A′, B′) [by (3.60)]

Thus CARD holds.
The claim about what happens under CONSERV follows immediately from

this and Fact 3.3.4. And if EXT also holds, the cardinalities of M − (A ∩ B)
and M − (A′ ∩ B′) are just irrelevant, so the above argument to infer CARD
goes through using only the assumption that |A ∩B| = |A′ ∩ B′|. �

We observed in Section 3.2.3, Fact 3.2.5, that under ISOM, a type 〈1〉 quan-
tifier satisfying EXT is characterized simply by a class of cardinal numbers.
Combining this with the fact that CONSERV and EXT quantifiers are rela-
tivizations of type 〈1〉 quantifiers, and with Proposition 3.3.5, we obtain a final
characterization of symmetric quantifiers:

3.3.7 Corollary

Under ISOM, a CONSERV and EXT type 〈1, 1〉 quantifier Q is symmetric if
and only if there is a class S of cardinal numbers such that for all M and all
A,B ⊆M ,

QM (A,B) ⇐⇒ |A ∩B| ∈ S

On the Symmetry of many and few

It has been observed that (3.63a) intuitively seems not to entail (3.63b), and
(3.64a) not to entail (3.64b).

(3.63) a. Many plutocrats are Americans.

b. Many Americans are plutocrats.

(3.64) a. Few scoundrels are Nobel Laureates.

b. Few Nobel Laureates are scoundrels.

This time it is not a matter of total synonymy or pragmatic considerations,
since the very truth conditions appear to differ. One might conclude simply
that many and few are not symmetric. However, the issue merits a bit more
attention.

We noted (towards the end of Section 3.3.1) that the interpretation of the
determiners many and few as quantifiers is strongly context-dependent, indeed
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so much that some authors prefer not to treat them as quantifiers at all. Let us
however try to see what such an interpretation would have to amount to. For
simplicity, we mostly restrict attention to many, but similar remarks hold for
few.

All uses of many bound the cardinality of the intersection of the quantifier’s
restriction and scope. Many A’s are B says that A ∩ B is ‘big’, i.e., that

|A ∩ B| > n

for some number n (smaller than the size of the universe). But unlike more
than a hundred and fewer than ten, which specify their respective (lower and
upper) bounds quite precisely, and even proportional quantifiers like at least two
thirds of the and most, many and few permit quite a broad variety of factors to
influence their bounds. They sometimes allow the bound to be set with reference
to the size of the restriction (as with proportional quantifiers); this appears to
be the case for the sentences in (3.63) and (3.64). But in (3.65) and (3.66) it
seems to be the size of the scope that matters.

(3.65) Many Scandinavians have won the Nobel Prize.

(3.66) Few cooks applied.

For example, (3.66) could say on a given occasion that the number of cooks that
applied is smaller than one fifth of the total number of applicants, but hardly
that it is smaller than one fifth of the total number of cooks.

For an extensional treatment of many, there appear to be two possibilities.
One could interpret it as saying that the size of the intersection of the restriction
and the scope is greater than some fixed number, given by context for each use
of the word. That makes the quantifier satisfy conservativity, extension, and
symmetry. But such a perhaps extremely context-dependent treatment misses
the uniformities of interpretation that after all seem to hold in cases like (3.63) –
(3.66). An alternative treatment, then, would be to think of many as ambiguous
between a proportional reading

|A ∩ B| > k · |A|

and an ‘anti-proportional’ reading

|A ∩ B| > k · |B|

and perhaps even other similar readings where further sets are used to deter-
mine the relevant sort of comparison. (The number k also has to be provided
by context, but this is no different than with most, where the ‘threshold’ can
vary with context.) Note, however, that whereas the proportional reading is
conservative but not symmetric, the ‘anti-proportional’ one loses conservativity
too, thus threatening our first determiner universal (DU-1) (Section 3.3.3). This
might be considered a higher methodological price than one can afford.

The question of the correct treatment of many is both theoretical and em-
pirical.

. . .
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Symmetry and Existential there-sentences

TBW

3.3.5 ISOM and the Number Tree

3.4 Other Monadic Types

3.5 Some Polyadic Quantifiers
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Piñon (eds), Dynamics, Polarity, and Quantification, CSLI Publications,
Stanford, 1994, 173–209.

[Westerst̊ahl 1996] D. Westerst̊ahl, Self-commuting quantifiers, Journal of Sym-
bolic Logic 61 (1996), 212–224.


